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Abstract

Heteroskedasticity and autocorrelation consistent (HAC) estimation commonly
involves the use of prewhitening filters based on simple autoregressive models.
In such applications, small sample bias in the estimation of autoregressive
coefficients is transmitted to the recolouring filter, leading to HAC variance
estimates that can be badly biased. The present paper provides an analysis of
these issues using asymptotic expansions and simulations. The approach we
recommend involves the use of recursive demeaning procedures that mitigate
the effects of small-sample autoregressive bias. Moreover, a commonly used
restriction rule on the prewhitening estimates (that first-order autoregressive
coefficient estimates, or largest eigenvalues, >0.97 be replaced by 0.97)
adversely interferes with the power of unit-root and [Kwiatkowski, Phillips,
Schmidt and Shin (1992) Journal of Econometrics, Vol. 54, pp. 159–178]
(KPSS) tests. We provide a new boundary condition rule that improves the size
and power properties of these tests. Some illustrations of the effects of these
adjustments on the size and power ofKPSS testing are given.Using prewhitened
HACestimates and the newboundary condition rule, theKPSS test is consistent,
in contrast to KPSS testing that uses conventional prewhitened HAC estimates
[Lee, J. S. (1996) Economics Letters, Vol. 51, pp. 131–137].
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I. Introduction

Following earlier research in time series on spectral estimation, numerous
estimators have been proposed in the econometric literature to provide
heteroskedasticity and autocorrelation consistent (HAC) variance matrix
estimates. The literature, which includes long-run variance (LRV) matrix
estimation, has considered kernel choice, automated bandwidth selection
procedures and prewhitening/recolouring filters. The last-mentioned filters are
now routinely used in applications and are built into some software packages,
encouraging their widespread use. It is recognized that the performance of
HAC estimators and the properties of associated testing procedures can be
unsatisfactory in small samples and various methods, including bootstrap
procedures, have been proposed to correct the size distortion resulting from
HAC estimation even when there is only one regressor (e.g. Mark, 1995;
Kilian, 1999a).

It is known that a major factor in the finite-sample size distortions of test
statistics constructed with HAC estimators is the small-sample bias of
prewhitening coefficients. For example, Phillips and Sul (2003) demonstrated
how serious HAC estimation bias can be when the prewhitening filter is based
on a simple autoregression. Although the bias in autoregression may itself be
small and is often ignored in estimation and testing, the resulting bias in HAC
estimation can be quite large because of the nonlinear nature of the
recolouring filter. Andrews and Monahan (1992) report an important finding
that prewhitened LRV estimators provide less size distortion than Newey and
West (1987, 1994) (NW)-type estimators because prewhitened LRVestimators
are less median-biased downward.

Some of the implications of bias in HAC estimation on the size distortion
of test statistics can be illustrated by a simple cointegrating regression
example. Figures 1 and 2 display the empirical distributions of some popu-
lar LRV estimates and associated t-ratio statistics in the context of the
cointegrating equation yt ¼ a + bxt + ut, where ut ¼ qut)1 + et and xt ¼
xt)1 + et with a ¼ 0, b ¼ 1 and the innovation vector (et, et) is indepen-
dently and identically distributed (i.i.d.) N(0, I2) for T ¼ 100. Testing in this
model requires an estimate of the LRV of ut, which has the value Xu ¼ 100
when q ¼ 0.9. In Figure 1, NW4 and NW10 denote LRV estimates based on
Newey and West (1987) using 4 and 10 lags, respectively, and QSPWOLS is
the LRV estimator in Andrews and Monahan (1992) with a quadratic spectral
(QS) kernel using prewhitening (PW) and ordinary least squares (OLS) to
remove the mean. As is apparent, NW4 and NW10 both produce seriously
downward-biased estimates of Xu, which in turn produce an upward size
distortion in t-tests that use these LRV estimates. QSPWOLS is also biased
downward, although not as seriously as the NW estimates, so the upward
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size distortion of tests based on this estimator is not as serious but is still
present.

Figure 2 displays the corresponding distributions of the t-statistic
ðb̂� 1Þ=X̂b for testing the null hypothesis H0 : b ¼ 1, where b̂ is the OLS
estimate of b,
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Figure 1. Empirical cumulative density function of various LRV estimators (true Xu ¼ 100)

0

0.05

0.1

0.15

0.2

–2.95 –2.85 –2.75 –2.65 –2.55 –2.45 –2.35 –2.25 –2.15 –2.05 –1.95 –1.85 –1.75 –1.65

t - Statistics

ytisned evitalu
mu

C

NW4

NW10

QSPWOLS

QSPWRD

QSPWRD
new rule

Figure 2. Empirical cumulative density of t-statistics based on various HAC estimators
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X̂2
b ¼ X̂2

u

XT
t¼1

ðxt � �xÞ
 !�1

and X̂2
u is the corresponding estimate of Xu in the cointegrating regression.

Evidently, the t-statistics based on the NW10 and NW5 estimates have
substantial size distortion. As shown in the figure, for a test with nominal 5%
size, these procedures for constructing the test statistic have actual sizes
around 12% and 16% respectively. The t-statistic based on the QSPWOLS
estimate of the LRV substantially reduces this size distortion but some mild
upward size distortion is still evident.

The underlying theme of the present work is a simple consequence of these
observations. This paper seeks to develop a flexible and convenient bias-
correction method that can be applied to prefiltering in HAC estimation. We
review some existing bias-correction methods for multivariate autoregression
in models with fitted means (where the bias effects are worse) and select some
candidate procedures for implementation in HAC estimation based on
recursive demeaning and detrending methods. Some analysis is provided of
the recursive demeaning procedure proposed by So and Shin (1999b) and
Phillips, Park and Chang (2001) for reducing bias in autoregression, from
which we develop a modified recursive detrending method. These methods
provide some computationally convenient bias-correction tools for practical
work. Once the bias in the fitted autoregressive coefficients is corrected, the
finite-sample performance of the prewhitened HAC and LRV estimators is
generally improved. Figures 1 and 2 show the impact of recursive demeaning
(RD) on the prewhitened QS estimate and its corresponding t-ratio. QSPWRD
exhibits less downward bias in the estimation of Xu than the other LRV
estimates and removes the upward size distortion in the t-test.

Simulation evidence shows that the power of tests based on HAC
estimators is very dependent in finite samples on the variance of the HAC
estimator used in the construction of the test, with larger HAC variance
generally worsening test power. This dependence plays a large role in
affecting the power of stationarity tests such as the Kwiatkowski, Phillips,
Schmidt and Shin (1992) (KPSS) and variable additional tests. For example,
Lee (1996) reported that KPSS tests based on NW-type HAC estimators suffer
from serious size distortion but have reasonable size-adjusted power, while
those based on prewhitened HAC estimators provide much less size distortion
but suffer from very poor power and can, in fact, be inconsistent. Figure 1
provides some intuitive explanation of Lee’s findings. In the use of
autoregressive prewhitened HAC estimators, a commonly used restriction
rule on the autoregressive estimates (viz. that an autoregressive estimate, or
latent root, >0.97 be replaced by 0.97) interferes with size as well as power in
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unit-root and stationarity tests. This rule is used to avoid distortions that occur
in prewhitening when estimates are very close to unity. In fact, the
prewhitened estimates using this rule do reduce the size distortion in other
estimates such as the NW estimates, but they still have a substantially thicker
right tail than NW estimates. We examine alternative boundary restrictions
in place of the 0.97 rule and propose a new sample size-dependent rule
that, when an autoregressive estimate is >1� 1=

ffiffiffiffi
T

p
, it be replaced by

1� 1=
ffiffiffiffi
T

p
. Under this new rule, the power of tests based on LRV estimators

improves significantly. Figure 1 again provides some insight into why this
new rule improves test power. Under the new rule, the QSPWRD estimator
has a distribution in which the heavy right tail of the estimate is significantly
reduced, which in turn produces less variance in the test statistic. Figure 3
shows the corresponding size-adjusted power functions of t-statistics with
various LRV estimators. The test based on QSPWRD with the 0.97 rule
provides reasonably accurate test size (as seen in Figure 2) but has
substantially less power than tests based on NW estimates of the LRV and
also less power than tests based on the QSPWOLS LRV estimate. On the
contrary, with the new rule implemented, the power of the test based on
QSPWRD is substantially improved. Moreover, as we will show, under the
new rule the powers of both KPSS and unit-root tests are also significantly
improved and the KPSS test is consistent.

The remainder of this paper is organized as follows. Section II studies the
analytic form of the small sample bias in HAC estimation and develops

Figure 3. Power functions for the t-test in a cointegrating regression
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some asymptotic approximations. Section III provides some small sample
bias-correction formulae for scalar autoregressive prefilters. Section IV
explains how to implement the bias corrections and provides some new
restrictions on the estimates of the prewhitening coefficients. Section V
reports the main results of some Monte Carlo simulations. Section VI
concludes.

A final note on terminology. Much of the discussion throughout this
paper is in terms of LRV estimation because this application is so wide-
spread. But the methods considered here are directly applicable in the context
of HAC estimation of asymptotic covariance matrices of econometric
estimates. So we sometimes use the appellation HAC interchangeably with
LRV.

II. Small-sample bias in HAC estimation

A stylized setting for HAC estimation is the scalar regression model

yt ¼ aþ X 0
t bþ et; ð1Þ

or in demeaned form ~yt ¼ ~X 0
t b þ ~et, where b denotes the true value of the

coefficients on a set of exogenous variables Xt and where the ‘tilde’ affix
signifies demeaning. Robust tests about b typically involve the use of
LRV estimates of variates of the form Vt ¼ Ztet, where Zt is a vector of
instruments or covariates. However, as et is unobserved, it is conventionally
replaced by estimates êt constructed from regression residuals. In models
where there is a fitted intercept, as in the one just given, this will imply some
process of demeaning in the construction of these residuals. Practical
implementation of robust testing therefore involves the calculation of LRV
estimate of quantities such as ~Vt ¼ ~Ztêt.

Prewhitening is based on the proposition that a simple parametric
specification such as the vector autoregression (VAR)

~Vt ¼
Xp
i¼1

Ai ~Vt�1 þ ~Ut; t ¼ 1; . . . ; T ð2Þ

will capture much of the temporal dependence ~Vt. In addition, ~Vt is often
written as a function of the parameters in the original regression model, e.g. as
~Vt ¼ ~Vtðb0Þ in the present case. The lag order p in equation (2) could be
infinite, but in practical work will often be taken to be a small integer, so that
the VAR(p) model prewhitens the data and has a simple recolouring filter that
leads to the following expression for the LRV of ~Vt

X2
V ¼ ðI � AÞ�1X2

U ðI � A0Þ�1; ð3Þ
where
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A ¼
Xp
i¼1

Ai;

and X2
U is LRV of ~Ut.

1

While finite-sample bias problems have been well documented in
autoregressions of the above type, there has been little investigation of the
implied bias problem in HAC estimation that uses such prefilters. Prewhiten-
ing produces recolouring filters like equation (3) that are heavily dependent
on the prewhitening coefficients, and so the transmission of bias effects in
HAC/LRV estimation is potentially important. It is also known that bias
problems in autoregressions are exacerbated by demeaning and detrending
(e.g. Orcutt and Winokur, 1969; Andrews, 1993). While equation (2) does
not itself involve an intercept or trend, the constituent variates ~Zt and êt
do typically involve demeaning and this contributes to bias effects in pre-
whitening autoregressions with ~Vt.

Nicholls and Pope (1988) and Tjøstheim and Paulsen (1983) gave some
asymptotic expansion bias results for the VAR(1) model and Brännström
(1995) extended this bias formula to include the third-order term of O(T)2). In
contrast to the bias formulae for scalar autoregressions, formulae for the
VAR(p) case seem not to have been used in practice. Nicholls and Pope
(1988) gave the following bias formula for the VAR(1) case with a fitted
intercept

EðÂ� AÞ ¼ � 1

T
C þ OðT�2Þ; ð4Þ

where

C ¼ G ðI � A0Þ�1 þ A0ðI � A02Þ�1 þ
Xm
j¼1

kjðI � kjA0Þ�1

" #
Cð0Þ�1: ð5Þ

Here, we set p ¼ 1, A ¼ A1 and let ~Ut be i.i.d. N(0, G) in equation (2), C(0) is
the covariance matrix of ~Vt, and {kj : j ¼ 1, . . . , m} are the eigenvalues of A.

1The model for the prefilter can, of course, be extended to include ARMA(p, q) processes (c.f., Lee
and Phillips, 1994) in which case the model (2) has the form

~Vt ¼
Xp
i¼1

Ai ~Vt�i þ
Xq
i¼1

Bi ~Ut�i

and the LRV matrix is

X2
V ¼ I �

Xp
i¼1

Ai

 !�1

I þ
Xq
i¼1

Bi

 !
X2

U I þ
Xq
i¼1

B0
i

 !
I �

Xp
i¼1

Â0
i

 !�1

:
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When the coefficient matrix A has the appropriate companion form
corresponding to a scalar AR(p) model, the bias formula (4) includes this
higher-order scalar case.2

Equation (3) helps explain the problem of induced bias in HAC estimation
based on prefiltering. The prefiltering bias in HAC estimation comes from the
bias in the estimation of the autoregressive coefficients and this becomes
exaggerated as the system roots approach unity. In this respect, the small
sample bias in HAC estimation is very similar to that of the half-life
estimation of dynamic responses, for which the formula is ln(0.5)/
ln(kmin(A)), where kmin(A) is the smallest eigenvalue of the companion matrix
A. In such cases, even a small bias in the estimation of A can cause a huge bias
in HAC or half-life estimation.

To illustrate, we take a simple AR(1) process and give analytic bias
formulae for the prefilter effects using asymptotic expansions. Suppose the
model for vt is

vt ¼ lþ qvt�1 þ ut; ut � i.i.d. Nð0;r2uÞ: ð6Þ

Here, we allow for a fitted intercept in equation (6) because, as indicated
earlier, vt is usually bilinear in constituent variates that have been demeaned,
so that equation (6) is, in practice, only approximate, and simulations confirm
that there is some finite-sample advantage in allowing for further demeaning.
In view of the parametric form of equation (6), the LRV of vt can be
parametrically estimated by

X̂2
v ¼

r̂2u
ð1� q̂Þ2

; ð7Þ

where q̂ and r̂2u are least squares estimates of the coefficient and error variance
in equation (6). In the non-parametric case, we still use the recolouring filter
1=ð1� q̂Þ2 in the final estimate, and hence the effects of prewhitening in more
general HAC estimation are similar in that case. Appendix A develops an
Edgeworth expansion of the distribution of X̂2

y , from which we deduce the
following bias formula

2For the case of a scalar AR(1) with fitted mean, i.e. ~vt ¼ q~vt�1 þ ~ut with varð~utÞ ¼ r2u, this
formula reduces as follows:

A ¼ k ¼ q;G ¼ r2u; and Cð0Þ ¼ r2u
ð1� q2Þ ;

so that

EðÂ� AÞ ¼ � 1

T
ð1� q2Þ 1

1� q
þ q
1� q2

þ q
1� q2

� �
þ OðT�2Þ ¼ � 1þ 3q

T
þ OðT�2Þ:
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Ea
r̂2u

ð1� q̂Þ2

" #
� r2u
ð1� qÞ2

¼ � r2uð1þ qÞ
T ð1� qÞ3

þ OðT�2Þ; ð8Þ

giving the bias ratio

EaX̂
2
v

X2
v

¼ 1� ð1þ qÞ
T ð1� qÞ þ OðT�2Þ: ð9Þ

As the support of the probability density of q̂ is the whole real line and, in
particular, this density is positive at q̂ ¼ 1, the distribution of r̂2u=ð1� q̂Þ2 has
no finite-sample integer moments. As, in the formulae above, Ea denotes
expectation with respect to the Edgeworth approximation, equations (8) and (9)
give the moments of the approximating distribution. From equation (8), it is
clear that the LRV estimator (7) suffers from downward bias, and the bias is a
function of r2u as well as q. Figure 4 plots the bias ratio (9) for X̂2

v, showing how
increasing the value of q accentuates the bias for various values of T. While the
approximate bias in q̂ increases linearly in q, the bias in X̂2

v increases nonlinearly
in q and the bias effects become exaggerated as q approaches unity. From the
asymptotic expansion for q̂ given in Appendix A, we obtain the bias ratio

Eaðq̂Þ=q� 1 ¼ �ð3þ 1=qÞ
T

þ OðT�2Þ:

Hence, as q increases towards unity, the relative bias in the OLS estimate q̂
decreases, whereas the relative bias in the LRV estimate given in equation (9)

Figure 4. Bias ratio for T ¼ 50, 100, 500
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increases as q tends to unity. As is apparent from Figure 4, the bias problem in
LRV estimation accelerates rapidly as q approaches unity.3

III. Bias-correction methods

As a major source of the bias in prewhitened HAC estimates originates in the
bias of the fitted coefficients that appear in the recolouring filter, one approach
to bias correction in such HAC estimates is to correct for the bias in these
prewhitening coefficients. In practice, as simple autoregressive filters are the
most common, the problem becomes one of correcting autoregressive bias.

There are two sources of bias in autoregression. The first arises from the
nonlinearity of the autoregressive estimator and its asymmetric distribution.
The second is induced by demeaning and/or deterministic trend elimination
which produces residuals that are correlated with the lagged dependent
variable. Many different approaches have been suggested to correct for this
autoregressive bias. The first method relies on asymptotic expansions, using
formulae such as those given in section II and Appendix A with estimates
plugged in as values of the unknown parameters in the expansions. Kendall
(1954), Marriott and Pope (1954), Phillips (1977), Tanaka (1983, 1984) and
Shaman and Stine (1988) provide bias formulae for autoregressive models of
various complexity up to an AR(6) and including cases with unknown mean.
For the unknown trend coefficient case, there are no available bias formulae
in the published literature, although in another study, Phillips and Sul
(unpublished results) obtained analytic expansion results for this case. This
method generally works well in reducing bias, at least for moderate sample
sizes, although at the cost of inflating variance. A second approach is based on
median-unbiased estimation, a method suggested in Lehmann (1959) and used
in Andrews (1993) for the AR(1) case. This method relies on the availability
of the exact median function and precise distributional assumptions. It is
difficult to extend to more general models, especially when there are addi-
tional nuisance parameters. For these reasons, it is less feasible in practice than
the use of asymptotic approximations. A third approach relies on sample reuse
procedures, such as the jackknife (Quenouille, 1956) and direct simulation
methods based on the bootstrap (Hansen, 1999; Kilian, 1999b). These
methods can be effective in bias reduction but the jackknife has the
disadvantage that it may lead to substantial increases in variance. Furthermore,
they are not as successful in reducing bias in nonlinear functions of the
autoregressive coefficient, as is needed here in LRV estimation (c.f., Phillips
and Yu, 2003).

3When there is a linear trend in the regression rather than simply a fitted mean as in equation (6),
the finite sample bias of q̂ is known to be more serious. Phillips and Sul (unpublished results) provide
asymptotic expansion formulae for q̂ in this case.
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Next, some alternative estimators, such as the Cauchy estimator (So and
Shin, 1999a, b), have been suggested for use in autoregressions which are
asymptotically median-unbiased over a wide range of values of the
autoregressive coefficient, including the unit-root case. We have found that
this procedure generally works well in HAC/LRV estimation especially
when it is combined with recursive demeaning of the residuals and
regressors. This method will be used in what follows. Recursive demeaning
(and detrending) procedures have been found to reduce autoregressive bias
in cases where there is a fitted intercept and trend. Some extensive
simulation trials conducted with all these methods in the context of HAC
estimation have shown that recursive demeaning can work very well to
reduce bias without inflating variance too much. We will discuss the
recursive demeaning method used here and report its performance in the
simulations.

Appendix B provides the reasoning behind the recursive demeaning
procedure. Here we address how to construct LRV estimates to reduce
the size distortion. First, rewrite equation (2) (with some abuse of notation)
as

V þ
t ¼ AV þ

t�1 þ
Xp
i¼2

AiDV þ
t�i þ ft; t ¼ 1; . . . ; T ð10Þ

where

V þ
t ¼ Zr

t e
r
t and V þ

t�1 ¼ Zr
t�1e

r
t�1

and recursively demeaned quantities are denoted by the affix ‘r’. In
particular,

Zr
t�i ¼ Zt�i � �Zt�1 for i � 0 and �Zt�1 ¼

1

t � 1

Xt�1

s¼1

Zs

ert�i ¼ eþt�i � �eþt�1 for i � 0 and �eþt�1 ¼
1

t � 1

Xt�1

s¼1

eþs ;

where

eþt ¼ yt �b̂0Xt ¼ et þ aþ ðb�b̂Þ0Xt:

Note that eþt is effectively the residual without a fitted mean. The regressand
and the first lagged dependent variable in equation (10) are the product of
separate recursive demeaned variables. The regression error in equation (10)
does not contain the overall mean of Ut, which is the second source of small
sample bias.4

4For cointegration regressions, V þ
t ¼ ert and V þ

t�1 ¼ ert�1.
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The recolouring procedure is based on the estimates, ÂRD and ÂRD
i ,

obtained by running least squares regression in equation (10). Define the
residuals

ÛRD
t ¼ ~Vt � ÂRD ~Vt�1 �

Xp
i¼2

ÂRD
i D~Vt�i;

which are constructed using the data ~Vt rather than the modified V þ
t . This is

done because the residual ft in equation (10) includes bias-correction terms,
which are functions of �Zt�1�et�1, in addition to the regression error Ut. The
recoloured LRV estimate is then given by the formula

X̂2
V ¼ ðI � ÂRDÞ�1X̂2

U ðI � ÂRD0Þ�1; ð11Þ
where X̂2

U is the estimate of LRV of Ut computed from the residuals ÛRD
t .

As an alternative to the estimate ÂRD, one may consider the Cauchy
estimator

ÂRC ¼ V̂ þ0
t signðV̂ þ

t�1Þ signðV̂ þ
t�1Þ

0V̂ þ
t�1

� ��1
;

where V̂ þ
t and V̂ þ

t�1 are the projection errors from the regression of V þ
t and

V þ
t�1 on

Pp
i¼2 AiDV þ

t�i, and

signðV̂ þ
t�1Þ ¼ signðV̂ þ

1t�1; . . . ; V̂
þ
kt�1Þ

where

signðV̂ þ
i;t�1Þ ¼

1 if V þ
i;t�1 � 0

�1 if V þ
i;t�1 < 0

�
:

Here, V̂ þ
i;t�1 is the ith element of the vector V̂ þ

t�1. So and Shin (1999b) argue
that the Cauchy estimator is approximately median-unbiased.5 As such, it may
be expected to be useful in HAC estimator prefiltering to reduce autoregres-
sive bias in the recolouring filter.

In multivariate applications, most empirical studies assume the off-
diagonal terms of the autoregressive coefficients [i.e. the Ai in equation (2)]
can be set to zero and neglected in HAC estimation. Den Haan and Levin
(2000) argue that when the cross-section correlation among the elements of Ut

is high, seemingly unrelated regression (SUR) estimation with zero restric-
tions on the off-diagonal terms of the autoregressive coefficients may result in
more efficient HAC estimation. Mark, Ogaki and Sul (2003) confirm that
argument and find that even when the off-diagonal terms of Ai are non-zero,
SUR regression results in better finite-sample performance as long as the
cross-section correlation among the elements of Ut is high.

5The Cauchy estimator is a nonlinear IV estimator (see Phillips et al., 2001) for further analysis
and discussion.
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IV. Use of boundary condition rules

Andrews (1991) introduced the so-called ‘0.97’ rule as a boundary condition
for use in prewhitened HAC estimates. The rule ensures that whenever the
roots of the (fitted coefficient) characteristic equation are >0.97, those roots
are replaced by 0.97. Thus, in scalar autoregressions like equation (6) the rule
implies that if q̂ > 0:97, then q̂ is replaced by 0.97. Although the choice of
0.97 is arbitrary and based on simulation evidence, it is widely used in
empirical work. In fact, usage is indiscriminate because the rule is applied
irrespective of the sample size.

Boundary conditions like the 0.97 rule are used to reduce distortions in
prewhitened HAC estimation, reduce variance in estimation and provide a
buffer zone between the stationary and unit root case (for which the
recolouring filter is undefined). If the goal is variance reduction while
maintaining accurate test size, as Andrews (1991) suggests, a confidence
interval of q̂ could be considered in the construction of the boundary. We
therefore propose the following alternative boundary condition rule. Let w
be the boundary value of q that we choose not to exceed. Then, in practice
with a sample of size T, the operational boundary can be set as w ) 1 or 2
standard errors. Using 1=

ffiffiffiffi
T

p
as the standard error (strictly, the asymptotic

standard error of q̂ when q ¼ 0), we set up the new boundary condition
rule:

q̂w ¼ min w� 1ffiffiffiffi
T

p ; q̂

� �
:

This rule sets a maximum value for the autoregressive coefficient to be used
in the recolouring filter as w� 1=

ffiffiffiffi
T

p
, which is sample size-dependent and

approaches w as T fi 1. If we set w ¼ 1, then we have

q̂1 ¼ min 1� 1ffiffiffiffi
T

p ; q̂

� �
: ð12Þ

To see the meaning of this restriction, suppose q̂ exceeds the boundary value
so that

q̂1 ¼ 1� 1ffiffiffiffi
T

p ; X̂2
v ¼ T X̂2

e : ð13Þ

Then equation (13) can be restated as

X̂2
v ¼ min

^TX2
e ; X̂

2
e

ð1� q̂Þ2

" #
: ð14Þ

It follows that the LRV estimate is bounded above by T X̂2
e. We may, in

fact, classify q̂ ¼ 1� 1=
ffiffiffiffi
T

p
as a big deviation from unity in the sense that
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it is a larger deviation from unity than any root local to unity of the form
q ¼ 1 ) c/T, for some fixed localizing coefficient c and large enough T.

The latter distinction turns out to be very important in some
applications, such as tests of stationarity or cointegration. Indeed, it is
known that the use of prewhitened LRV estimates renders KPSS tests
inconsistent (Lee, 1996). In effect, under the alternative of a unit root,
q̂ ! 1 and the LRV estimate diverges. It is the rate of divergence that
affects the consistency properties of the test. In conventional prewhitened
estimates (with no boundary condition),

q̂ ¼ 1þ OpðT�1Þ;

so that

ð1� q̂Þ2 ¼ OpðT�2Þ and
X̂2

e

ð1� q̂Þ2
¼ OpðT 2Þ:

The KPSS test in this case is then of order Op(1) under the alternative of a unit
root and is therefore inconsistent.

However, under the rule (14), we find that the boundary condition limits
the order of magnitude of the LRV estimate in the unit-root case to Op(T). In
this case, as the KPSS test has order Op(T) and diverges, the test is indeed
consistent. The reason is that, in constructing the prewhitened LRV estimate,
we deliberately maintain the null hypothesis of stationarity in setting
deviations from unity in the boundary condition rule. Thus, as the maximum
allowable value of q̂ is 1� 1=

ffiffiffiffi
T

p
, the deviation from unity is of Oð1=

ffiffiffiffi
T

p
Þ

and this corresponds to the
ffiffiffiffi
T

p
convergence rate that applies under

stationarity. In effect, we keep a ‘stationary order of magnitude’ distance
from unity in constructing the recolouring filter.

Monte Carlo experiments that we now discuss reveal that this new rule (12)
works very well in terms of both size and size-adjusted power. The size
properties are similar to those under the 0.97 rule. But the power properties of
the new rule are significantly better, as the asymptotic theory indicated above
suggests.

V. Simulation results

We considered the impact of various bias-correction methods on HAC
estimation: recursive Cauchy estimation, jackknifing, bias correction using
asymptotic bias expansions and hybrid estimators combining more than one
bias-correction method. To save space, we focus on the main results and
accordingly report here the finite-sample performance of the recursive
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demeaning and Cauchy estimators, which gave the best performance in HAC
estimation and applications overall.6

First, we summarize the main simulation findings:

(i) Once the small sample bias is corrected before recolouring, the finite-
sample performance of prewhitened HAC estimators is dramatically
improved, even when the dominant root is close to unity.

(ii) The proposed new terminal condition (12) for prefiltered HAC
estimation provides improved finite-sample performance in terms of
power, especially in the context of KPSS stationarity tests, and the
coverage probabilities of confidence intervals, in comparison with the
commonly used ‘0.97 rule’.

We considered a large variety of data-generating processes (DGPs) and
testing problems and to save space present here only two cases that serve to
illustrate the main findings.

DGP A: constant case

The model is:

yt ¼ aþ bxt þ ut; ut ¼ qut�1 þ et; et � i.i.d. Nð0; 1Þ ð15Þ
xt ¼ qxt�1 þ et:

This is a benchmark case and is considered in Andrews and Monahan (1992).
Without loss of generality, set a ¼ b ¼ 0 and prescribe the null hypothesis
H0 : b ¼ 0. The test statistic is b̂2T=V̂b � v1, where

V̂b ¼ T�1
XT
t¼1

x2t

 !�1

X̂2
V T�1

XT
t¼1

x2t

 !�1

and X̂2
v is defined in equation (11). We set / ¼ q2 to be 0.5, 0.7, 0.9 and 0.95.

Table 1 reports the finite-sample performance of three HAC estimators. They
are the Newey and West’s (1987) Bartlett kernel estimator (NW), Andrews
and Monahan’s (1992) prewhitened QS kernel estimators depending on the
prewhitening procedure. The choice of bandwidth for NW is int(12[T/100]1/4)
where int(Æ) stands for the integer part. We consider both OLS and RD
estimators in the regression. We use the acronym QSPWOLS for a
prewhitened HAC estimator with a QS kernel that is based on OLS regression
and PARAOLS for Den Haan and Levin’s (1997) parametric HAC estimator
based on OLS regression. We also considered several other kernel methods

6The detailed Monte Carlo results can be found at http://yoda.eco.auckland.ac.nz/~dsul013/
working/HAC_additional_tables.xls (accessed 8 February 2005).
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with AR(p) and MA(q) error processes. But to save space, we do not report
these results here as they are similar to those given in Table 1.7

The major findings are as follows:

(i) As in Andrews and Monahan (1992), the finite-sample performance of
QSPWOLS is found to be superior to NW.

(ii) Once prewhitening bias is corrected, the finite-sample performance of
all HAC estimates is significantly improved.

(iii) The choice of the restriction on the prewhitening estimator does not
affect the finite-sample performance of HAC estimators when q is not
near unity. The confidence intervals in Table 1 are calculated based on
the 0.97 rule.

DGP B: impact of the new rule on the KPSS test

To measure the size distortion of the KPSS test, we use the following DGP:

yt ¼ qyt�1 þ et; et � Nð0; 1Þ: ð16Þ
Under equation (16), we consider three values of q (0.8, 0.9 and 0.95) and
obtain rejection rates for the KPSS test. The Lagrange multiplier (LM) test
statistic is given by

LM ¼
PT

t¼1 S
2
t

X̂2
y

; St ¼
XT
t¼1

~yt

where ~yt is demeaned yt. Note that the denominator term suffers from small-
sample bias. When the downward bias of X̂2

y is corrected, the LM statistic is
likely to increase in value. Table 2 shows the results. As Caner and Kilian
(2001) point out, tests based on the NW estimator suffer from serious size
distortion. And as Lee (1996) discovered, the QSPW estimator with the 0.97
rule suffers from conservative rather than exaggerated size. To assess the power
of KPSS tests based on these HAC estimators, we used the following DGP:

yt ¼ rt þ et; rt ¼ rt þ ut; ðu0t; e0tÞ
0 � Nð0; I2Þ; k ¼ r2u

r2e
¼ 10a: ð17Þ

Table 3 reports the impact of the new rule on the power of the KPSS test. With
the 0.97 rule, the power of the KPSS test converges to the nominal size of
the test as k fi ±1. However, under the new rule, the KPSS test performs
reasonably well.8

7These results are available upon the request from the authors.
8We also considered Park’s (1990) variable additional tests and found similar results: with the

conventional 0.97 rule, the size-adjusted power of the test is close to the size. Use of the new rule
dramatically increases power without compromising size.
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TABLE 2

Impact of new restriction: size of KPSS test

q NW

QSPW with 0.97 rule QSPW with new rule

OLS RD OLS RD

T ¼ 100, rejection rate ¼ 10%
0.8 0.195 0.056 0.028 0.057 0.028
0.9 0.295 0.028 0.007 0.056 0.035
0.95 0.420 0.018 0.000 0.207 0.190

T ¼ 100, rejection rate ¼ 5%
0.8 0.084 0.020 0.006 0.020 0.006
0.9 0.155 0.007 0.001 0.016 0.010
0.95 0.255 0.002 0.000 0.124 0.122

T ¼ 500, rejection rate ¼ 10%
0.8 0.180 0.097 0.085 0.097 0.085
0.9 0.278 0.086 0.062 0.086 0.062
0.95 0.445 0.067 0.032 0.087 0.062

T ¼ 500, rejection rate ¼ 5%
0.8 0.100 0.046 0.034 0.046 0.034
0.9 0.179 0.037 0.022 0.037 0.022
0.95 0.315 0.021 0.005 0.031 0.018

TABLE 3

Impact of new restriction: power of KPSS test

r2u=r
2
e ¼ 10a

a

5% Test 10% Test

NW

0.97 rule New rule

NW

0.97 rule New rule

OLS RD OLS RD OLS RD OLS RD

T ¼ 100
)4 0.033 0.048 0.045 0.048 0.045 0.099 0.100 0.096 0.100 0.096
)3 0.034 0.048 0.046 0.048 0.046 0.099 0.099 0.096 0.099 0.096
)2 0.040 0.057 0.055 0.057 0.055 0.111 0.116 0.111 0.116 0.111
)1 0.384 0.531 0.523 0.531 0.523 0.519 0.624 0.617 0.624 0.617
0 0.587 0.362 0.141 0.596 0.523 0.699 0.528 0.252 0.705 0.636
1 0.594 0.050 0.025 0.565 0.562 0.706 0.116 0.057 0.637 0.631
�2 0.594 0.050 0.025 0.565 0.563 0.706 0.113 0.058 0.637 0.633

T ¼ 500
)4 0.044 0.047 0.047 0.047 0.047 0.097 0.100 0.099 0.100 0.099
)3 0.047 0.048 0.047 0.048 0.047 0.102 0.103 0.102 0.103 0.102
)2 0.281 0.307 0.305 0.307 0.305 0.381 0.401 0.400 0.401 0.400
)1 0.864 0.978 0.978 0.978 0.978 0.920 0.987 0.987 0.987 0.987
0 0.897 0.820 0.780 0.883 0.871 0.943 0.891 0.852 0.932 0.917
1 0.896 0.747 0.746 0.881 0.882 0.942 0.801 0.799 0.917 0.918
�2 0.897 0.748 0.747 0.883 0.884 0.942 0.801 0.801 0.918 0.918
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VI. Concluding remarks

This study was motivated by the following two practical concerns. First, why
do test statistics constructed from HAC estimates typically suffer from serious
size distortion in finite samples and sometimes, as in a KPSS testing, from
very low power? Secondly, how can size distortion be reduced and power
increased in the practical implementation of robust tests?

While prefiltering can help reduce size distortion in testing where HAC
estimates are used (c.f. Figure 1), the finite-sample bias in the coefficient
estimates used in the prewhitening filter can itself cause bias in HAC
estimation and testing. We propose recursive demeaning and recursive Cauchy
estimation to reduce the small-sample bias in prewhitening coefficient
estimates. This procedure helps eliminate one major source of size distortion
in test statistics constructed with HAC estimator. Moreover, we provide a
sample size-dependent boundary condition rule that substantially enhances
power without compromising size. These methods are free from distributional
assumptions.

The present work does not provide bias reduction methods for the case
where a linear trend is fitted. So and Shin (1999b) have suggested a recursive
detrending method, but this procedure is dependent on nuisance parameters
and our findings indicate that it does not effectively reduce small-sample bias
(see Appendix C for details). A priority for future work on HAC/LRV
estimation is to further study the finite-sample properties of autoregressive
estimation with trend, and the development of bias-reduction methods that
work under stationarity and under a unit root.

Final Manuscript Received: December 2004
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Appendix A: Edgeworth expansion

Our approach follows Phillips (1977) and Tanaka (1983) and we use the same
notation as in those papers to simplify the following derivations. The general
algorithm for extracting the Edgeworth expansion is described in Phillips
(2003). Only the main results are given here to save space. We assume the
generating model is yt ¼ l + qyt)1 + ut, where ut � i.i.d. Nð0; r2uÞ, as in
model (6).

Define the estimation error
ffiffiffiffi
T

p
ðX̂2

y � X2
yÞ ¼

ffiffiffiffi
T

p
eðqÞ. Then we have

eðqÞ ¼ X̂2
y � X2

y ¼
r̂2u

ð1� q̂Þ2
� r2u
ð1� qÞ2

;

where

q̂ ¼ p2 � p23
p1 � p23

; r̂2u ¼
p21 � 2p1p23 � p22 þ 2p2p23

p1 � p23
;

p1 ¼ y0C0y �
Ey0C0y

T
;

Ey0C0y
T

¼ r2

1� q2
þ b2;

p2 ¼ y0C1y �
Ey0C1y

T
;

Ey0C1y
T

¼ qr2

1� q2
þ b2;

p3 ¼ d 01y � E
d 01y
T

; E
d 01y
T

¼ b;

y is the vector of observations,

y0C0y ¼
XT
t¼1

y2t�1; y0C1y ¼
XT
t¼1

ytyt�1; d 01y ¼
XT
t¼1

yt:

See Phillips (1977) and Tanaka (1983) for details. The error function can
be rewritten as
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eðqÞ ¼ p1 � p23
p1 � p2

ðp1 þ p2 � 2p23Þ;

and the Edgeworth expansion depends on the derivatives of this function and
cumulants of its arguments.

The first derivatives are

e1 ¼ � 2qþ q2 � 1

ð�1þ qÞ2
; e2 ¼

2

ð�1þ qÞ2
; e3 ¼ 2ð3þ qÞ b

�1þ q
;

and the second derivatives are given by

e11 ¼
4

r2
q2

qþ 1

ð�1þ qÞ2
; e12 ¼ �4

q
r2

qþ 1

ð�1þ qÞ2
; e13 ¼ �8b

q
r2

qþ 1

�1þ q

e22 ¼
4

r2
qþ 1

ð�1þ qÞ2
; e23 ¼

8

r2
ðqþ 1Þ b

�1þ q
;

e33 ¼ 2
3r2 � 8b2 þ 8b2q2 þ qr2

r2ð�1þ qÞ :

Following Tanaka (1983) for the exact formulae of the second (cij) and third
derivatives (cijk) of the cumulant functions, we find the explicit expressions

c11 ¼ � 2r4ð1þ q2Þ
ð1� q2Þ3

� 4r2l2

ð1� qÞ4
; c12 ¼ � 4qr4

ð1� q2Þ3
� 4r2l2

ð1� qÞ4
;

c13 ¼ � 2r2l

ð1� qÞ3
¼ c23; c22 ¼ � r4ð1þ 4q2 � q4Þ

ð1� q2Þ3
� 4r2l2

ð1� qÞ4

c33 ¼ � r2

ð1� qÞ2
; l ¼ bð1� qÞ

and

c111 ¼ � 1ffiffiffiffi
T

p 8r6ðq4 þ 4q2 þ 1Þ
ð1� q2Þ5

þ 24r4l2

ð1� qÞ6

 !
;

c112 ¼ � 1ffiffiffiffi
T

p 24r6ðq3 þ qÞ
ð1� q2Þ5

þ 24r4l2

ð1� qÞ6

 !

c113 ¼ � 1ffiffiffiffi
T

p 8r4l

ð1� qÞ5
; c122 ¼ � 1ffiffiffiffi

T
p 4r6ðq4 þ 10q2 þ 1Þ

ð1� q2Þ5
þ 24r4l2

ð1� qÞ6

 !
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c133 ¼ � 1ffiffiffiffi
T

p 2r4

ð1� qÞ4
;

c222 ¼ � 1ffiffiffiffi
T

p 2r6ðq7 � 5q5 þ 19q3 þ 9qÞ
ð1� q2Þ5

þ 24r4l2

ð1� qÞ6

 !
; c333 ¼ 0:

The unconditional asymptotic variance of e is given by

x2 ¼ �
X
i

X
j

eiejcij ¼ 2r4
3þ q

ð1� qÞ5
;

and the Edgeworth coefficients are given by

b1 ¼ �8ðq2 þ 4qþ 7Þ r6

ð1� qÞ8
;

b3 ¼ �16ðqþ 1Þ r6

ð1� qÞ8
;

b4 ¼ 2r2
qþ 1

ð1� qÞ3
;

leading to the following coefficients that appear in the Edgeworth expansion
(18) below:

c0 ¼ � b4
2x

þ b1
6x3

þ b3
2x3

¼
ffiffiffi
2

p

6

5q2 þ 32qþ 35ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ qÞ

p� �3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qÞ

p ;

c2 ¼ � 1

x3

b1
6
þ b3

2

	 


¼ �
ffiffiffi
2

p

3

q2 þ 10qþ 13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ qÞ

p� �3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qÞ

p :

The Edgeworth expansion of the cdf of
ffiffiffiffi
T

p
ðX̂2

y � X2
yÞ has the following

explicit form

P
ffiffiffiffi
T

p
ðX̂2

y � X2
yÞ � r

h i
¼ U

r
x

� �
þ 1ffiffiffiffi

T
p u

r
x

� �
c0 þ c2

r
x

� �2� 

þ OðT�1Þ;

ð18Þ

where U and u are the cdf and pdf of the standard normal density. Finally, the
mean bias can be obtained directly from the expression
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�x
T
ðc0 þ c2Þ ¼ �r2

qþ 1

T ð1� qÞ3
þ OðT�2Þ; ð19Þ

as discussed in Phillips (2003).

Appendix B: recursive demeaning

Recursive demeaning in autoregression

Recursive demeaning and detrending methods were studied by So and Shin
(1999a) and Moon and Phillips (2001). The heuristic idea is that recursive
methods of demeaning and detrending reduce the second source of
autoregressive bias (discussed in this paper) that arises from the correlation
between residual and regressor induced by fitting an intercept and trend. We
illustrate with the AR(1) model that forms the basis of much prefiltering in
HAC estimation. Let

yt ¼ aþ st; st ¼ qst�1 þ ut; ð20Þ
and assume that ut is i.i.d. ð0; r2uÞ. We may demean the variable yt recursively
by using the residual

yt �
1

t � 1

Xt�1

i¼1

yi:

However, to demean the regression equation in (20) it is preferable to remove
the mean as a common element from both the dependent variable and
regressor as in

yt �
1

t � 1

Xt�1

i¼1

yi ¼ q yt�1 �
1

t � 1

Xt�1

i¼1

yi

" #
þ et: ð21Þ

Note that because of the common recursive demeaning in equation (21) the
error in this regression

et 6¼ ut �
1

t � 1

Xt�1

i¼1

ui

" #
:

Let

�yt�1 ¼
1

t � 1

Xt�1

i¼1

yi; �st�1 ¼
1

t � 1

Xt�1

i¼1

si;

and re-express equation (21) as

yt � �yt�1 ¼ qðyt�1 � �yt�1Þ þ ½a� ð1� qÞ�yt�1� þ ut; ð22Þ

540 Bulletin

� Blackwell Publishing Ltd 2005



with a ¼ a(1 ) q). Note that

yt � �yt�1 ¼ st � �st�1

and

a� ð1� qÞ�yt�1 ¼ ð1� qÞða� �yt�1Þ ¼ �ð1� qÞ�st�1:

Then, equation (22) or (20) has the following equivalent representation

st � �st�1 ¼ qðst�1 � �st�1Þ þ ut � ð1� qÞ�st�1: ð23Þ
When q ¼ 1, the second component in the error on this equation, viz.
ð1� qÞ�st�1, is zero. This means that for q ¼ 1, common element recursive
demeaning eliminates the second source of bias in the autoregression. When
q < 1, the covariance between the second component and the regressor in
equation (23) becomes positive. From the direct calculation,

E
Xt�1

i¼1

si

 !2

¼ r2s t � 1þ 2q
1� q

Xt�2

k¼1

ð1� qkÞ
 !

and

E st�1

Xt�1

i¼1

si

 !
¼ r2s

1� qt�1

1� q

	 


where

r2s ¼
r2u

ð1� q2Þ :

Hence we have

E ut � ð1� qÞ�st�1f g ðst�1 � �st�1Þf g

¼ ð1� qÞE
XT
t¼2

ð�s2t�1 � st�1�st�1Þ

¼
XT
t¼2

r2uq
t � 1

1þ qt�2 � 2

t � 1

1� qt�1

1� q

	 

> 0: ð24Þ

This positive covariance assists in reducing the first source of autoregressive
bias that arises from the nonlinear form of the autoregressive estimate, as
discussed earlier in this paper. Figure 5 shows the effect of the presence of this
additional component in equation (23) on the finite-sample autoregressive bias
in equation (23). Evidently, the positive covariance between the second
component and the regressor in equation (23) has the same order of magnitude
and opposite sign to the usual downward bias of the autoregressive estimate,
thereby effectively reducing autoregressive bias.
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Recursive demeaning applied to HAC estimation

We now apply recursive demeaning in a regression context such as equation
(1) where HAC estimates are to be obtained by means of an autoregressive
prefilter. We start with the the regression residuals

êt ¼ et � �eþ ðb� b̂Þ0 Xt � �Xð Þ;
and define

eþt ¼ yt � b̂0Xt ¼ et þ aþ ðb� b̂Þ0Xt:

Note that eþt is effectively the residual without a fitted mean.9 As Xt is
exogenous, b̂ is unbiased. Then, if et had the autoregressive structure

et ¼ qeet�1 þ gt;

we would have

eþt ¼ að1� qeÞ þ qee
þ
t�1 þ gt þ ðb�b̂Þ0 Xt � qeXt�1ð Þ

¼ að1� qeÞ þ qee
þ
t�1 þ gt þ opð1Þ ð25Þ

under conditions that ensure b̂ is consistent (essentially, the persistent
excitation condition that the smallest eigenvalue of

PT
t¼1 XtX 0

t tends to
infinity). Recursive demeaning applied to equation (25) leads to
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E
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S st−1
2

−(1 − r)E
S (st−1−s̄t−1) s̄t−1

S(st−1−s̄t−1) 2

E
S (st−1− s̄ t−1)ut

S (st−1− s̄ t−1) 2

Figure 5. Bias components as functions of q

9Demeaning eþt leads directly to êt , so that eþt � �eþ ¼ ut � �u þ ðb� b̂Þ0ðXt � �X Þ.
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eþt � 1

t � 1

Xt�1

s¼1

eþs ¼ að1� qeÞ þ qe eþt�1 �
1

t � 1

Xt�1

s¼1

eþs

 !

� ð1� qeÞ
1

t � 1

Xt�1

s¼1

eþs ð26Þ

þ gt þ opð1Þ: ð27Þ
Observe that

1

t � 1

Xt�1

s¼1

eþs ¼ aþ 1

t � 1

Xt�1

s¼1

es þ opð1Þ

eþt�1 �
1

t � 1

Xt�1

s¼1

eþs ¼ et�1 �
1

t � 1

Xt�1

s¼1

es þ opð1Þ:

These equations imply that the equation (26) can be rewritten as

et �
1

t � 1

Xt�1

s¼1

es ¼ qe et�1 �
1

t � 1

Xt�1

s¼1

es

 !

� 1� qeð Þ 1

t � 1

Xt�1

s¼1

es þ gt þ opð1Þ:

Next, if Xt has an AR(1) formulation as Xt ¼ qxXt)1 + et, then recursive
demeaning of this equation produces

xt �
1

t � 1

Xt�1

s¼1

xs ¼ qx xt�1 �
1

t � 1

Xt�1

s¼1

xs

 !
� ð1� qxÞ

1

t � 1

Xt�1

s¼1

xs þ et:

Then, looking at the product variable Xtet, which is used in HAC estimation,
we may write

xrte
r
t ¼ /xrt�1e

r
t�1 þ nt; ð28Þ

where

xrt ¼ xt �
1

t � 1

Xt�1

s¼1

xs

 !
; xrt�1 ¼ xt�1 �

1

t � 1

Xt�1

s¼1

xs

 !
;

ert ¼ eþt � 1

t � 1

Xt�1

s¼1

eþs

 !
; ert�1 ¼ eþt�1 �

1

t � 1

Xt�1

s¼1

eþs

 !
:
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As all of these variables are now observable, we can use equation
(28) as the basis of an AR(1) prefilter for the product variable
Xtet, after suitably demeaning the component variables by a recursive
procedure.

This process of recursive demeaning helps to reduce the bias in the
estimation of /. Let /̂r be the estimate of / in equation (28). Then, using the
prefilter implied by equation (28) we have the following estimate of the LRV
of vt ¼ ~Xtêt

X̂2
v ¼

X̂2
eg

1� /̂r
� �2

where X̂2
eg is the LRV of

êtĝt ¼ ~xtût � /̂r~xt�1ût�1:

Appendix C: the problem in recursive detrending

Consider latent components model

yt ¼ aþ bt þ st; st ¼ qst�1 þ et;

or, equivalently,

yt ¼ aþ bt þ qyt�1 þ et; a ¼ ð1� qÞaþ bq and b ¼ ð1� qÞb:

Using this model, we proceed to show a problem that arises in the application
of So and Shin’s (1999b) recursive detrending method. Following their
detrending approach, we have for data following the model yt ¼ d1 + d2t + et,
the recursive mean

�yt ¼ d1 þ d2
1

t

Xt
i¼1

iþ �et;

and the demeaned data

yt � �yt ¼ d2
t � 1

2
þ ðet � �etÞ;

leading to the recursively estimated coefficients

d̂ðtÞ2 ¼ 2

Pt
i¼1 i½yi � �yt�Pt

i¼1 i
2

; d̂ðtÞ1 ¼ �yt � d̂ðtÞ2
�t:

Define �lt�1 as follows and we have
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�lt�1 ¼ d̂ðt�1Þ
1 þ d̂ðt�1Þ

2 ðt � 1Þ ¼ �yt�1 � d̂ðt�1Þ
2 ð�t � 1Þ þ d̂ðt�1Þ

2 ðt � 1Þ

¼ �yt�1 � d̂ðt�1Þ
2 ð�t � tÞ ¼ 1

t � 1

Xt�1

i¼1

yi þ
1

2
d̂ðt�1Þ
2 ðt � 1Þ

¼ 1

t � 1

Xt�1

i¼1

yi þ
Pt�1

i¼1 i yi � �yt�1½ �Pt�1
i¼1 i

2
ðt � 1Þ:

From the data generating mechanism for yt, we have the following relations:

yi � �yt�1 ¼ biþ si � bð�t � 1Þ � �st�1;Xt�1

i¼1

i yi � �yt�1½ � ¼ b
Xt�1

i¼1

i2 � bð�t � 1Þ
Xt�1

i¼1

iþ
Xt�1

i¼1

iðsi � �st�1Þ;
Pt�1

i¼1 i yi � �yt�1½ �Pt�1
i¼1 i

2
ðt � 1Þ ¼ 1

2
bðt � 1Þ t � 2

2t � 1
þ
Pt�1

i¼1 i si � �si½ �Pt�1
i¼1 i

2
ðt � 1Þ

and

�lt�1 ¼ aþ b
1

t � 1

Xt�1

i¼1

iþ 1

2
bðt � 1Þ t � 2

2t � 1
þ
Pt�1

i¼1 i si � �si½ �Pt�1
i¼1 i

2
ðt � 1Þ

¼ aþ b
2

3t2 � 4t þ 2

2t � 1
þ
Pt�1

i¼1 i si � �si½ �Pt�1
i¼1 i

2
ðt � 1Þ:

Then

yt � �lt�1 ¼ aþ bt þ qðyt � �lt�1Þ � ð1� qÞ�lt�1 þ ut: ð29Þ
But

aþ bt � ð1� qÞ�lt�1 ¼
1

2
b
ð1� qÞt2 þ 2ð1þ qÞt � 2

2t � 1

� ð1� qÞ
Pt�1

i¼1 i si � �si½ �Pt�1
i¼1 i

2
ðt � 1Þ

as

qbþ bð1� qÞt�ð1� qÞb
2

3t2 � 4tþ 2

2t� 1
¼ 1

2
b
ð1� qÞt2 þ 2ð1þ qÞt� 2

2t� 1

¼ 1

4
ð1� qÞbtþ 1

8
ð5þ 3qÞbþO

1

t

	 

:

Finally, we can rewrite equation (29) as

yt � �lt�1 ¼ qðyt�1 � �lt�1Þ � ð1� qÞxt�1 þ vt; ð30Þ
where
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xt�1 ¼
Pt�1

i¼1 i½si � �si�Pt�1
i¼1 i

2
ðt � 1Þ;

vt ¼ ut þ
1

4
ð1� qÞbt þ 1

8
ð5þ 3qÞbþ O

1

t

	 

:

When q 6¼ 1, the error vt in equation (30) has a linear trend and non-zero
intercept, and when q ¼ 1, it has a non-zero intercept, so that in both cases we
have Evt 6¼ 0. Thus, equation (30) does not effectively remove the trend from
the regression model or the data.
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