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Abstract

The Bai-Ng criteria are shown to overestimate the true number of common factors when panel data

exhibit considerable serial dependence. We consider filtering the data before applying the Bai-Ng method

as a practical solution to the problem. Despite possible bias and model misspecification, the AR(1) least

squares dummy variable (LSDV) filtering method is shown to be consistent for panels with a wide range

of serial correlation, and a combination of the LSDV and the first-difference filtering methods is shown

to be consistent in both weakly and strongly serially correlated panels. According to simulations these

filtering methods considerably improve the finite sample performance of the Bai-Ng selection methods.

We illustrate the practical advantages of LSDV filtering by considering three economic panels that exhibit

moderate serial dependence. In each case, LSDV filtering yields a reasonable factor number estimate,

whereas conventional methods do not.
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1 Introduction

The precise estimation of the number of common factors is a cornerstone of the factor model literature, and

several recent studies have suggested various methods for selecting the factor number (e.g., Connor and

Korajczyk, 1993, Forni et al., 2000; Bai and Ng, 2002; Bai, 2004; Stock and Watson, 2005; Amengual and

Watson, 2007; and Onatski, 2007). The approximate factor model (Chamberlain and Rothschild, 1983; Bai

and Ng, 2002) permits weak-form serial (and cross-sectional) dependence in the idiosyncratic component as

long as N (cross section dimension) and T (time-series dimension) are large. This is because dependence

due to the factor structure asymptotically dominates any weak dependence in the idiosyncratic component,

and hence well-designed criteria (e.g., Bai and Ng, 2002; BN hereafter) can eventually determine the number

of factors as both N and T go infinity.

However if the idiosyncratic component exhibits high serial dependence relative to the given sample

size, or equivalently if the sample size is not large enough for the given degree of serial dependence, then

the BN factor number estimate may be different from the truth with considerable probability. The problem is

particularly acute for economic panel data, as many economic time series exhibit considerable dependence.

To illustrate this point we consider three different panel datasets: disaggregate US personal consumption

expenditure growth, US metropolitan consumer price inflation, and US industry employment growth. These

panels exhibit both moderate serial dependence and a moderate time series dimension, and in each case the

Bai-Ng criteria select an unreasonably large factor number. An upwardly biased factor number undercuts

one of the main purposes of the factor model, namely to summarize a glut of data using a handful of factors

(often referred to as “dimension reduction”; see e.g., Bai and Ng, 2008).

This paper has two purposes. First, we formally analyze the effect of serial dependence in the idiosyn-

cratic component on factor number estimation. To do so we adopt a local alternative setting. For example,

consider Xit = λ′iFt + eit, eit = ρeit−1 + εit, εit ∼ iid
(
0, σ2ε

)
. If |ρ| < 1 is constant the BN criteria

estimates the factor number consistently as N → ∞ and T → ∞, but with finite N and T the BN criteria

may overestimate the factor number with considerable probability. Hence it is difficult to analyze the effects

of serial dependence under this fixed alternative framework, because the serial dependence is not related to

the sample size. However, under a local alternative setting, ρ approaches unity as the sample size increases,

so that the effect of a large ρ or a small sample size may be theoretically analyzed.

The second purpose of the paper is to propose and analyze simple methods to estimate the factor number

for serially dependent panels. Ideally these methods must bridge the space between weak and strong form

serial dependence: Regardless of whether the panel data exhibits weak or strong serial dependence, the

proposed methods should estimate the factor number consistently.

To fulfil the first purpose of the paper we provide a couple of dedicated examples. Example 1 in Section

2 considers the case where ρ ↑ 1 as the sample size increases at some controlled rates. The example shows

that the BN criteria applied to Xit can overestimate the true factor number with probability approaching one
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if 1 − ρ = O(T−α) for any α > 0.1 In this example, ρ is homogenous and εit ∼ iid
(
0, σ2ε

)
, so that there

is no heteroskedasticity across panels and only strong serial correlation is present. Example 2 in Section

2 considers the case of heterogenous panels (with ρi possibly different across i). In this example the BN

criteria overestimate the factor number if strong idiosyncratic autocorrelation is present in a considerable

number of cross sections.

To achieve the second purpose of the paper we consider linear filters to mitigate the serial dependence

in the panel. We show that the BN criteria applied to the filtered data produce consistent estimates of the

factor number for a wide-ranging degree of serial dependence in the idiosyncratic component. Of course

designing a criterion which is valid under very mild regularity conditions (that is, regardless of whether the

source of strong serial dependence comes from unobserved common factors or idiosyncratic components)

would be a desirable alternative solution, but it is not straightforward to construct such a general criterion

without knowledge of the source and degree of serial dependence.

The filter may be nonrandom or data-dependent. An obvious nonrandom filter is first differencing (FD),

which is already widely used in practice. The first differenced data ∆Xit give a consistent estimate because

∆Xit would satisfy regularity in Bai and Ng (2002) in general. But as one may well guess, when using

the first difference filter there is the risk of over-differencing and thus inducing negative serial correlation

in the transformed data. This risk is particularly acute when eit is close to white noise. Indeed, in our

empirical examples, first differencing results in apparent over-estimation of the factor number. A more

effective filter in this case is the pooled least squares dummy variable (LSDV) fitting. Despite possible

model misspecification and estimator bias, the pooled LSDV AR(1) filter is shown to yield a consistent

factor number estimate for a wide range of processes with serial dependence. We show the filter should be

common to all cross sections in order to preserve the factor number in the transformed panel; thus in the

LSDV setting, pooling is crucial regardless of whether the “true” parameters governing serial dependence

in eit are heterogenous. In our empirical examples the LSDV filter yields a more credible factor number

estimate than either the first-differenced or unfiltered panels.

While FD filtering works well when the idiosyncratic autocorrelation is strong (as long as the signal

from the differenced common factors is asymptotically preserved), the LSDV filtering method requires

that the idiosyncratic serial correlation is sufficiently bounded away from unity (e.g., T (1 − ρ) → ∞ for

homogeneous panels). So the validity of the LSDV filtering may depend on unknown parameters. However

the combination of the FD filtering and the LSDV filtering by a minimum rule, which is explained later

in Section 3.4, estimates the factor number consistently without the knowledge of the persistency in eit.

For example, if eit = ρieit−1 + εit, we need not observe the rates at which the autoregressive coefficients

approach unity, if at all. By means of a Monte Carlo study, we show that these approaches work quite well

in the finite sample. Thus the combination of data-dependent LSDV filtering with FD filtering through the

1For example, we can let ρT = 1 − c/Tα for some c > 0 and α (Phillips, 1987; Elliott et al., 1996; Cavanagh et al., 1995;

Moon and Phillips, 2000 and 2004; Phillips et al., 2001; Giraitis and Phillips, 2006 and 2009; Phillips and Magdalinos, 2007; Park,

2003). The case with α < 1 is said to be weakly integrated or nearly stationary.
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minimum rule provides a useful tool for the practitioner to estimate the factor number for panels that exhibit

serial dependence and a moderate time-series dimension.

The rest of the paper is organized as follows. In the following section we present three empirical exam-

ples that highlight the need for data-dependent filtering in practice. These three panel datasets all exhibit

moderate serial dependence that is sufficiently strong for methods based on levels to fail, but sufficiently

weak for methods based on first-differenced data to likewise fail. In section 3 we provide an intuitive ex-

planation of why the BN criteria may not work well in the finite sample when there is serial dependence in

the panel. Section 4 provides general theoretical results for the consistency of the estimates based on both

the simple AR(1) and first differencing filters. This section also discusses the minimum rule and how to

apply the method to some dynamic factor models. Section 5 provides Monte Carlo simulation results. In

section 6 we return to the empirical examples, showing that the estimated factor numbers obtained from the

LSDV-filtered data are more credible to those obtained from the panel in levels or first differences. Section

7 contains concluding remarks. Mathematical proofs and lemmas are gathered in the appendix.

2 Illustrative Empirical Examples

To better motivate the need for filtering in practice, we consider the problem of estimating the number of

common factors in three different panel datasets. In each of the examples, the Bai-Ng criteria applied to

panels in levels selects the maximum factor number permitted (we set the maximum factor number to 5 in all

examples for clarity). As we have discussed in the introduction, and as we will formally demonstrate using

a local asymptotic framework in the following sections, serial dependence in the idiosyncratic component

causes over-estimation of the factor number. Hence we conjecture that the poor performance of the criteria

in these examples is due to moderate serial dependence in the panel relative to the time series dimension

of the sample. We go on to demonstrate that standard treatments for addressing possible overestimation,

such as first-differencing and standardization, likewise do not give satisfactory results in these examples,

either because they also pick an incredibly large factor number or because the estimated factor number is

not robust to small changes in the sample selected.

2.1 Disaggregate PCE Growth

We estimate the number of common factors to annual growth in disaggregated personal consumption ex-

penditure (PCE). We construct deflated consumption data for 182 PCE items using NIPA tables 2.4.4.U

and 2.4.5.U available from the BEA website (www.bea.gov). Growth is calculated by multiplying log-

differences of deflated nominal consumption by 100. Our sample spans 1983 to 2010. We focus on this

period for two reasons. First, many newer technology items in the PCE consumption basket are not avail-

able for earlier time periods. For example, “Computer software and accessories,” “Personal Computers and

peripheral software,” and “Video cassettes and discs, blank and prerecorded” only enter into PCE from the

4



late 1970s, whilst “Video media rental” enters into PCE from 1982 onwards. Second, the sample period

approximately coincides with the so-called “Great Moderation” of output volatility documented by Mc-

Connell and Perez-Quiros (2000). For example, Stock and Watson (2002) estimate that the break in output

volatility occurred between 1983Q2 and 1984Q3. Structural breaks in a factor model can result in breaks in

the volatility of a cross sectional aggregate of the panel, and structural breaks in the factor structure leads to

over-estimation of the factor number (see, e.g., Breitung and Eickmeier, 2009).

Figure 1 depicts the 5%, 50% (median) and 95% percentiles of the distribution of disaggregate con-

sumption growth. There is a significant spread in consumption growth in any given year, but substantial

covariation is evident, particularly around the 1990, 2000 and 2007-2009 recessions.
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Figure 1: Disaggregate PCE growth

Table 1 exhibits the various factor number estimators based on the BN ICp2 (k) criterion. When applied

to consumption growth in levels, the criterion selects the maximum number of factors permitted. This

result does not change if we standardize each cross section or time-series in the panel. Meanwhile first-

differencing likewise produces a factor number estimate of five, indicating the possibility that the FD filter

has over-differenced in this case, inducing negative serial dependence that likewise hampers factor number

estimation. We also consider a small sample robustness check to see if this over-estimation is due to a

particular time period in the sample. The main results for each method in general hold, although in the later

subsamples the FD method produces a slightly smaller factor number estimate of four.

2.2 Metropolitan CPI-U Inflation

In the US the headline consumer price index for urban workers (CPI-U) inflation published by the Bureau of

Labor Statistics is calculated by taking the average inflation rate over 27 metropolitan areas. This measure

of inflation may not reflect changes in the price level for all cities within the US, and hence practitioners

may wish to consider a second method of measuring the “representative” inflation rate. One such measure

could be to construct a handful of common factors underlying the panel of inflation rates. Of course as a
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Table 1: Estimated factor number for disaggregate PCE growth

ICp2 (k) with 5 factors maximum; N = 182, T = 28

sample level level + CSS level + TSS first-difference

1983-2010 5 5 5 5

sub-sample robustness

1983-2008 5 5 5 5

1983-2009 5 5 5 5

1984-2010 5 5 5 4

“level + CSS” denotes Bai-Ng in levels with each cross section standardized; “level + TSS” denotes Bai-Ng in levels

with each time series standardized.

first step the factor number must be determined.

We use annual CPI-U data spanning 1978 to 2010 for 23 metropolitan areas (in our application Washington-

Baltimore, Tampa, Miami and Phoenix are omitted because sampling only begins in 1997, 1998, 1978 and

2002, respectively). This dataset has been used by, among others, Cecchetti, Mark and Sonora (2002) and

Phillips and Sul (2007) to test for convergence in regional prices. We log and first-difference the indices

and multiply by 100 to obtain the panel of inflation rates. Figure 2 below shows the minimum, maximum

and median of the distribution over time, and demonstrates that there can be substantial differences in the

inflations rates across cities in any given year.
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Figure 2: Annual percent change in metropolitian CPI-U

As shown in Table 2, the ICp2 (k) criteria applied to inflation in levels selects the maximum number

of factors permitted. This result does not change if we standardize each cross section. However, if we

standardize each time series we get an estimate of three factors, and we also get three factors if we first

6



difference the data. We again also consider a small sample robustness check. It appears that the choice of

subsample can reduce the factor number estimate based on levels and cross sectional standardization to four

in some cases. Meanwhile the FD estimate of the factor number appears very sensitive to the sub-sample

selected, with estimates ranging between two to four factors. In summary, none of the considered methods

give a concrete estimate of the true factor number.

Table 2: Estimated factor number; Metropolitan CPI-U inflation.

Bai-Ng ICp2 (k) with 5 maximum factors, N = 23, T = 32.

sample level level + CSS level + TSS first-difference

1979-2010 5 5 3 3

sub-sample robustness

1981-2010 4 4 3 3

1982-2009 4 4 3 2

1979-2008 5 5 3 4

“level + CSS” denotes Bai-Ng in levels with each cross section standardized; “level + TSS” denotes Bai-Ng in levels

with each time series standardized.

2.3 Industry Employment Growth

We estimate the number of common factors to annual growth in North American Industry Classification

System (NAICS) employment. We obtain annual “wage and salary employment” figures from table SA27

on the BEA website (www.bea.gov). We use the highest degree of disaggregation possible (93 industries)

and our sample spans 1990-2009. This represents the longest possible time series of NAICS employment

currently available (NAICS classification was implemented in 1997). Employment growth is calculated

as log-differences of annual wage and salary employees. The panel is also standardized to remove the

excessive heteroskedasticity in the panel that is present at this granular level. (For example, employment in

“ISPs, search portals, and data processing” grew by 90% over 2006-2007.) Figure 3 below depicts the 5%,

50% (median) and 95% percentiles of the distribution over time.

Table 3 shows that ICp2 (k) applied to levels selects the maximum number of factors permitted, while

Bai-Ng applied to first differences offers anything between three to five factors depending on the sub-sample.

None of the considered methods give a concrete estimate of the true factor number.

The above examples demonstrate that when a panel exhibits moderate serial correlation and the time-

series dimension of the panel is small, extant methods for estimating factor numbers tend to pick the max-

imum number of factors permitted. This may indicate that the factor number is over-estimated. As yet,

however, there is no theory to verify this conjecture. We provide this theory in the following section. In
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Figure 3: Annual percent change in NAICS inudstry employment

Table 3: Estimated factor number; Industry employment growth

Bai-Ng ICp2 (k) with 5 maximum factors, N = 92, T = 19.

sample level first-difference

1990-2009 5 4

sub-sample robustness

1992-2009 5 5

1990-2007 5 3

addition, in order to gain a more sensible estimate of the factor number, we suggest data-dependent filtering

to mitigate the serial dependence in the panel before applying an eigenvalue-based criterion (such as Bai-Ng

criteria). We provide the theoretical justification for this approach in section four.

3 Inconsistency under Strong Serial Dependence

For the approximate factor model Xit = λ′iFt + eit (see Chamberlain and Rothschild, 1983, and Bai and

Ng, 2002, for the identification of components for this model with large N and large T ), Bai and Ng (2002)

propose estimating the factor number r by minimizing

PC(k) = VNT (k) + kg(N,T ), VNT (k) = min
{λki },{Fkt }

1

NT

N∑
i=1

T∑
t=1

(Xit − λk′i F kt )2 (1)

or some variant thereof, with respect to k ∈ {0, 1, . . . , kmax} for some fixed kmax, where g(N,T ) is a

penalty function and λki , F
k
t ∈ Rk. We hereafter refer to the above as the PC criteria following BN

(2002). The eigenvalue-eigenvector decomposition of the covariance matrix of either (Xi1, . . . , XiT )′ or
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(X1t, . . . , XNt)
′ is usually used as a solution to the above minimization problem. The VNT (k) term is

the average squared residuals from a least squares projection of Xit onto the column space of the first k

eigenvectors, and it decreases monotonically as more eigenvectors are allowed (i.e., as k increases). The

PC criteria balance VNT (k), decreasing in k, against the penalty function kg(N,T ), increasing in k, so

that the criteria are minimized at the true factor number r asymptotically. To be more precise, according to

BN (2002), VNT (k) − VNT (r) 6→ 0 for k < r, thus (1) is not (asymptotically) minimized at a k < r if

g(N,T ) → 0. On the other hand, if k > r, then VNT (k) − VNT (r) → 0 at a certain rate, C2NT say. So if

g(N,T ) diminishes to zero at a rate slower than C2NT , then the penalty will eventually become dominant,

and overfitting will be prohibited. Under the stationarity assumption (allowing only weak serial and cross-

sectional dependence in eit), BN (2002) show that CNT = min{N,T}1/2, thus g(N,T ) = C−2NT logC2NT

(and variants thereof) give consistent estimates.

When eit is stationary, VNT (k) has the right order such that VNT (k) − VNT (r) 6→ 0 for k < r and

VNT (k) − VNT (r) = Op(C
−2
NT ), thus the minimization of PC(k) provides a consistent estimate of r. In

practice the scale of VNT (k) matters, but the effect can be negated by either dividing VNT (k) by a consistent

estimate of 1
NT

∑N
i=1

∑T
t=1Ee

2
it (the PCp criteria of BN, 2002) or by taking the natural logarithm of

VNT (k) (their IC (k) criteria). We consider the latter, i.e., minimizing

IC(k) = lnVNT (k) + kg(N,T ), (2)

as it is convenient and widely used.

When eit shows considerable serial correlation but the sample size is not sufficiently large, the IC (k)

criteria may overfit. To see this, we consider a simple example with no common factors and weakly inte-

grated idiosyncratic errors:

Example 1. Let there be no common factors so r = 0, and eit = ρT eit−1 + εit, where εit ∼ iid N(0, 1)

for simplicity. Let N ≥ T . Let Xi = (Xi1, . . . , XiT )′ and X = (X1, . . . , XN ). Let ˆ̀
1, . . . , ˆ̀

T be

the eigenvalues of N−1
∑N

i=1XiX
′
i ordered from largest to smallest, where Xi = (Xi1, . . . , XiT )′. Then

VNT (k) = 1
T

∑T
j=k+1

ˆ̀
j . When r = 0 we have lnVNT (1)− lnVNT (0) = ln(1− ˆ̀

1/
∑T

j=1
ˆ̀
j), thus

IC(1)− IC(0) = ln

(
1−

ˆ̀
1∑T

j=1
ˆ̀
j

)
+ g(N,T ). (3)

Let Σee = E[eie
′
i] and Σ̂ee = N−1

∑N
i=1 eie

′
i. Let A be such that AA′ = Σee and vi = A−1ei so that

vi ∼ N(0, I). Let Σ̂vv = N−1
∑N

i=1 viv
′
i. From Σ̂ee = AΣ̂vvA

′, we have

ˆ̀
1 = max

x

x′Σ̂eex

xx
= max

x

{
x′AΣ̂vvA

′x

x′AA′x
· x
′Σeex

x′x

}
≥ max

y

y′Σ̂vvy

y′y
·min

x

x′Σeex

x′x

= eigvalmax(Σ̂vv) · eigvalmin(Σee).

(The inequality holds because when f = gh with h > 0, we have g = f/h, so max g ≤ (max f)/minh,

implying that max f ≥ max g ·minh.) But by Yin et al. (1988), eigvalmax(Σ̂vv) converges in probability to
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(1 +
√

limT/N)2 ≥ 1. Also by the Perron-Frobenius Theorem, eigvalmin(Σee) is no less than the minimal

row sum of Σee which is∑T
t=1 ρ

t−1
T

1− ρ2T
=

1− ρTT
(1− ρT )(1− ρ2T )

.

If T (1−ρT )→∞, we have ρTT → 0 because ρTT =
{

[1− (1− ρT )]1/(1−ρT )
}T (1−ρT ) → 0, so eigvalmin(Σee)

is eventually bounded from below by 0.5/(1− ρT )(1− ρ2T ) as T →∞. Next, when T (1− ρT )→∞, we

have

1− ρ2T
T

T∑
j=1

ˆ̀
j =

1− ρ2T
NT

N∑
i=1

N∑
i=1

e2it →p 1

(Giraitis and Phillips, 2009), implying that for N and T large enough,

ˆ̀
1∑T

j=1
ˆ̀
j

=
T−1(1− ρ2T )ˆ̀

1

T−1(1− ρ2T )
∑T

j=1
ˆ̀
j

≥ 1

4T (1− ρT )
(4)

with arbitrarily high probability. Now because ln(1− x) ≤ −x, we have, from (3) and (4), that

IC(1)− IC(0) ≤ − 1

4T (1− ρT )
+ g(N,T )

for N and T large enough, with arbitrarily high probability. When g(N,T ) = (lnT )/T as proposed by BN

(2002), if 1 − ρT is smaller than 0.25/ lnT (e.g., ρT = 1 − T−α for any α > 0), then we eventually have

IC(1) − IC(0) < 0 with arbitrarily high probability, and hence the IC (k) criteria overestimates r. This

inconsistency can easily be extended to all specific penalty functions considered by BN (2002).

Technically, the overfitting arises because when eit = ρT eit−1 + εit with ρT → 1, some of BN’s (2002)

regularity conditions are violated. In particular, the variance of eit is of order (1−ρ2T )−1 and autocorrelation

cor(eit, eit−k) = ρkT , both of which increase at the rate that ρT approaches unity (violating Assumption C2

in Bai and Ng, 2002). By taking the logarithm the IC (k) criteria ensures that the large common variance

in eit does not adversely impact model selection. However the high autocorrelation in eit causes the IC (k)

criteria to overestimate the factor number because it is mistaken as a signal for a common factor. Note that

scaling Xit by its inverse sample standard deviation does not solve the problem, because the standardized

idiosyncratic error eit/sdi(eit) still exhibits strong autocorrelation.

In Example 1 the idiosyncratic components have homogeneous persistency. If the autoregressive co-

efficients are heterogenous across i, then overestimation still occurs if ˆ̀
1/
∑T

j=1
ˆ̀
j > g(N,T ). This may

happen if a non-negligible portion of the cross sections have large ρi, so a considerable subset of cross

sections have eit that exhibit high serial correlation. Simulation results (e.g., the “LEV” columns of Tables

5–7 in Section 5) clearly demonstrate the IC (k) criteria overestimate the factor number in that case. Also

overestimation may result if one eit has ρi growing fast asN and T increase and that particular cross section

has overwhelming idiosyncratic variance, as the following example demonstrates.
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Example 2. Let eit = ρieit−1 + εit, where εit is iid (0, 1). Suppose that ρi are uniformly strictly smaller

than 1 for all i ≥ 2, except ρ1 which converges to 1 from below as N and T increase. Suppose that there

are no factors, so Xit = eit and r = 0. Let ˆ̀
j be the eigenvalues (sorted from the largest to the smallest)

of N−1
∑N

i=1XiX
′
i as in Example 1, where Xi = (Xi1, . . . , XiT )′. Then ˆ̀

1 ≥ ˜̀∗
1, where ˜̀∗

1 is the largest

eigenvalue of N−1X1X ′1, i.e., ˜̀∗
1 = N−1X ′1X1. Next, we have

1

T

T∑
j=1

ˆ̀
j =

1

NT

N∑
i=1

T∑
t=1

e2it =
1

NT

T∑
t=1

e21t +
1

NT

N∑
i=2

T∑
t=1

e2it =
˜̀∗
1

T
+ [c+ op(1)],

where c <∞ is the probability limit of (NT )−1
∑N

i=2

∑T
t=1 e

2
it. So

ˆ̀
1∑T

j=1
ˆ̀
j

≥ T−1 ˜̀∗
1

T−1 ˜̀∗
1 + c+ op(1)

.

If N(1 − ρ21) → 0, then we have E[T−1 ˜̀∗
1] = 1/[N(1 − ρ21)] → ∞, so with a nonzero probability, T−1 ˜̀∗

1

diverges to infinity. In that event, ˆ̀
1/
∑T

j=1
ˆ̀
j is supported by 1

2 for N and T large enough, implying that

ˆ̀
1/
∑T

j=1
ˆ̀
j > g(N,T ) for large enough N and T (because g(N,T ) → 0). Thus, by the same algebra as

in Example 1, the IC (k) criteria overestimates the factor number with a nonzero probability.

4 Consistent Filtering Procedures

The whitening filter has been used in many areas of econometrics. The basic idea is to remove most of

the temporal dependence in the data (usually by an autoregression) in order to make the transformed data

closer to white noise. (See Andrews and Monahan, 1992, for references to the use of whitening filters

in the existing literature.) We employ an autoregressive filtering, and as such we must first focus on two

preliminary specification issues: (i) whether to perform an individual or a pooled filtering, and (ii) AR lag

order.

To address the first issue, first consider the transformed data

Zit = Xit −
∑p

j=1 φijXit−j , Xit = λ′iFt + eit,

where the filter φij is permitted to be different for each i. Let r be the true factor number. Writing Zit as

Zit = λ′i

(
Ft −

∑p
j=1 φijFt−j

)
+
(
eit −

∑p
j=1 φijeit−j

)
,

we see that if φij = φj (i.e., homogeneous for all i), then the common factors of Zit are Ft −
∑p

j=1 φjFt−j

and the dimension of factors is preserved under the transformation unless some coordinates of the filtered

factors Ft−
∑p

j=1 φjFt−j are wiped out. Without the homogeneity restriction in the filtering coefficients, the

filtered common component λ′i(Ft−
∑p

j=1 φijFt−j) cannot generally be expressed as a factor structure with

the same dimension as Ft, though we can write it in terms of r(p+1) common factors (F ′t , F
′
t−1, . . . , F

′
t−p)

′.

11



Thus the filter must have coefficients common to all i in order to preserve the number of factors in the

residuals Zit.

The second issue is the choice of the lag order p. Conveniently, an AR(1) fitting (p = 1)

Zit = Xit − φXit−1. (5)

is sufficient for consistent factor number estimation for many common panel processes, as we show below.

Of course other orders p can also be used but we do not see any particular advantage in using more lags

unless eit is more than once integrated. Hence we focus only on AR(1) filtering throughout the paper. Note

that φ may not be a “true” AR(1) coefficient and Xit − φXit−1 may be dependent over t.

We now turn to deriving pooled AR(1) filters that lead to consistent factor number estimates. We con-

sider two methods for choosing φ. The first is a nonrandom filter with φ = 1 (first difference); the second

is a data-dependent filter that uses the LSDV estimator, φ̂lsdv, obtained by regressing Xit on Xit−1 and

including individual intercepts. For this latter filter, we demonstrate below that consistent factor number

estimation does not require φ̂lsdv to be consistent for a “true”AR(1) coefficient if one exists.

The rest of this section is organized as follows. We first derive the consistency conditions for the first

differenced filter in section 3.1. We then consider other nonrandom filters in section 3.2 as an intermediate

step toward deriving the conditions required for the consistency of the LSDV filtering method, which is

addressed in the final subsection.

Our consistency results are built on the main findings of BN (2002). More precisely, we will show that

properly transformed data satisfy their assumptions (Assumptions A–D of BN, 2002.) For completion we

present these assumptions here as the definition of “regularity”:

Definition (BN-regularity). A common factor process {Ft}, idiosyncratic error processes {eit}, and fac-

tor loadings {λi} are said to be BN-regular if

A. E‖Ft‖4 < ∞ and both T−1
∑T

t=1 FtF
′
t and T−1

∑T
t=1E(FtF

′
t) converge to a nonrandom strictly

positive definite matrix as T →∞;

B. ‖λi‖ ≤ λ̄ <∞ and N−1
∑N

i=1 λiλ
′
i converges to a nonsingular matrix as N →∞;

C. There exists a positive constant M <∞ such that for all N and T ,

1. E(eit) = 0, E|eit|8 ≤M ;

2. N−1
∑N

i=1Eeiseit = γN (s, t), |γN (s, s)| ≤M for all s, and

T−1
∑T

s=1

∑T
t=1 |γN (s, t)| ≤M for all s and t;

3. E(eitejt) = τ ij,t with |τ ij,t| ≤ |τ ij | for some τ ij and for all t; in addition,

N−1
∑N

i=1

∑N
j=1 |τ ij | ≤M ;

4. E(eitejs) = τ ij,ts and (NT )−1
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τ ij,ts| ≤M ;

12



5. for every (t, s), E|N−1/2
∑N

i=1(eisejt − Eeisejt)|4 ≤M ;

D. E

 1

N

N∑
i=1

∥∥∥∥∥ 1√
T

T∑
t=1

Fteit

∥∥∥∥∥
2
 ≤M .

Let k̂(φ) denote the factor number estimate obtained by applying a BN criterion to the filtered data

Xit − φXit−1.

4.1 Consistency of the First Differencing Filter

We first state the consistency of k̂(1), i.e., the factor number estimate applied to first differenced data. This

is rather straightforward once we assume that {λi}, {∆Ft} and {∆eit} are BN-regular. Note that the BN-

regularity of the differenced processes allows for the original processes in levels to be integrated.

We consider panel data such that the first difference filter provides a consistent factor number estimate.

For future reference, we state the following:

Assumption 1 {λi}, {∆Ft} and {∆eit} are BN-regular.

This assumption is generally satisfied if the common factors and the idiosyncratic errors are at most once

integrated. Related conditions and assumptions on the levels Xit are found in Bai and Ng (2004), where

conditions are imposed to variables in levels and notably Xit can contain a linear trend. (See equations

(1)–(3) of Bai and Ng, 2004.) When Assumption 1 is violated, higher order autoregressive filtering or

differencing may solve the problem, though extension to this case is not considered in the present paper.

The following result is known (Bai and Ng, 2004).

Theorem 1 (FD filter) Under Assumption 1, k̂(1)→p r.

This theorem is proven directly from BN (2002). Bai (2004) and Bai and Ng (2004) note and make use

of the same result for integrated common factors based on regularity assumptions for λi, Ft and eit in levels.

According to Theorem 1, applying the BN criteria to the differenced data produces a consistent factor

number estimator. However, there is a possibility of over-differencing, which may create negative serial

correlation in the filtered panels. This over-differencing causes overestimation of the factor number in finite

samples when the serial dependence is weak in eit.

To avoid this problem we will consider filtering based on an LSDV fitting. However, as an intermedi-

ate step, we next consider nonrandom but parameter dependent filtering methods. This step is instructive

because it allows us to discern how much bias and misspecification is permissible in a data-dependent pro-

cedure if the BN criteria are to be consistent.
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4.2 Nonrandom Filters

Let φT be a nonrandom number, possibly dependent on the time series dimension. We ask under what

conditions this nonrandom filter can yield a factor number estimate k̂ (φT ) that is consistent, where k̂(φ) is

the BN factor number estimate using Xit − φXit−1 as defined previously. To investigate this issue, we start

by rewriting the filtered data Zit := Xit − φTXit−1 as

Zit = (Xit −Xit−1) + (1− φT )Xit−1 = ∆Xit + (1− φT )Xit−1. (6)

For stationary and once integrated processes, we may assume the first term satisfies BN-regularity (i.e. λi,

∆Ft, and ∆eit are BN-regular as Assumption 1 states). Next we will outline the required regularity for

the second term in (6). Let σ2e,T = (NT )−1
∑N

i=1

∑T
t=1Ee

2
it and ΣFF,T = T−1

∑T
t=1E(FtF

′
t). Note that

σ2e,T may depend onN as well as T but theN subscript is omitted for notational brevity. (It does not depend

on N if the random variables are iid across i.) Also σ2e,T and ΣFF,T may diverge as T →∞. Further define

e∗it = σ−2e,T eit and F ∗t = Σ−1FF,TFt. It is worth noting that eit and Ft are divided by their variances rather

than their standard deviations in the definition of e∗it and F ∗t , so (NT )−1
∑N

i=1

∑T
t=1Ee

∗2
it = σ−2e,T and

T−1
∑T

t=1 F
∗
t F
∗′
t = Σ−1FF,T . The reason for this normalization is both to ensure that the variables e∗it and

F ∗t behave regularly when the original processes eit and Ft are stationary, and to ensure that e∗it and F ∗t are

negligible (so they do not endanger the validity of the BN method) when eit and Ft are integrated. Now Zit

of (6) can be rewritten as

Zit = λ′i[∆Ft + (1− φT )ΣFF,TF
∗
t−1] + [∆eit + (1− φT )σ2e,T e

∗
it−1], (7)

so the common factors of the transformed series Zit are ∆Ft + (1 − φT )ΣFF,TF
∗
t−1 and the idiosyncratic

component is ∆eit + (1 − φT )σ2e,T e
∗
it−1. If φT is chosen such that (1 − φT )ΣFF,T and (1 − φT )σ2e,T are

bounded, then those new common factors and idiosyncratic components are likely to satisfy BN-regularity.

For a rigorous treatment along this line, we make the following regularity assumption and present several

remarks to show when it is satisfied.

Assumption 2 For any constant b1 and b2, {λi}, {∆Ft + b1F
∗
t−1} and {∆eit + b2e

∗
it−1} are BN-regular.

Remark 1. If {Ft} itself is BN-regular, then ∆Ft + b1F
∗
t−1 would also be BN-regular for any given b1

as long as T−1
∑T

t=1(Ft − φFt−1)(Ft − φFt−1)′ has eigenvalues bounded sufficiently away from zero for

all φ, which is the case as long as the generating shocks (e.g., vt in Ft = φFt−1 + vt) have non-negligible

variation. If {eit} is BN-regular itself, then usually ∆eit + b2e
∗
it would also be BN-regular for any given b2.

Remark 2. When Ft is highly serially correlated, Ft itself may violate Condition A of the BN-regularity.

However, in this case as well, {∆Ft + b1F
∗
t−1} is likely to satisfy the condition for any constant b1. To
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see this, let Ft be a scalar. Let T−1
∑T

t=1(∆Ft)
2 follow a law of large numbers and Ft ∼ I(1) such that

T−1/2Ft follows an invariance principle. Let F̃t = ∆Ft + b1F
∗
t−1. Then

1

T

T∑
t=1

F̃ 2t =
1

T

T∑
t=1

(∆Ft)
2 +

2b1
ΣFF,T

· 1

T

T∑
t=1

∆FtFt−1 +
Tb21

Σ2FF,T
· 1

T 2

T∑
t=1

F 2t−1,

where T−1
∑T

t=1 ∆FtFt−1 and T−2
∑T

t=1 F
2
t−1 are Op(1). But Σ−1FF,T = O(T−1), so

1

T

T∑
t=1

F̃ 2t =
1

T

T∑
t=1

(∆Ft)
2 +Op(T

−1),

thus condition A of the BN-regularity is satisfied by F̃t.

Remark 3. The key condition that would be violated by eit when it is strongly serially correlated is Con-

dition C2 of the BN-regularity. But ∆eit + b2e
∗
it still satisfies this condition for any constant b2 when eit is

quite persistent as well. Let ẽit = ∆eit + b2e
∗
it−1, where e∗it−1 = σ−2e,T eit−1 and σ2e,T = T−1

∑T
t=1Ee

2
it.

We want to see if condition C2 of the BN-regularity is satisfied, i.e.,

1

T

T∑
t=1

T∑
s=1

∣∣∣∣ 1

N

N∑
i=1

Ee∗ite
∗
is

∣∣∣∣ =
1

T

T∑
t=1

T∑
s=1
|Ee∗ite∗is| ≤M <∞.

Suppose that eit =
∑∞

j=0 cTjεit−j where εit are iid and cTj may depend on T so local asymptotic analysis

can be included. Then Ee2it =
∑∞

j=0 c
2
Tj , and

1

T

T∑
t=1

T∑
s=1
|Ee∗ite∗is| ≤

∑∞
0 c2j

(
∑∞
0 c2Tj)

2
+

2
∑∞

k=1

∑∞
j=0 |cTjcT,j+k|

(
∑∞
0 c2Tj)

2

≤ 1∑∞
0 c2j

[
1 +

2
∑∞

j=0 |cTj |
∑∞

k=1 |cT,j+k|∑∞
0 c2Tj

]
.

This is bounded if
∑∞
0 |cTj | and

∑∞
0 c2Tj are of the same order (as T increases), which is so for general

square-summable processes. (Nonsummable processes cannot be handled by this argument.) More impor-

tantly, this converges to zero if
∑∞
0 c2Tj → ∞ as T → ∞ (though

∑∞
j=0 c

2
Tj is finite for all T ) and if∑∞

k=1 |cT,j+k| ≤ M∗ supk≥0 |cT,j+k| for some M∗ < ∞, which happens if, for example, eit is weakly-

integrated. Once the regularity of e∗it is shown, it is straightforward to show that ∆eit + b2e
∗
it satisfies

condition C2 of the BN-regularity.

Remark 4. If eit = ei0 +
∑t

s=1 εis (i.e., integrated), where εit are iid and independent of ei0, then

σ2e,T = O(σ20,T ) + O(T 2) (and it is the exact order) and T−1
∑T

t=1

∑T
s=1 |Eeiteis| is O(Tσ20,T ) + O(T 2)

where σ20,T = Ee2i0. So

1

T

T∑
t=1

T∑
s=1

|Ee∗ite∗is| = O

(
Tσ20,T + T 2

[σ20,T + T 2]2

)
= O

(
σ20,T /T + 1

[σ20,T /T + T ]2

)
→ 0,
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thus validating condition C2 of the BN-regularity for ∆eit + b2e
∗
it−1 for any constant b2.

Remark 5. Assumption 2 can be satisfied if the persistency is different across i as well. For example,

suppose that eit = ρieit−1 + εit, where ρi = 1 − ci/Tα with 0 < c ≤ ci ≤ c̄ < ∞ and εit ∼ iid (0, σ2ε).

Also suppose that ci is iid. Then σ2e,T = σ2εE[(1− ρ2i )−1] = σ2εT
αE[c−1i (1 + ρi)

−1]. When ρi > 0 for all

i, we furthermore have

1

T

T∑
t=1

t∑
s=1

|Eeiteis| ≤
∞∑
r=0

|Eeiteit−r| = E

[
σ2ε

(1− ρi)(1− ρ2i )

]
= σ2εT

2αE[c−2i (1 + ρi)
−1].

Therefore,

1

T

T∑
t=1

t∑
s=1

|Ee∗ite∗is| ≤
E[c−2i (1 + ρi)

−1]

E[c−1i (1 + ρi)
−1]2

≤ 4E(c−2i )

(Ec−1i )2
≤ 4c−2

c̄−2
= 4(c̄/c)2 <∞.

and condition C2 of the BN-regularity is satisfied.

Given Assumption 2, the following is true.

Theorem 2 (Nonrandom filtering) Given Assumption 2, if (i) (1 − φT )ΣFF,T converges to a finite limit,

and (ii) (1− φT )σ2e,T = O(1), then k̂(φT )→p r.

An intuitive explanation of the result is as follows. According to (7), the common factor of Xit −
φTXit−1 is ∆Ft+(1−φT )ΣFF,T ·F ∗t−1 and the idiosyncratic error is ∆eit+(1−φT )σ2e,T ·e∗it−1. Assumption

2 states that ∆Ft + b1F
∗
t−1 and ∆eit + b2e

∗
it−1 are BN-regular for any constant b1 and b2. Conditions (i)

and (ii) in the theorem impose the necessary restrictions on φT such that the terms corresponding to b1 and

b2 behave as required under Assumption 2 in the limit as T →∞.

If eit is integrated, then σ2e,T increases at an O(T ) rate. So if φT = 1 − cT−1, for example, then

conditions (i) and (ii) of the theorem are satisfied, and the BN method applied to Xit − φTXit−1 will yield

a consistent factor number estimate. Though this approach is not practically useful (because in practice T

is given, and the performance would depend on the constant c), it informs us of how much bias is allowed

when we consider a data-dependent filtering procedure. This is the topic we investigate next.

4.3 Consistency of the LSDV Filter

In this subsection we consider a specific data-dependent filter, namely the LSDV filter. AR(1) LSDV filtering

involves the following issues. Firstly, the AR(1) model may be misspecified in the sense that there is no φ

such thatXit−φXit−1 is independent over time; secondly, the LSDV estimator is biased (toward zero) even

when Xit follows an AR(1); and lastly, the LSDV estimator is random. The problems of misspecification

and bias were discussed in the previous subsection in a general context. In this subsection, we first show that

the center of the LSDV estimator satisfies the conditions given in section 3.2 provided the degree of serial

correlation is not stronger than weak integration. We then proceed to addressing the issue of randomness
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in the LSDV filter φ̂lsdv. By this method we will verify that the LSDV estimator φ̂lsdv satisfies all the

required conditions in order for the filtered data Ẑit := Xit− φ̂lsdvXit−1 to satisfy BN-regularity unless the

idiosyncratic errors are more persistent than permitted by the regularity assumptions as stated later.

Let us rewrite the filtered data as

Ẑit = ∆Xit + (1− φ̂lsdv)Xit−1 = ∆Xit + (1− φT )Xit−1 − (φ̂lsdv − φT )Xit−1, (8)

where φT can be understood as the center of φ̂lsdv.

Comparing (8) to (6), we see that in the data dependent framework the filtered data involves an additional

term (φ̂lsdv − φT )Xit−1 compared to the nonrandom framework. Hence in order for the BN criteria to be

consistent when applied to Ẑit, we would require not only that the center φT satisfies conditions (i) and (ii)

of Theorem 2, but also that the variability of φ̂lsdv around φT is limited. The third term in the right hand side

of (8) can be written as (φ̂lsdv−φT )σ2X,T ·σ
−2
X,TXit−1, where σ2X,T = (NT )−1

∑N
i=1

∑T
t=1EX

2
it (with the

N subscript again suppressed for notational brevity). Because σ−2X,TXit−1 is bounded and behaves regularly,

we can imagine that if (φ̂lsdv−φT )σ2X,T = op(1), then this third term has negligible impact on the behavior

of Ẑit (See Theorem 3 and Remark 7.)

As discussed above the filter is employed to reduce the serial dependence in eit. However, in order for

this method to work, any strong serial correlation in Ft and eit should be explained by an AR(1) structure.

This is satisfied by a wide class of processes including integrated or nearly integrated processes. But we also

note that this is not always possible, in particular if the process is I(2). Formally, we make the following

assumption.

Assumption 3 The common factors Ft and idiosyncratic errors eit satisfy

1

T

T∑
t=1

E[Ft−1∆F
′
t ] = O(1) and

1

NT

N∑
i=1

T∑
t=1

E[eit−1∆eit] = O(1).

Remark 6. Assumption 3 is satisfied by rather general stationary and integrated (of order one) processes. If

eit are stationary for all i, then eit obviously satisfies the assumption if the second moments are uniformly

finite. If eit is integrated for some i, such that ∆eit =
∑∞

j=0 cijεit−j and supt>0,i |E(ei0∆eit)| < ∞,

where εit is iid (0, σ2) and supi
∑∞

j=0 |cij | <∞, then E[eit−1∆eit] = E[ei0∆eit]+
∑t−1

s=1E[∆eis∆eit] =

E[ei0∆eit] +
∑t−1

r=1E[∆eit−r∆eit] and E[∆eit−r∆eit] = σ2 ×
∑∞

j=0 cijcij+r (for r > 0). Thus

Ai :=
1

T

T∑
t=1

E[eit−1∆eit] =
1

T

T∑
t=1

E[ei0∆eit] +
σ2

T

T∑
t=2

t−1∑
r=1

∞∑
j=0

cijcij+r,

so

|Ai| ≤ sup
t>0,i
|E(ei0∆eit)|+ σ2

∞∑
r=1

∞∑
j=0
|cijcij+r| ≤ sup

t>0,i
|E(ei0∆eit)|+ σ2

(
∞∑
j=0
|cij |

)2
,

which is uniformly bounded. The average of Ai is therefore bounded, so Assumption 3 holds. The com-

mon factors Ft are similarly treated (but without minding individual heterogeneity, of course). Note that

Assumption 3 is not satisfied if eit or Ft is more than once integrated.
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We have the following result.

Theorem 3 (LSDV filtering) Given Assumptions 2 and 3, if σ2e,T = o(T ) and ΣFF,T = o(T ), then

k̂(φ̂lsdv)→p r.

The theorem states that the Bai-Ng factor number estimator based on the AR(1) LSDV-filtered data Xit −
φ̂lsdvXit−1 is consistent under suitable regularity. Unlike Assumptions 2 and 3, the regularity that σ2e,T =

o(T ) and ΣFF,T = o(T ) is binding. See the following remark.

Remark 7. Suppose that eit = ρT eit−1 + εit where εit is stationary. Let γk = E[εitεit−k] and further

assume εit =
∑∞

j=0 cjwit with wit being iid and
∑∞
0 |ck| <∞. Then we have

∑∞
k=0 |γk| <∞. If

T (1− ρT )→∞, (9)

then σ2e,T = o(T ). Note that Ee2it = O((1−ρT )−1), so σ2e,T = O((1−ρT )−1) = o(T ) if T (1−ρT )→∞.

If 1 − ρT = O(T−α), then this condition holds if α < 1. The process for the common factor Ft is treated

similarly. Note the importance of (9).

Finally we note that filtering may impair the small sample performance of the BN criteria in some cases.

For example, if the signal in the filtered factors is considerably smaller than the factors in levels and if

the idiosyncratic component does not exhibit much serial correlation (that is, for some φ the variance of

Ft − φFt−1 is negligible compared to variance of eit − φeit−1), then the selection criteria may perform

worse when applied to the filtered data than when applied to the levels data. However, the filtered data

will still contain enough variation in common factors under Assumption 2 for consistency of the filtering

method.2

4.4 Practical Issues and Dynamic Factors

While first differencing works well when the process is closer to unit root (e.g. 1 − ρT = O(T−1)) or

even integrated, the LSDV filtering typically performs better than first differencing if the process does not

exhibit strong serial correlation. In practice the strength of the dependence is unknown, so it will be useful

to provide a method which combines the two filtering methods and which is at least as good as the two

filtering methods separately.

A simple way to enhance the small sample performance is to choose the minimum factor number esti-

mate from the first differencing and the LSDV filtering, i.e.,

k̂min = min
{
k̂(1), k̂(φ̂lsdv)

}
. (10)

This “minimum rule” is justified by the fact that serial correlation usually causes overestimation rather

than underestimation of the factor number, and should perform well provided that the differenced or quasi-

differenced factors exhibit sufficient signal in the transformed data.

2The same role is played by Assumption B(ii) of Bai and Ng (2004).

18



The filtering procedures proposed above are useful for detecting the number of static factors. This

method can also be applied to the restricted dynamic models (Amengual and Watson, 2007; Bai and Ng,

2007; Hallin and Liska, 2007) based on Ft =
∑p

j=1 ΠjFt−j + Gηt, where ηt is q × 1 and G is r × q with

full column rank. (See Hallin and Liska, 2007, for a discussion of the distinction between static, restricted

dynamic and dynamic factor models.) For this model, filtering the data using the methods suggested above

preserves the dimensions of both the static and dynamic factors because

Ft − φFt−1 =

p∑
j=1

Πj(Ft−j − φFt−j−1) +G(ηt − φηt−1),

where the transformed static factors Ft−φFt−1 are still r×1 and the transformed primitive shocks ηt−φηt−1
are still q × 1. Further analysis of dynamic factor models is reserved for future research.

5 Monte Carlo Studies

We conduct simulations to illustrate our results. We consider the following data generating process:

Xit =
∑r

j=1 λjiFjt + eit, Fjt = θFjt−1 + vjt for j = 1, . . . , r;

eit = ρieit−1 + εit, εit =
J∑

k=−J,k 6=0
βui−k,t + uit for J = bN1/3c.

where b·c denotes the largest integer not exceeding the argument. The DGP for eit is similar to that employed

in the Monte-Carlo study of BN (2002). Note that eit can exhibit cross sectional and time series dependence

through β and ρi, respectively. The random variables uit are independently drawn from N(0, s2i ) for some

si for each i. The vjt are drawn fromN (0, 1), and we draw λji fromN
(
0, r−1/2

)
for all i and j = 1, . . . , r.

This ensures that the variance of the common component relative to the variance of the idiosyncratic com-

ponent is invariant to the number of factors. (Note BN, 2002, make a similar normalization by adjusting

the variance of eit.) Throughout we set r = 2, so there are two factors. We consider the ICp2 (k) crite-

rion only because it uses the largest penalty among ICp1 (k), ICp2 (k) and ICp3 (k), so the probability of

overestimation is the smallest.

We consider the following four cases to investigate the finite sample performance of the proposed meth-

ods.

Case 1: Asymptotic justification of filtering methods. We first consider a DGP design where β = 0 (no

cross section dependence in eit), ρi = 0 (no serial correlation in eit), si = 1 for all i (no heteroskedasticity

in the primitive idiosyncratic shock), and θ = 0.9 (high serial correlation in Ft). This is a “bad case” for

filtering methods compared to the BN method using the levels data because filtering can considerably reduce

the signal in the transformed common factors while common factors in levels contains a relatively larger

signal. The purpose of the present simulation is to demonstrate that filtering methods work asymptotically
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Table 4: Case 1. ρi = 0, si = 1, θ = 0.9, β = 0, σ2v = 1, r = 1

LEV FD AR1 MIN

N T < = > < = > < = > < = >

25 25 3.3 96.7 0.0 42.5 53.8 3.7 19.0 79.8 1.2 43.1 55.8 1.1

50 25 0.7 99.3 0.0 15.2 80.7 4.1 5.0 94.0 1.0 15.4 83.7 0.9

100 25 0.0 100 0.0 4.9 93.5 1.6 1.0 98.7 0.3 4.9 94.8 0.3

25 50 0.0 100 0.0 16.9 82.9 0.2 3.6 96.3 0.1 16.9 83.0 0.1

50 50 0.0 100 0.0 3.2 96.8 0.0 0.3 99.7 0.0 3.2 96.8 0.0

100 50 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0

25 100 0.0 100 0.0 4.8 95.2 0.0 0.5 99.5 0.0 4.8 95.2 0.0

50 100 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0

100 100 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0

<, =, >: underestimation, correct estimation, and overestimation, respectively.

if there is enough variation in vjt. We set si = 1 here in order to avoid any complication arising from cross

section heteroskedasticity, which typically results in overestimation.

We expect that the BN method in levels outperforms the filtering methods and filtering may lead to

underestimation in small samples, but as long as the primitive common shocks vjt have enough variation,

filtering methods still estimate the factor numbers consistently. This expectation is verified by Table 4, which

reports correct and incorrect selection frequencies in percentage for the BN method in levels (LEV), the first

difference filtering (FD), the LSDV filtering (AR1), and the minimum rule (MIN) applied to FD and AR1.

For small samples, the probability of underestimation by the filtering methods (FD, AR1 and MIN) is higher

than that for LEV, but asN and T increase, the filtering methods achieve consistency. Results do not change

in any considerable way when weak serial and cross-sectional dependence and mild heteroskedasticity is

introduced.

Case 2: Positive idiosyncratic serial dependence. In this case both the common factors and idiosyncratic

components exhibit moderate serial dependence; the AR(1) parameters ρi are independently and identically

distributed asU (0.5, 0.7), θ = 0.5 and we set β = 0.1 to allow cross section dependence in the idiosyncratic

errors. We let si ∼ U(0.5, 1.5) in the present and following settings. Both ρi and si are not re-drawn for

each replication of the simulation.

The results are reported in Table 5. The BN method using levels data considerably overestimate the

factor number, while both filtering methods show good finite sample properties. Using the minimum rule

performs best in this example. If we increase the mean of the AR1 parameters ρi, while maintaining the

same dispersion, the FD filter begins to outperform the AR1 filter. However in this case the minimum rule
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Table 5: Case 2. ρi ∼ U(0.5, 0.7), si ∼ U(0.5, 1.5), θ = 0.5, β = 0.1, σ2v = 1, r = 2.

LEV FD AR1 MIN

N T < = > < = > < = > < = >

25 25 2.2 13.6 84.2 12.9 73.8 13.3 16.1 72.1 11.8 18.5 76.1 5.4

50 25 0.0 0.4 99.6 1.1 90.0 8.9 2.0 88.7 9.3 2.1 95.2 2.7

100 25 0.0 0.0 100 0.3 99.0 0.7 0.5 97.6 1.9 0.6 99.3 0.1

25 50 0.1 14.2 85.7 1.1 84.9 14.0 2.3 89.4 8.3 2.4 92.1 5.5

50 50 0.0 13.8 86.2 0.0 99.5 0.5 0.0 99.7 0.3 0.0 99.9 0.1

100 50 0.0 1.0 99.0 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0

25 100 0.4 22.1 77.5 0.2 85.8 14.0 0.3 90.4 9.3 0.3 93.1 6.6

50 100 0.0 20.3 79.7 0.0 99.6 0.4 0.0 99.9 0.1 0.0 100 0.0

100 100 0.0 46.7 53.3 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0

<, =, >: underestimation, correct estimation, and overestimation, respectively.

continues to perform best. Likewise if we reduce the mean of ρi while maintaining the same degree of

dispersion, the AR1 filter begins to out-perform the FD filter, but again the minimum rule performs best.

Case 3: More heterogenous idiosyncratic serial dependence. As more heterogeneity in ρi is introduced,

the performance of FD deteriorates compared to AR1. For example, when ρi is drawn independently from

the U(−0.1, 0.9) distribution (with other settings the same as in Case 2), the AR1 filter outperforms the FD

filter by a wide margin in small samples (with N = 25 or T = 25), as shown in in Table 6. This would

be explained by the fact that the FD filter induces large negative autocorrelation in the idiosyncratic series

with small ρi values, whereas the data-dependent filter leaves less residual correlation in the treated cross

sections. The minimum rule improves on the AR1 filter slightly, while ICp2 (k) in levels performs poorly.

(In unreported simulations LEV performs well when T is very large relative to N .)

Case 4: Extremely heterogenous autoregressive parameters. In this set of simulations we draw ρi from

iid U (−0.1, 0.1) for i = 1, . . . , 12N and iid U (0.7, 0.9) for i = 1
2N + 1, . . . , N .3 Other settings are as

in Case 2. As in Case 3 above, in this framework there is a marked disparity between the degree of serial

dependence in the AR1 parameter. But within each subgroup the degree of heterogeneity is low. Table 7

exhibits the results. Notably the AR1 filter performs much better than the FD or LEV methods. As in case

3, this result is attributable to the FD filter inducing large negative correlation in many of the cross sections.

The effect is more noticeable in this DGP because more cross sections have an AR(1) coefficient close to

zero. (As in Table 6, in unreported simulations we find that the ICp2 (k) in levels performs well when T is

3We thank an anonymous referee from an earlier submission for suggesting this DGP.
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Table 6: Case 3. ρi ∼ U(−0.1, 0.9), si ∼ U(0.5, 1.5), θ = 0.5, β = 0.1, σ2v = 1, r = 2.

LEV FD AR1 MIN

N T < = > < = > < = > < = >

25 25 4.8 26.3 68.9 16.8 57.9 25.3 23.7 68.9 7.4 27.4 67.6 5.0

50 25 0.0 1.9 98.1 2.3 82.8 14.9 2.7 88.1 9.2 3.2 93.9 2.9

100 25 0.0 0.7 99.3 0.8 94.6 4.6 1.3 95.6 3.1 1.5 98.2 0.3

25 50 0.3 9.9 89.8 2.4 69.3 28.3 5.2 88.2 6.6 5.5 89.7 4.8

50 50 0.0 2.8 97.2 0.2 99.0 0.8 0.0 99.0 1.0 0.2 99.8 0.0

100 50 0.0 0.7 99.3 0.0 100 0.0 0.0 99.8 0.2 0.0 100 0.0

25 100 0.1 4.9 95.0 0.7 68.6 30.7 0.6 95.2 4.2 0.9 95.6 3.5

50 100 0.0 0.3 99.7 0.0 98.6 1.4 0.0 98.9 1.1 0.0 99.9 0.1

100 100 0.0 1.2 98.8 0.0 100 0.0 0.0 100 0.0 0.0 100 0.0

<, =, >: underestimation, correct estimation, and overestimation, respectively.

very large relative to N .)

We also considered other parameters settings and DGPs, as well as other estimation methods such as the

Hallin and Liska (2007) cross validation approach. In the interests of brevity we do not report the results

here.4 The Hallin-Liska method (applied to the data in levels) indeed improves upon the BN criteria in

most considered cases, but it does not resolve the overestimation problem created by high idiosyncratic

autocorrelation in small samples to the same extent as the filtering methods. (For example, in the case 4

setting with N = T = 100, the correct selection frequency is 61% for the Hallin-Liska method applied to

levels data, the ICp2 (k) applied to levels never selects the correct factor number in the 1000 replications,

while both filtering methods have a correct selection frequency of over 99%.) Interestingly we found that a

simple combination of the filtering approach with the Hallin-Liska method does not improve the accuracy

of the filtering approach. A further and more extensive comparison is worthy of further research.

6 Revisiting the Empirical Examples

We now consider the performance of LSDV filtering in each of the examples introduced in section 2 above.

In each case the LSDV-filtered panels yields a more credible factor number estimate than the methods

4These additional results are available from the author upon request. The Hallin-Liska procedure requires the practitioner to

specify both a sequence of penalty functions and a sequence of sub-samples. We mimicked the sequences adopted by Hallin and

Liska (2007) in their MC study. We first set the penalty functions c = (0.01, 0.02, ..., 3). Next, each of the the sub-samples begin

at (i, t) = (1, 1) and end at (i, t) = (bN, bT ), where b = (0.7, 0.8, 0.9, 1), such that there are three sub-samples used in the cross

validation procedure.
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Table 7: Case 4. ρi ∼ U(−0.1, 0.1) for i ≤ 1
2N and ρi ∼ U(0.7, 0.9) for i > 1

2N , si ∼ U(0.5, 1.5),

θ = 0.5, β = 0.1, σ2v = 1, r = 2.

LEV FD AR1 MIN

N T < = > < = > < = > < = >

25 25 4.8 23.4 71.8 17.1 40.6 42.3 25.0 60.6 14.4 28.4 60.7 10.9

50 25 0.1 4.0 95.9 2.3 51.3 46.4 4.1 80.2 15.7 4.8 84.3 10.9

100 25 0.0 0.1 99.9 0.7 79.1 20.2 1.5 86.6 11.9 1.8 95.4 2.8

25 50 0.0 5.5 94.5 2.0 43.4 54.6 5.6 80.8 13.6 5.9 82.7 11.4

50 50 0.0 1.7 98.3 0.3 84.0 15.7 0.4 97.0 2.6 0.5 98.8 0.7

100 50 0.0 0.0 100 0.0 96.7 3.3 0.0 98.4 1.6 0.0 99.8 0.2

25 100 0.0 1.3 98.7 0.5 36.9 62.6 1.3 85.0 13.7 1.4 86.7 11.9

50 100 0.0 0.3 99.7 0.0 63.6 36.4 0.0 97.6 2.4 0.0 98.5 1.5

100 100 0.0 0.0 100 0.0 99.6 0.4 0.0 100 0.0 0.0 100 0.0

<, =, >: underestimation, correct estimation, and overestimation, respectively.

based on either first-differencing or the data in levels. In order to assess the impact of serial dependence

on the various factor number selection methods, we also report fitted AR(1) coefficients for the estimated

idiosyncratic components of the panels.5 We report X-differenced estimates of the AR(1) coefficient, which

exhibit less small sample bias than LSDV (Han, Phillips and Sul, 2011). In order to give an indication of the

amount of heterogeneity in the idiosyncratic panel, we report the minimum and maximum AR(1) coefficient

across N separate univariate regressions. In order to give an indication of the average degree of persistence,

we report the median coefficient across the N separate univariate regressions, as well as a pooled AR(1)

coefficient.

Table 8 exhibits the results for the disaggregate PCE growth dataset. It reports the estimated factor

numbers using the LSDV filter (AR1), as well as two of the standard methods from section 2 above, namely

first-differencing (FD) and cross sectional standardization of the panel in levels (level + CSS). The LSDV

filter yields a single factor, while the other standard methods select five factors. Evidently there is a very

large degree of heterogeneity in the idiosyncratic component, as well as a moderate degree of persistence

on average. This suggests that serial dependence is the reason that the Bai-Ng criteria applied to either the

data in levels or first differences leads to the maximum number of factors being selected. In contrast, by

filtering the panel we mitigate the adverse effect of the serial dependence in the idiosyncratic component on

the factor number estimate, thereby gaining the more plausible factor number estimate of one.

5The AR(1) coefficients are fitted using the estimated idiosyncratic components of the panel, which are obtained by (1) applying

principal components to the LSDV-filtered panel, (2) selecting the factor number using ICp2 (k), and (3) recoloring the first-stage

idiosyncratic components using the LSDV-estimated AR(1) coefficient.
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Table 8: Serial dependence and estimated factor number; PCE consumption growth

ICp2 (k) with 5 factors maximum; N = 182, T = 28

estimated factor number LSDV filter X-differencing fitted univariate AR(1)

sample level + CSS FD AR1 φ̂lsdv pooled minimum median maximum

1983-2010 5 5 1 0.386 0.378 -0.430 0.402 0.993

sub-sample robustness

1983-2008 5 5 1 0.387 0.384 -0.435 0.401 1.003

1983-2009 5 5 1 0.406 0.392 -0.531 0.428 0.967

1984-2010 5 4 1 0.385 0.378 -0.430 0.420 1.006

“level + CSS” denotes Bai-Ng in levels with each cross section standardized

Table 9 reports the results for the Metropolitan CPI-U panel. There is not much heterogeneity in the

degree of persistency in this example over the 1978-2010 period compared with PCE consumption growth

panel, however the heterogeneity increases, and the degree of persistency decreases, for samples that begin

after 1980. Applying the ICp2 (k) criterion to the LSDV-filtered panel yields a factor number estimate of

two. This result holds for both the full sample, as well as all the sub-samples considered. Again, the results

from the LSDV-filtered data are more credible that those of the conventional methods, both because the

selected factor number is small relative to the maximum number of factors permitted, and because the factor

number is robust to different subsamples considered.

Table 9: Serial dependence and estimated factor number; Metropolitan CPI-U inflation

ICp2 (k) with 5 maximum factors; N = 23, T = 32.

estimated factor number LSDV filter X-differencing fitted univariate AR(1)

sample level + CSS FD AR1 φ̂lsdv pooled minimum median maximum

1979-2010 5 3 2 0.702 0.639 -0.062 0.560 0.983

sub-sample robustness

1981-2010 4 3 2 0.415 0.544 -0.232 0.443 0.847

1982-2009 4 2 2 0.375 0.611 0.017 0.528 0.826

1979-2008 5 4 2 0.716 0.783 0.195 0.704 1.103

“level + CSS” denotes Bai-Ng in levels with each cross section standardized

Table 10 shows the results for the NAICs industry growth example. There is substantial heterogeneity in

the degree of serial dependence between cross sections, while the average amount of persistence is moderate
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(note the pooled AR(1) coefficient is approximately 0.53). Applying the ICp2 (k) criterion to the LSDV-

filtered panel yields a factor number estimate of one. Again, this result holds for both the full sample and

the subsamples. Evidently there is much less persistency in the estimated idiosyncratic components, and

there is a substantial degree of heterogeneity in the estimated idiosyncratic AR(1). The moderate degree of

persistency in the idiosyncratic component is likely to be the reason that the Bai-Ng criteria applied to either

the data in levels or first differences leads to the a large number of factors being selected.

Table 10: Serial dependence and estimated factor number; Industry employment growth

ICp2 (k) with 5 maximum factors; N = 92, T = 19.

estimated factor number LSDV filter X-differencing fitted univariate AR(1)

sample level FD AR1 φ̂lsdv pooled minimum median maximum

1991-2009 5 4 1 0.528 0.447 -0.293 0.566 1.003

sub-sample robustness

1993-2009 5 5 1 0.558 0.457 -0.302 0.542 1.052

1991-2009 5 3 1 0.472 0.415 -0.511 0.499 1.108

7 Conclusion

Factor models are increasingly being used in empirical econometrics, and are often employed to summarize

comovements in a glut of data using a handful of estimated factors. An integral part of estimating the factors

is estimating the dimension of the factor space, i.e., the number of common factors underlying the panel.

Existing factor selection criteria require large N and T for consistency, and may be inaccurate when one

or both of the dimensions of the panel is moderate to small. Using a local alternative approach we analyze

the impact of serial correlation on the popular Bai and Ng factor number selection criteria. We demonstrate

that even a moderate degree of serial correlation in the idiosyncratic errors (relative to the given sample

size) can cause the Bai-Ng criteria to overestimate the true number of factors. To overcome this problem,

we suggest filtering the panel prior to applying Bai and Ng’s method. We theoretically analyze how the

filtering method can work for general processes with serial correlation and verify the applicability of the

method by simulations. Using several different empirical examples we demonstrate how LSDV filtering

yields reasonable factor number estimates when conventional methods yield estimates that are too large to

be credible.
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A Mathematical Proofs

Proof of Theorem 1. See Theorem 2 of Bai and Ng (2002).

Proof of Theorem 2. Let Zit = Xit − φTXit−1 as before. Let b1,T = (1 − φT )ΣFF,T and b2,T =

(1− φT )σ2e,T . By (7), we have Zit = λ′i(∆Ft + b1,TF
∗
t−1) + (∆eit + b2,T e

∗
it). Assumption 2 and condition

(i) of the theorem imply that {∆Ft + b1,TF
∗
t−1} is BN-regular, and Assumption 2 and condition (ii) of

the theorem imply that {∆eit + b2,T e
∗
it−1} is also BN-regular. The result follows from Bai and Ng (2002,

Theorem 2) again.

Before proving Theorem 3, we present a slightly more general result on data-dependent filtering. Let φ̂

be a random variable and φT a nonrandom quantity. The result to be presented below states that if φ̂ and φT

are sufficiently close, then filtering based on φ̂ and filtering based on φT give the same probability limit. Let

Ẑit = Xit − φ̂Xit−1. For panel data Xit, let VNT (k;Xit) = minF∈RT×k(NT )−1
∑N

i=1X
′
iMFXi, where

Xi = (Xi1, . . . , XiT )′ and MF = I − F (F ′F )−1 F ′. Let hNT (k;Xit) = VNT (k;Xit)− VNT (r;Xit).

Lemma A.1 Under the assumptions for Theorem 2, if (φ̂− φT )σ2X,T →p 0, then k̂(φ̂)→p r.

Proof. Let â = (φ̂− φT )σ2X,T for notational brevity, such that â→p 0 under the supposition of the lemma.

Also let ĥ(k) = hNT (k; Ẑit) and h(k) = hNT (k;Zit). The goal is to show that (i) ĥ(k) does not shrink to

zero for k < r, and (ii) ĥ(k) = O(C−2NT ) for k > r. (See Bai and Ng, 2002, proof of Theorem 2.) Note that

Ẑit = Zit + âX∗it−1, where X∗it := Xit/σ
2
X,T .

(i) When k < r, h(k) does not shrink to zero by Assumption 2, so it suffices to show that ĥ(k)−h(k)→p

0. But ĥ(k)− h(k) = ξ̂r − ξ̂k, where

ξ̂j = max
F∈RT×j

1

NT

N∑
i=1

Ẑ ′iPF Ẑi − max
F∈RT×j

1

NT

N∑
i=1

Z ′iPFZi.

So the proof can be done by showing that ξ̂j →p 0 for every j ≤ r. This part is easy: Because |max f −
max g| ≤ max |f − g|, we have

|ξ̂j | ≤ max
F∈RT×j

∣∣∣∣∣ 1

NT

N∑
i=1

(Ẑ ′iPF Ẑi − Z ′iPFZi)
∣∣∣∣∣→p 0,

where we used the fact that â→p 0 and all the averages are stochastically bounded.

(ii) For the case with k > r, write Ẑit as

Ẑit = λ′i(Ft − φ̂Ft−1) + (eit − φT eit−1)− âe∗it−1.

The common factors Ft − φ̂Ft−1 can be written as (Ft − φTFt−1)− âF ∗t−1, which satisfies Assumption A

of Bai and Ng (2002) because Ft − φTFt−1 satisfies it and â = op(1). Next, both uit := eit − φT eit−1
and e∗it−1 satisfy the assumptions of Bai and Ng (2002), where the idiosyncratic error of Ẑit is uit − âe∗it−1.
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Then Theorem 1 of Bai and Ng (2002) still holds with this idiosyncratic error, but some part of the proof of

Bai and Ng’s Lemma 4 should be redone. More precisely, we need to show that

max
F∈RT×k

1

NT

N∑
i=1

T∑
t=1

(ui − âe∗i,−1)′MF (ui − âe∗i,−1) = Op(C
−2
NT ),

which corresponds to (1) of Bai and Ng (2006). But this holds because both uit and and e∗it−1 satisfy the

assumptions of Bai and Ng (2002, 2006) and â→p 0.

Now we prove that the LSDV estimator φ̂lsdv obtained by regressing Xit on Xit−1 satisfies the assump-

tions for Theorem 2 and Lemma A.1 under suitable assumptions. Let

Γ̂0 =
σ−2X,T
NT

N∑
i=1

T∑
t=1

X̃2
it−1, Γ̂1 =

σ−2X,T
NT

N∑
i=1

T∑
t=1

X̃it−1X̃it,

where the “˜” notation stands for the within-group transformation. Note that EΓ̂0 is nonsingular. The AR(1)

LSDV estimator is φ̂lsdv = Γ̂−10 Γ̂1. Let φlsdv = Γ−10,TΓ1,T , where Γj,T = EΓ̂j . We will show that φlsdv and

φ̂lsdv satisfy the conditions for Theorem 2 and Lemma A.1 under regularity.

Lemma A.2 If T−1σ2X,T = O(1), then under Assumption 3, (1− φlsdv)σ2X,T = O(1).

Proof. We have (1 − φlsdv)σ2X = Γ−10,T (Γ0,T − Γ1,T )σ2X,T . Because Γ−10,T is finite, it suffices to show that

(Γ0,T − Γ1,T )σ2X,T = O(1), i.e.,

1

NT

N∑
i=1

T∑
t=1

EX̃it−1∆X̃it = O(1).

We use

1

T

T∑
t=1

EX̃it−1∆X̃it =
1

T

T∑
t=1

EXit−1∆Xit −
1

T 2

T∑
t=1

T∑
s=1

EXit−1∆Xis.

This is bounded by Assumption 3.

Let X∗it = Xit/σ
2
X,T as before.

Lemma A.3 Suppose that (i) var(X2
it−1) ≤ Mσ4X,T , and (ii)

∣∣∑∞
k=1 cov(X2

it, X
2
it+k)

∣∣ ≤ Mσ4X,T for all i

and t for some M <∞. If T−1σ2X,T = o(1), then (φ̂lsdv − φlsdv)σ2X,T = op(1).

Proof. Let φ̂ = φ̂lsdv and φ = φlsdv for notational simplicity. We have φ̂− φ = Γ̂−10 (Γ̂1 − φΓ̂0). Note that

Γ1 − φΓ0 = 0. Because Γ̂−10 is Op(1), we shall show that (Γ̂1 − φΓ̂0)σ
2
X = op(1), i.e.,

1

NT

N∑
i=1

T∑
t=1

(Xit−1 − X̄i,−1)(Uit − Ūi) = op(1), Uit = Xit − φXit−1. (11)
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Because Uit = ∆Xit + aX∗it−1, where a = (1 − φ)σ2X = O(1) by Lemma A.2, (11) can be proved by

showing that

Ya :=
1

N

N∑
i=1

Yai = op(1), Yai =
1

T

T∑
t=1

(Xit−1∆Xit − EXit−1∆Xit),

Yb :=
a

N

N∑
i=1

Ybi = op(1), Ybi =
1

T

T∑
t=1

(Xit−1X
∗
it−1 − EXit−1X

∗
it−1),

Yc :=
1

NT

N∑
i=1

T∑
t=1

Ycit = op(1), Ycit =
1

T

T∑
s=1

(Xit−1∆Xis − EXit−1∆Xis),

Yd :=
a

NT

N∑
i=1

T∑
t=1

Ydit = op(1), Ydit =
1

T

T∑
s=1

(Xit−1X
∗
is−1 − EXit−1X

∗
is−1).

Because Ya, Yb, Yc and Yd are averages over i, we will show that Yji = op(1) for all j = a, b, c, d, where

the convergence holds uniformly over all i. Furthermore, because EYji = 0 for j = a, b, c, d, we will show

that EY 2ji → 0 for j = a, b, c, d, where the convergence and boundedness are uniform in i.

For Yai, we have Yai = T−1 [Xit−1(XiT −Xi0)− EXit−1(XiT −Xi0)] , so

EY 2ai ≤ T−2var(X2
it−1) ≤M(T−1σ2X)2 → 0.

Next

EY 2bi =
1

T 2

T∑
t=1

var(Xit−1X
∗
it−1) +

2

T 2

T−1∑
t=1

T∑
s=t+1

cov(Xit−1X
∗
it−1, Xis−1X

∗
is−1).

But var(XitX
∗
it) = var(X2

it)/σ
4
X = O(σ−2X ) = O(1), so the first term is O(T−1), and the second term is

also O(T−1) by (iii). Next, Ycit = T−1[Xit−1(XiT −Xi0)−EXit−1(XiT −Xi0)], and the proof is similar

to that for Yai. Finally, Ydit is handled similar to Ybi. Note that the convergences are uniform in i and t.

Proof of Theorem 3. The first differenced process ∆Xit clearly gives a consistent estimate. For Xit −
φ̂lsdvXit−1, we note that the assumptions that T−1σ2e,T = o(1) and T−1ΣF,T = o(1) imply that T−1σ2X,T =

o(1). Then it is straightforward to see that conditions for Lemma A.2 and A.3 are satisfied under the

regularity Assumptions 1–3. The result follows from Lemmas A.2 and A.3.
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