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Abstract

This paper develops robust panel estimation in the form of trimmed mean group estimation

for potentially heterogenous panel regression models. It trims outlying individuals of which

the sample variances of regressors are either extremely small or large. The limiting distribu-

tion of the trimmed estimator can be obtained in a similar way to the standard mean group

estimator, provided the random coefficients are conditionally homoskedastic. We consider

two trimming methods. The first one is based on the order statistic of the sample variance of

each regressor. The second one is based on the Mahalanobis depth of the sample variances of

regressors. We apply them to the mean group estimation of the two-way fixed effects model

with potentially heterogeneous slope parameters and to the common correlated effects re-

gression, and we derive limiting distribution of each estimator. As an empirical illustration,

we consider the effect of police on property crime rates using the U.S. state-level panel data.
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1 Introduction

Though it is popular in practice to impose homogeneity in panel data regression, the homogeneity

restriction is often rejected (e.g., Baltagi, Bresson, and Pirotte, 2008). Even under the presence

of heterogeneous slope coefficients, pooling the observations is widely believed to be innocuous.

As Baltagi and Griffin (1997) and Woodridge (2005) point out, the standard fixed-effects (FE)

estimators consistently estimate the mean of the heterogeneous slope coefficients. One may use

the group-heterogeneity approach by Bonhomme and Manresa (2015) or Su, Shi, and Phillips

(2016), which assumes homogenous slope coefficients within a group but heterogeneous across

groups. However, with a large cross section size, it is still unknown whether the true slope

coefficients are homogenous even within each group.

Meanwhile, under the assumption of heterogeneous panels, Pesaran and Smith (1995) and

Pesaran, Shin, and Smith (1999) proposed the mean group (MG) estimator, which is the cross-

sectional average of individual-specific time series least squares (LS) estimators. In particular,

the MG estimator is the most preferable when estimating the long-run effects in dynamic panel

models (e.g., Pesaran, Smith, and Im, 1996). Maddala, Trost, Li and Joutz (1997) considered

a model average and shrinkage estimator by combining the individual time series LS estimators

as well as the FE estimator. In practice, however, the pooled or two-way FE estimator has been

more popular than the MG estimator, mostly because the MG estimator is known to be less

efficient. Baltagi, Griffin, and Xiong (2000) empirically demonstrate that the pooling method

leads to more accurate forecasts than the MG estimator.

The purpose of this paper is to revisit a salient feature of the MG estimator. We emphasize

the importance of investigating the individual time series estimators in details when pooling

or averaging. In particular, we develop the trimmed MG estimator, where we trim individual

observations whose time series sample variances of regressors are either extremely large or small.

The trimming instruments are not the estimates of the individual slope coefficients themselves,

but the time series variances of the regressors. Therefore, it naturally reflects the standard error

of each time series estimator or the interval estimates. Once we have the sample proportion of

trimming, the limiting distribution of the trimmed MG estimator can be obtained in a similar

way to the standard MG estimator, provided the (potentially) heterogeneous slope coefficients

are conditionally homoskedastic.

To obtain more robust estimation results, researchers often drop cross-sectional units in a

panel data set, whose time series variances are unusually large compared to the rest of the units.

Trimming individual observations with a large sample variance of the regressor (say right-tail

trim) in our case can be understood in a similar vein. However, dropping such observations will

result in efficiency loss of the MG or any pooled estimators. Trimming individual observations

with a small sample variance of the regressor (say left-tail trim) is basically the same as dropping

the individual time series estimators whose standard errors are large. Therefore, the left-tail
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trim will offset efficiency loss from the right-tail trim and result in a robust MG estimator with

little efficiency loss in finite samples.

In Section 2, we motivate the trimmed MG estimation by comparing popular panel estimators

in the context of the weighted average (or weighted MG) estimator. We also discuss trimming

methods in practice and provide some economic examples. Section 3 formally develops the

trimmed MG estimators in the two-way FE model and the common correlated effects (CCE)

regression and studies their asymptotic properties. Section 4 reports the results of Monte Carlo

studies and Section 5 presents an empirical illustration of the effect of police on property crime

rates across 48 contiguous states of the U.S. Section 6 concludes.

2 Motivation

2.1 Weighted mean group estimation

We consider a panel regression model given by

 =  +  + 0 +  (1)

for  = 1      and  = 1      , where ‘’ stands for the th individual and ‘’ stand for the th

time.  is an  × 1 vector of exogenous regressors of interest.  and  are individual and

time fixed effects, respectively. Instead of a time effect , a factor augmented term 0 can
be considered. The regression coefficient  can be either homogeneous or heterogenous across

, which is unknown.

We are interested in estimating the mean of the individual specific slope coefficients,  =

E[]. When  is heterogeneous, we suppose that

 =  +  with | ∼ (0Ω) (2)

for some × matrix 0  Ω ∞, where  = (1      )0. When  is indeed homogeneous,
 corresponds to the true slope parameter value. We estimate  in the form of a weighted

average (or weighted mean-group) estimator given by

b = X
=1


b (3)

for some non-negative weights {} such that
P

=1 = 1. The weight  can be either a scalar
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or a matrix. b is typically the least squares estimator of  for each :

b = bΣ−1 1



X
=1

̇̇,

where we denote the sample variance of the regressor in (1) as

bΣ = 1



X
=1

̇̇
0


with

̇ = ̃ − 1


X
=1

̃ and ̃ =  − 1



X
=1

. (4)

Popular examples include the mean group (MG) estimator b by Pesaran and Smith (1995)

and Pesaran, Shin, and Smith (1999), which uses equal (scalar) weights as

 =
1


(5)

in (3). The Bayes (SB) estimator b by Swamy (1970) and Smith (1973) is also a weighted

average estimator with  as the inverse of a consistent estimator of (b) in the context of
random effect models. In particular, when  ∼ N (0 2) for each , we define the weights

as

 =

⎛⎝ X
=1

nb2bΣ−1  + bΩo−1
⎞⎠−1 nb2bΣ−1  + bΩo−1 (6)

in (3) using some consistent estimators b2 and bΩ in (2). These two estimators are known

to be asymptotically equivalent under   → ∞ when
√
 → 0 (e.g., Hsiao, Pesaran, and

Tahmiscioglu, 1999).

When slope homogeneity tests or panel poolability tests (e.g., Pesaran and Yamagata, 2008)

support  =  for all , the two-way fixed-effects (FE) estimator

b =
Ã

X
=1

X
=1

̇̇
0


!−1 X
=1

X
=1

̇̇

is often used, which is consistent and the most efficient under the spherical error variance struc-

ture. In fact, it can be also expressed in the form of the average estimator in (3) with the
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Figure 1: Comparison of the weights

weights

 =

⎛⎝ X
=1

bΣ
⎞⎠−1 bΣ, (7)

which is proportional to the inverse of (b) for each  under homogeneity (e.g., Sul, 2016).

In this case, this weight is optimal in the sense that b is the best linear unbiased estimator
of .

2.2 Trimming based on the variances of regressors

Comparing the weights (5), (6), and (7), we can see that b puts equal weights for all b;
but both b and b put unequal weights over b, where the weights are proportional to bΣ,
the sample variance of  of each . Note that these weights are basically proportional to the

inverse of each individual variance of b, and hence b and b are to be more efficient thanb. See Figure 1 for comparison, which depicts the weights of MG and SB (or FE) estimators

as functions of the sample variance of , bΣ, when  is a scalar.

Because of its lower efficiency, the MG estimator b is not popular in practice. However,

since b does not use the weights based on bΣ, it is more robust toward extreme values or
behaviors of . In contrast, when bΣ is extremely large for some individual  because of some
outlying observations in , both b and b are heavily influenced by such an individual. In
some extreme cases, it can even result in inconsistency of b and b .

In fact, it is a common practice in panel data analysis that th observations with large

time series variation of  are considered as outlying individuals and dropped to get more
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Figure 2: Weight of the trimmed MG estimator

robust estimators of the key structural parameters. For example, consider an uncovered interest

parity regression, where the dependent variable is a depreciation rate (or a growth rate of

a foreign exchange rate) and an independent variable is the difference between domestic and

foreign interest rates. In this context, empirical researchers often exclude foreign countries that

experienced currency or financial crises, and their interest or exchange rates have large time

series fluctuations (e.g., a sudden increase during the crisis). Furthermore, a sudden change

in an independent variable during a particular time period could make the time series more

persistent, which even leads to nonstationarity. Unless all other variables are nonstationary and

they are cointegrated, it can yield spurious regression results.

Based on such observations, we propose a simple robust estimator, the trimmed mean group

(TMG) estimator, where we still use the equal scalar weights but drop individuals whose bΣ
are extremely large. In particular, we take an equally weighted average over b’s in (3), but
the weights take a hard-threshold trimming based on the sample variance of  of each , bΣ.
However, such an estimator could suffer from big efficiency loss compared with the standard

MG, SB, or FE estimators, though it achieves higher robustness. As a way of improving the

efficiency, we also drop th observations whose sample variances of  are extremely small (i.e.,b’s with large standard errors). The resulting weighting scheme of the TMG that we develop

in this paper is depicted in Figure 2, as a function of bΣ.
In sum, we consider the double-sided trimming scheme that drops th observations whose

sample variances of  are either extremely large or small. Trimming individual observations

with large sample variances of  (say, right-tail trim) will give robustness toward some outlying
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individuals. On the other hand, trimming individual observations with small sample variances

of  (say, left-tail trim) will improve efficiency by offsetting some efficiency loss from dropping

individual observations with large sample variances of  in the right-tail trim, which is in the

same (but more extreme) spirit as the SB or FE estimators as we illustrated in Figure 2.

Remark Instead of the hard-threshold trimming, we could consider a trapezoid type weight.

We could also apply our trimming scheme on the SB estimator instead of the MG estimator,

where the “SB” line in Figure 2 is forced to be zero when it is near the origin or extremely

large. For the latter case, however, the weights are no longer scalar values and we need to

iterate estimation to obtain such (infeasible) GLS weights, whose finite sample property does

not necessarily dominates its OLS counterpart—TMG estimator we propose. We hence focus on

the equal (scalar) weight with trimming in this paper.

2.3 Examples

We present some empirical evidence where the trimming idea could improve the results. The

first example shows the case when large sample variance of the regressor matters. Lee and Sul

(2019) consider the following relative Purchasing Power Parity (PPP) regression:

∆ =  + 0 +  ( − ∗ ) + ,

where  and  are the foreign exchange rate and the inflation rate of the th foreign country.

∗ stands for the domestic (U.S. in this example) inflation rate. As Greenaway-McGrevy, Mark,
Sul, and Wu (2018) showed, the relative PPP in the idiosyncratic level does not hold even

in the short run. In other words, the idiosyncratic inflation differential is independent of the

idiosyncratic change of the foreign exchange rate.

Figure 3 plots 27 point estimates b ( = 27) in Lee and Sul (2019) against the variances of
inflation rates.1 The total number of time series sample is  = 202 (from 1999.M2 to 2015.M11).

The point estimate of  of Turkey is near unity, but the inflation differential between Turkey

and the U.S. is quite huge. Due to several currency crises in Turkey, the inflation rate in Turkey

has widely fluctuated, which results in a large time series variance of the inflation differential.

Usually the relative PPP has been investigated in countries with stable inflation, and hence

researchers may want to exclude Turkey in their sample. In fact, as Lee and Sul (2019) point

out, the FE estimator b assigns a huge weight on the point estimate of Turkey, which leadsb to be biased. However, if we exclude individuals whose time series variances are extremely
large, we can get a more robust FE estimator.

1For the factor-augmented regression, we use the method by Greenaway-McGrevy, Han, and Sul (2012).
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Figure 3: PPP estimates versus variances of relative inflation

The second example shows the opposite case when a small sample variance of the regres-

sor matters. We estimate an individual marginal propensity to consume (MPC) across 1,875

households ( = 1875) in South Korea during the period from 1999 to 2003 ( = 5). The data

source is from the Korea Labor Income Panel Study (KLIPS). To estimate the MPC, we run

the following two-way FE regression with potentially heterogeneous slope parameters:

∆ ln =  +  + ∆ ln + ,

where  and  are the annual expenditure and wage income of the th household at year .

Theoretically, the MPC is supposed to be between zero and unity.

Figure 4 shows the MPC estimates b against the sample variance of the regressor ∆ ln.
Figure 4-A plots all the estimates. Evidently the MPC estimates widely fluctuate, especially

when the time series variances of ∆ ln are small. Figure 4-B magnifies the area of Figure

4-A where the time series variances of ∆ ln are near zero. It clearly shows that the point

estimates of the MPC becomes unreasonably larger as the variances of the regressor get smaller.

In fact, many estimates are larger than unity and even negative. If we exclude b of which the
variances of the regressor are near zero, we can obtain a more efficient estimator of the mean of

individual MPC, say E[] in this example.

2.4 Trimming weights

We can construct the trimming weights based on the sample covariance of the regressors, bΣ, in
practice. When  is univariate (i.e.,  = 1), we can simply sort bΣ and decide the trimming
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4-A: Entire estimates 4-B: Subset of estimates

Figure 4: MPC estimates versus variances of income growth

point. When  is multivariate (i.e.,  ≥ 2), however, such ordering is not straightforward. In
such cases, we can consider either a marginal trimming scheme or a joint (or balanced) trimming

scheme.

For the marginal trimming approach, we pick one regressor and determine trimmed cross-

sectional units based on the order statistics of the sample variance of the regressor picked. In

this case, a researcher chooses the key regressor as a trimming instrument or the one with the

largest variation. We can also apply this marginal trimming idea on each regressor  = 1    

and run the regression  times using each trimmed sample in turn. From each th regression,

we only report the estimates of the th element of the TMG estimator that corresponds to the

slope coefficient of the th regressor.

The joint trimming approach can be done using the intersection of trimmed sets from the

aforementioned marginal trimming for all  = 1    . More precisely, we let b2 be the sample
variance of the th element of the agent ’s regressors for  = 1    . We conduct marginal

trimming using b2 for each  and obtain the joint trimmed set from the intersection of all the

trimmed units over  = 1    .

Alternatively, we can use the data depth of bΣ (e.g., Lee and Sul, 2019), based on which we
conduct trimming using the depth-induced statistic. For instance, we form a contour plot over

the -dimensional space based on the sample Mahalanobis depth of b = (b21 b22     b2)
0

defined as b () = [1 + ( − b)0bΛ−1 ( − b)]−1,
where b and bΛ are the sample mean and sample variance of b. By construction, b () ∈ [0 1]
and it is close to zero if  = b is either extremely small or large (i.e., for outlying b from
the center of its distribution). Using this data depth, we can construct multivariate quantile
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contours and determine the trimming contour line for any dimension of . In this case, we

define the TMG estimator where we trim th observations with b(b)   for some threshold

0    1. Note that this depth-based approach automatically trims outliers on both sides,

possibly asymmetrically. In addition, the Mahalanobis depth is affine invariant, and hence the

TMG estimator based on the depth-based weights has the invariance property to non-singular

linear transformations like the typical least squares estimator.

Though we focus on the diagonal elements of bΣ in the trimming methods, there are cases
when we need to consider the off-diagonal terms of bΣ, such as the regressors of the individual
 impose near multicollinearity (including the cases with nearly time-invariant regressors in the

FE model) or cross-product terms are sources of outlyingness. In such cases, we can also consider

the determinant of  or particular covariances when ranking the individuals, in addition to the

variance.

3 Trimmed Mean Group Estimation

3.1 Trimmed MG estimator for two-way FE models

The trimming scheme described in the previous section drops the entire history of the th

individuals when their bΣ are either extremely large or small. Therefore, in the one-way fixed-
effect (FE) model,  = +

0
+, subtracting individual mean (i.e., within transformation)

for each  is not affected from the trimming step. Hence, it does not matter whether we trim

before or after the within transformation in this case.

In contrast, the TMG estimator for the two-way FE regression in (1)

 =  +  + 0 + 

needs caution. This is because when we take the Wallace-Hussain transformation (Wallace

and Hussain, 1969) as in (4), subtracting (1)
P

=1  should be modified by the trimming

step because we will drop some  observations. In particular, we subtract the trimmed mean

(1G)
P

∈G , where G is the set of individuals that are not trimmed in the sample and G
is the cardinality of G. We define the Wallace-Hussain transformed  as

̇ = ̃ − 1

G

X
∈G

̃,

where ̃ = −−1
P

=1 , instead of (4). So, in practice, we trim the individual observations

first and then take the Wallace-Hussain transformation.
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Whether it is the one-way or two-way FE model, once we conduct the proper demeaning

using the trimmed sample as explained above, we obtain the individual trimmed least squares

estimator b by regressing ̇ on ̇. Then, we define the TMG estimator as

b =
1

G

X
∈G

b = X
=1



b with 

 =
1

G
1 { ∈ G} , (8)

where 1 {·} is the binary indicator. Recall that G =
P

=1 1 { ∈ G} and G is the set of
individuals that are not trimmed in the sample.

It is important to note that, though the Wallace-Hussain transformation in (4) eliminates

fixed effects  and  in the heterogeneous two-way FE regression (1), it does not yields the

desired regression equation given as

̇ = ̇ 0 + ̇.

Instead, it results in a transformed regression

̇ = ̃0 −
1

G

X
∈G

̃0 + ̇ = ̇ 0 + ̇, (9)

where

̇ = ̃ + ̇ with ̃ =
1

G

X
∈G

̃0( − ). (10)

Because of ̃ term, therefore, the least squares estimator
b by regressing ̇ on ̇ for each 

does not necessarily yield a consistent estimator of . In other words, unlike the homogeneous

two-way FE model, b −  = (
−12) no longer holds in this case. Note that this result

is not because of the trimming, and the same issue applies to the standard MG estimator for

the heterogeneous two-way FE regression. However, it can be readily verified that the MG

estimator is still consistent and achieves the asymptotic normality. The same results extend to

the case of TMG estimator in (8) as summarized in the following theorem. It, hence, implies

that whether the true model is homogeneous or heterogeneous, we can use the Wallace-Hussain

transformation for the (trimmed) MG estimation of two-way FE regression models.2

Theorem 1 Suppose the random coefficient  satisfies (2). Also let G → ∞ as  → ∞
satisfying  = lim→∞ G and  ∈ [1∞). Under the same condition in Theorem 1 of Pesaran

2A similar result was also found in Lee, Mukherjee, and Ullah (2019) in the context of a partially linear

two-way FE regression, where the linearized form can be seen as a heterogeneous panel model.
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(2006),3 we have
√
(b − )→ N (0 ) as   →∞, where  = Ω.

Proof of Theorem 1 Note that −1
P

=1 ̇

̇

 0
 → Σ


  0 for each  as  → ∞. Sinceb −  = (

−1P
=1 ̇


̇

 0
 )
−1(−1

P
=1 ̇


 + −1

P
=1 ̇


̇), (9) and (10) yields

√
G(b − ) =

1√
G

X
∈G

( − ) +
1√
G

X
∈G

(b − ) (11)

=
1√
G

X
∈G

( − ) +
1√
G

X
∈G

(Σ )
−1
Ã
1



X
=1

̇̇

!

+
1√
G

X
∈G

(Σ )
−1
Ã
1



X
=1

̇

!
+ (1)

≡ 1 +2 +3 + (1),

where 1 → N (0Ω) as   →∞ by the CLT, and 2 = (
−12) similarly to Theorem

1 of Pesaran (2006) since  is exogenous. For 3, we can verify that

1√
G

X
∈G

X
=1

̇ =
1√
G

X
∈G

X
=1

⎛⎝̃ − 1

G

X
∈G

̃

⎞⎠⎛⎝ 1

G

X
∈G

̃0
¡
 − 

¢⎞⎠
=

1√
G

X
∈G

Ã
1



X
=1

̃̃
0


!¡
 − 

¢
,

where ̃ = −1G
P

∈G ̃ and  = −1G
P

∈G  . We thus write

3 =
1√
G

X
∈G

(Σ )
−1
Ã
1



X
=1

̃̃
0


!¡
 − 

¢
,

which satisfies E[3] = 0 since E[−|] = 0. Moreover, E[(−)(−)0|] = (1−(1))Ω,
which we denote Ω. Apparently, Ω → Ω ∞ as →∞. Under cross-sectional independence,

3 In this two-way FE case, in particular, we set  =  = Γ = 1 in the multifactor error structure in (13) and

(14). Hence, E[|   ] = 0 for all  and ; and {   } are cross-sectionally independent, have
bounded fourth moments, and are stationary and mixing over time with a proper mixing condition yielding the

CLT. In addition, −1


=1 ̇

̇

0
 → Σ

  0 for each  as  → ∞. However, the cross-sectional independence
assumption is to simplify the proof. We can relax the cross-sectional independence assumption of  by imposing

a common factor structure like (14) as in the following section.
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we have

E[3
0
3] =

1

G

X
∈G

(Σ )
−1 E

"
1

 2

X
=1

X
=1

̃̃
0
E
h¡
 − 

¢ ¡
 − 

¢0 |i ̃̃0
#
(Σ )

−1

=
1

G

X
∈G

(Σ )
−1 E

"
1

 2

X
=1

X
=1

³
̃̃

0
Ω
12


´³
̃̃

0
Ω

12


´0#
(Σ )

−1

= 

Ã
1


+
1

2G

!

because under the stationarity with a proper mixing condition of ,

E

"
1

 2

X
=1

X
=1

³
̃̃

0
Ω
12


´³
̃̃

0
Ω

12


´0#

=
1


E
∙³

̃̃
0
Ω
12


´³
̃̃

0
Ω
12


´0¸
+
1



−1X
=1

³
1− 



´


h
̃1̃

0
1Ω

12
  ̃̃

0
Ω

12


i
+
1



−1X
=1

³
1− 



´
E
h
̃1̃

0
1Ω

12


i
E
h
̃̃

0
Ω

12


i
= 

Ã
1


+
1

2G

!

for E[̃1̃
0
1Ω

12
 ] = −1G

P
∈G E[̃

0
1̃1]Ω

12
 = (1G). Therefore, 3 = (

−12 + −1G ),
and the desired result follows as   →∞ by pre-multiplying

p
G to (11). ¤

Since  ≥ 1,  cannot be smaller than the asymptotic variance of the standard MG

estimator without trimming, which is Ω. Note that when the trimmed sample size is fixed (i.e.,

it does not depend on ),  is simply 1 and  reaches to the asymptotic variance of the

standard MG estimator. It is worthy to note that, in the limit, the efficiency loss of the TMG

estimator does not depend on the specific trimming scheme, whether to trim individual samples

with extremely large or small bΣ. It only depends on the reduction of the sample size from
trimming. This is because we consider exogenous trimming; the efficiency gain from trimming

the individual samples with small bΣ should be understood as the finite sample property.
The asymptotic variance can be consistently estimated by the sample covariance of b as

b =


2G

X
∈G

(b − b)(
b − b)

0 (12)

using the same argument in Section 8.2.2 of Pesaran, Smith and Im (1996).
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3.2 Trimmed CCEMG estimator

The two-way FE estimator in the previous section becomes inconsistent when a factor augmented

term is included in the regression model. The pooled common correlated effects (CCE) estima-

tor or the CCE mean-group (CCEMG) estimator by Pesaran (2006) and Chudik and Pesaran

(2015) can be employed in this case. In particular, we consider a panel regression model with a

multifactor error structure given by

 = 0 + 0 + 0 + , (13)

 = 0 + Γ
0
 +  (14)

for  = 1      and  = 1      , where  is the vector of observed factors and  is the vector

of latent factors.

The original CCE estimator obtains the individual slope parameter estimates from the least

squares of

 = 0 + 0 + 0 + 

for each , where  =
P

=1  with  = ( 
0
)
0 for some weights {} satisfying Assumption

5 of Pesaran (2006). For our case, however,  is to be affected by the trimming step as in the two-

way FE regression; it would not even be a consistent estimator for the latent factor particularly

when  includes extreme outliers. In this case, we let

 =

X
=1

 ,

where  now imposes the same trimming scheme as 

 in (8) but still satisfies Assumption 5 of

Pesaran (2006). The trimmed CCE estimator b for individual slope parameter  is then
obtained from the least squares of

 = 0 + 0

 + 0 + ,

which uses  instead of . From Theorem 1 of Pesaran (2006), we still have

b −  = 

³
−12

´
(15)

for each  = 1     , provided
√
 → 0 as   → ∞. We define the trimmed CCE mean-
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group (TCCEMG) estimator as

b =
1

G

X
∈G

b = X
=1



b,

where 
 is the same trimming weight as in (8). Similar to Theorem 1, We derive the limiting

distribution of b as follows.

Theorem 2 Suppose the random coefficient  satisfies (2). Also let G → ∞ as  → ∞
satisfying  = lim→∞ G and  ∈ [1∞). Under the same condition in Theorem 1 of Pesaran
(2006), we have

√
(b − )→ N (0 Ω) as   →∞ and

√
→ 0.

Proof of Theorem 2 Note that

√
(b − ) =

1√


X
=1

(
 )(
b − ) +

1√


X
=1

(
 ) ( − )

= 

µ
1√


¶
+

1√


X
=1

(
 ) ( − )

from Theorem 1 of Pesaran (2006). The result follows immediately since  satisfies (2), where


 only depends on , and (1)

P
=1(


 )
2 = (1)

P
=1(1 { ∈ G} G)2 = G →  as

→∞. ¤

We can readily estimate the asymptotic variance of b in Theorem 2 as the sample

covariance of b as in (12):


2G

X
∈G

(b − b)(
b − b)

0.

We now denote an “induced” order statistic {b[]}, where [] are reordered based on the
given trimming scheme. As a special case, this induced order statistic could correspond to the

order statistic of {b[]} itself (e.g., the ranking of b is the same as the ranking of bΣ
in our case). In such cases, we can define the TCCEMG estimator whose trimming scheme is

directly from the order statistic of {b[]}.
For instance, for the scalar  case ( = 1), we can consider the TCCEMG estimator in the
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form of the sample trimmed mean defined as

b∗ =
1

bc− bc
bcX

=bc+1
b[], (16)

where 0      1 are some fixed numbers denoting the lower and upper trimmed pro-

portions, and bc denotes the largest integer that does not exceed the constant . Similarly as
Stigler (1973), we let

 = sup { :  () ≤ } and  = inf { :  () ≥ } ,

where  (·) is the cdf of . Then, we can obtain the limiting distribution of b as in the

following theorem. We let  (·) be the cdf of trimmed , which is defined as

 () =

⎧⎪⎨⎪⎩
0 if   

 ()( − ) if  ≤  ≤ 

1 if   ,

and

 =

Z ∞

−∞
 (), 2 =

Z ∞

−∞
(−  )

2 ().

Theorem 3 Suppose the random coefficient  satisfies (2) with continuous , and the trimming

scheme is based on the order statistic of {}. When  ∈ R, under the same condition in
Theorem 1 of Pesaran (2006) and Theorem of Stigler (1973), we have

√
(b∗ −  )→

N (0 (−)−2 ) as   →∞ and
√
→ 0, where  = (−)2+ (1− ) (−  )

2+

 (1− ) (−  )
2 − 2 (1− ) (−  ) (−  ).

Proof of Theorem 3 Note that

√
(b∗ −  ) =

√
p

bc− bc
× 1p

bc− bc

bcX
=bc+1

(b[] − [])

+

√


bc− bc
bcX

=bc+1

³
[] − 

´

= 

µ
1√


¶
+

√


bc− bc
bcX

=bc+1

³
[] − 

´
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from Theorem 1 of Pesaran (2006). The result follows from the Theorem of Stigler (1973) with

 =  = 0 in their expression. ¤

When  is symmetrically distributed about the origin and  = 1−  with 12    1,

we have  =  = 0. Furthermore, in this case, the asymptotic variance can be simplified as

 = (2 − 1)−12 .
Given ( ), since b is consistent to  with large  as in (15), the values  and 

can be obtained as the bcth and the bcth elements in the ordered statistic {b[]},
respectively. Therefore, we can estimate the asymptotic variance in Theorem 3 as

b = 1

 − 

bcX
=bc+1

³b[] − b∗

´2

with b∗ given in (16).

4 Monte Carlo Simulation

We consider two data generating processes (DGPs). The first DGP is given by

 = 11 + 22 + , (17)

where  = −1 +  with  = 1 2 and  = −1 + . The innovation  are

generated from N (0 2) where 2 ∼ 21 for  = 1 2. Meanwhile, we generate  from the

standard normal. We consider two values of  = 0 08, but only report the case with  = 0

here.4 There is little difference between the two cases except for the absolute magnitude of the

mean square error (MSE). The size of tests and relative MSEs are almost identical.

The second DGP includes a common factor, which is given as

 =  + 11 + 22 +  (18)

and

1 = 1 + 1 and 2 = 2 + 2,

where 2 = 1 +  with both  and 1 being generated from U [1 2]. In addition,  =
−1 +  for  = 1 2 and  = −1 + , where , , and  are same as in the

first DGP above.  = −1 + , where  is generated from the standard normal. For the

4When  = 08 we discard the first 100 observations to avoid the effect of the initial condition.
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homogeneous  case, we set  = 1 for all  and  = 1 2. Meanwhile, for the heterogeneous 

case, we set  ∼ N (1 1) for each  = 1 2.

For both DGPs, we also consider the case with outliers by letting the variance of each

regressor as 2 = 25 and the slope parameter values as  = 5 for  =  − 1  for both

 = 1 2, implying that the last two cross-sectional units are outliers. We consider sample sizes

of  = 50 100 200 500 and  = 5 10 25 50 100. All simulation results are based on 5000

iterations. Tables are collected at the end of this paper.

Table 1 reports the MSE values for four estimators in the first DGP in (17) under the

absence of any outliers: the two-way FE estimator; the MG estimator; the TMG estimator

(DTMG) with a joint trimming method based on the Mahalanobis depth of the sample variance

of (1 2)
0, and the TMG estimator (XTMG) with a marginal trimming method based on

individually trimmed sets using each sample variance of  for  = 1 2. The reported MSE

values in Table 1 are the averages over those of b1 and b2, and they are all multiplied by 100.
We trim 20% of : for the depth-based trimming, it drops the 20% of the cross-section samples

with the smallest depth; for the marginal trimming, it drops 10% of the cross-section samples

from the bottom and the top respectively. Since the DGP does not have outliers in this case,

we want to see whether or not the 20% of trimming leads to noticeable efficiency loss in finite

samples. The first four columns show the case of homogenous coefficients, and the next four

columns report the case of heterogeneous coefficients. Evidently, for all cases of  and  the

FE estimator produces the minimum MSE since we purposely design the DGP in this way.5 As

there are no outliers, the MSE of the DTMG estimator is generally larger than that of the MG

estimator for all cases. The variances of all −1 are generated from the 21 distribution so

that only individuals in the right side of the distribution are excluded from the Mahalanobis-

depth-based trimming, which leads to inefficient estimation under the absence of any outliers.

Meanwhile, the MSE of the XTMG is smaller than that of the MG estimator since the XTMG

trims out individuals both in left and right tails.

Table 2 shows the average size of the -test of each estimator in the first DGP in (17). For

each  = 1 2, we construct the -ratio for the null hypothesis of 0 : E[] = 1 and take the

average of the rejection rates over  = 1 2. The nominal size is 5%. With a small  like  = 50,

the FE estimator shows a mild upward size distortion in the case of homogenous coefficients. As

 increases, the rejection frequencies with the FE estimator approaches the nominal size very

quickly. Meanwhile, with heterogeneous coefficients, the rejection rate with the FE estimator is

slightly higher than that with homogenous coefficients. However, the difference between the two

reduces quickly as  increases. The MG estimator suffers little size distortion except for small

 Nonetheless, all trimmed estimators perform better compared to the MG estimator.

Table 3 provides the MSE of each estimator in the first DGP in (17) under the presence of two

5If we set 2 = 1 for all  and  but generate  with widely heterogeneous variances, then the FE estimator

is no longer efficient.
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outliers on the right tail of the distribution as described above. Since only the last two individuals

are outliers, the FE estimator becomes biased in finite . But as  → ∞, the bias approaches
zero. More importantly, the FE estimator becomes more biased than the MG estimator since the

FE estimator assigns higher weights on the last two individuals as 2−1 = 2 = 25. On the

other hand, the DTMG and XTMG estimators exclude outlying individuals whose regressors’

sample variances are relatively larger than the rest of the individuals in this case.

Table 4 reports the size of the -test of each estimator in the first DGP in (17) under the

presence of two outliers. Evidently the FE and MG estimators suffer from serious size distortion

when  is small. As  increases, however, the influence of the outliers becomes localized, so that

the sizes of both estimators become milder. Meanwhile, the sizes of both trimmed estimators

DTMG and XTMG are about the nominal size. Only when  is small, both trimmed estimators

show mild size distortions, but as  increases, these size distortions disappear very quickly.

Tables 5 and 6 show the MSEs and sizes of the -test of the four CCE estimators in the second

DGP in (18). The first two estimators are the pooled CCE (pool) and CCEMG (MG), which do

not trim out any individuals. The last two estimators are trimmed CCEMG estimators, whose

trimming schemes are the same as those of DTMG and XTMG, respectively. The overall results

in Tables 5 and 6 are quite similar to those in Tables 3 and 4.

5 Empirical Illustration: Effect of Police on Crime

As an empirical illustration, we consider the effect of police on crime using the following two-way

FE regression:

∆ ln =  +  + 1∆ ln−1 + 2∆ ln−1 + 3∆ ln−1 + , (19)

where  is the number of reported property crimes per capita,  is the number of police

officers,  is the unemployment rate, and  is the percentage of black population in state  and

year . This is similar to Levitt (1997) but we exclude other control variables (i.e., public welfare

spending, percentage of female-headed households, and percentage of ages between 15 and 24

years old) because of the limited data availability. We include the pre-determined ∆ ln−1 to
minimize any simultaneity. We also take first-difference for all variables because they are either

(1) or near (1) processes but do not impose cointegrating relations.

The annual property crimes and the number of police officers across 48 contiguous states from

years 1970 to 2013 are collected from the FBI Uniform Crime Reports. Unemployment rates

and the percentage of black population are collected from the Bureau of Economic Analysis and

the Census Bureau, respectively. This regression was also used by Han, Kwak and Sul (2019) for

violent crime; they examine whether  or 
0
 should be in (19) and report that the two-way FE
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estimation is good enough. Sul (2019) shows that the property crime rates across 48 contiguous

U.S. states have a single common factor with a homogeneous factor loading, hence including the

time effect  is sufficient. 1 is the main interest and it describes the average marginal effect

from idiosyncratic increases in the sworn officers on idiosyncratic growth rates of the property

crime rates, after controlling for the common dynamics .

Table 7 reports the estimation results of the two-way FE estimation and the CCE estima-

tion. The numbers in the parentheses are -ratios, which are constructed using a panel robust

covariance estimator. In the first two columns, the FE estimate of 1 is positive though not

significantly different from zero. Meanwhile, the property crime rates are decreasing as unem-

ployment rates increase, but this relationship is not statistically significant. The percentage of

black population influences negatively on the property crime rates and it is statistically signifi-

cant, which is a puzzling finding. Furthermore, the MG estimation gives very similar results.

We next consider the TMG results based three different trimming ratios, 20%, 10% and 5%.

As in the previous section, for the depth-based trimming, we drop 20%, 10%, and 5% of the

cross-section samples with the smallest depth, respectively; for the marginal trimming, we drop

10%, 5%, and 2.5% of the cross-section samples from each side of the tail of the distribution,

respectively. We first test for the independence between (1 2 3) and the variance of

the regressors using the test proposed by Sul (2016) and Campello, Galvao, and Juhl (2019),6

which is asymptotically distributed as 23. The test statistic is 6978, which is smaller than the

5% critical value of 781. Therefore, the time series variance of each regressor can be used as

a trimming instrument in this illustration. All the TMG estimates of 1 are not significantly

different from zero regardless of the trimming fractions, though they are negative, which implies

that an exogenous increase in the number of officers does not reduce property crime rates if

other things are equal. Similarly, all the TMG estimates of 2 are negative and not significantly

different from zero, even though the point estimates are slightly different depending on the choice

of trimming instruments. Lastly, the TMG estimates of 3 are not significantly different from

zero at the 5% level regardless of the trimming methods and threshold values. However, for the

two-way FE case, we find that some TMG estimates are significantly different from zero at the

10% level. This result shows a weak evidence of the effect of police on property crime and the

TMG estimation method yields a robust finding even in a simple regression form.

To better understand how the trimming affects the estimation results, we plot the relation

between the variance of each regressor and its corresponding slope parameter estimates in Figures

5, 6, and 7. They are based on the two-way FE estimation; the empty squared ones are outliers

based on the marginal variance of the regressor in XTMG estimation and the empty circled

ones are outliers identified by the Mahalanobis depth of the variances in DTMG estimation,

both based on 20% trimming. We find that Delaware and Wyoming show extremely large

6Both test are for the null hypothesis of (Σ) = 0. They require strict exogeneity, which holds in our

example.
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Table 7: Determinants of property crime

Two-way FE Estimation

FE MG DTMG XTMG

20% 10% 5% 20% 10% 5%

∆ ln−1 0.027 0.014 -0.018 -0.003 -0.006 0.003 -0.001 -0.006

(1.10) (0.39) (-0.66) (-0.10) (-0.23) (0.09) (-0.04) (-0.23)

∆ ln−1 -0.017 -0.014 -0.005 -0.001 -0.004 -0.003 -0.002 -0.002

(-1.52) (-1.31) (-0.90) (-0.29) (-0.86) (-0.46) (-0.28) (-0.44)

∆ ln−1 -0.489∗∗ -0.269∗ -0.167 -0.190 -0.202∗ -0.203 -0.210∗ -0.192

(-3.96) (-1.80) (-1.22) (-1.51) (-1.65) (-1.45) (-1.68) (-1.54)

CCE Estimation

pool MG DTMG XTMG

20% 10% 5% 20% 10% 5%

∆ ln−1 0.019 0.001 -0.011 -0.004 -0.001 -0.010 0.010 0.001

(0.70) (0.02) (-0.25) (-0.10) (-0.03) (-0.23) (-0.24) (0.02)

∆ ln−1 -0.015 -0.014 -0.012 -0.011 -0.018 -0.015 -0.010 -0.012

(-1.21) (-1.22) (-1.04) (-1.04) (-1.64) (-1.18) (-0.86) (-1.06)

∆ ln−1 -0.593∗∗ -0.315 -0.224 -0.269 -0.329 -0.269 -0.308 -0.294

(-4.36) (-1.39) (-0.85) (-1.12) (-1.42) (-1.19) (-1.33) (-1.29)

Note: Numbers in parentheses are t-ratio using a panel robust covariance estimator; * and ** are significant at 10% and

5%, respectively. For Two-way FE, “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the

Mahalanobis-depth-based trimmed MG, and “XTMG” is the marginally trimmed MG estimators. For CCE,

“pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed CCEMG,

and “XTMG” is the marginally trimmed CCEMG estimators. % for DTMG and XTMG stands for the trimming

fraction.

variances of ∆ ln−1 and ∆ ln−1, respectively; New Hampshire and Wyoming show very
large variances for most of the cases and hence trimmed; California and Connecticut show very

small variances for most of the cases and hence also trimmed. Note that the Mahalanobis

depth considers variances of three regressors simultaneously, thus joint trimming based on the

Mahalanobis depth can drop states whose marginal variances are not extreme. However, both

joint and marginal trimmings overlap most of the cases, especially for extreme outliers. Note

that trimming based on the variance of ∆ ln appears to have the most impact on the E[]

estimate. This is because most of the trimmed states’ point estimates under this scheme are

negative as shown in Figure 7, whereas they are spread symmetrically about zero for the other

cases as shown in Figures 5 and 6.
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Figure 5: Relationship between b1 andd (∆ ln−1)

Figure 6: Relationship between b2 andd (∆ ln−1)

21



Figure 7: Relationship between b3 andd (∆ ln−1)

6 Concluding Remarks

This paper shows the importance of individual-specific time series estimation and a way to

average them for robust panel data analysis. Since pooled estimators, including the two-way

FE or pooled CCE, assign heavier weights on the individuals as the corresponding regressor’s

variance gets larger, they are sensitive to outlying observations in the sample variance of the

regressor. The MG estimators, without considering such outliers, may not be fully robust either.

To obtain more robust estimators without much sacrifice of efficiency, this paper proposes a

trimmed MG estimator, where we trim individual observations of which the sample variances of

regressors are outlying (i.e., either extremely small or large).

Though this paper focuses on static panel regression, the idea can be extended to dynamic

regression. In addition, we suppose the trimming thresholds are given in this paper, but we

could pick the thresholds by optimizing some objective function such as the higher-order MSE

of the TMG estimator. Finally, an endogenous trimming directly based on the order statistic

of b could be more desirable though its asymptotic analysis is not straightforward. We leave
these important topics for future challenges.
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Table 1: MSE comparisons under the absence of any outliers

1 = 1 & 2 = 1 for all  1 ∼ N (1 1) & 2 ∼ N (1 1)

n T FE MG DTMG XTMG FE MG DTMG XTMG

50 5 0.560 15.75 26.77 15.65 9.195 20.14 29.34 19.10

100 5 0.263 11.79 19.482 7.516 4.736 13.23 21.88 8.792

200 5 0.132 8.252 14.502 3.465 2.378 9.562 15.811 4.274

500 5 0.052 5.230 9.127 1.314 0.989 5.958 9.755 1.575

50 10 0.246 2.440 4.050 2.495 7.197 5.475 7.482 5.426

100 10 0.115 1.833 3.042 1.315 3.794 3.266 4.636 2.637

200 10 0.058 1.322 2.216 0.653 1.919 2.038 2.971 1.333

500 10 0.022 0.870 1.455 0.257 0.776 1.144 1.761 0.515

50 25 0.090 0.709 1.109 0.694 6.479 3.249 4.017 3.332

100 25 0.044 0.510 0.824 0.365 3.326 1.753 2.305 1.662

200 25 0.021 0.381 0.599 0.195 1.634 0.994 1.330 0.827

500 25 0.008 0.253 0.401 0.080 0.675 0.497 0.700 0.333

50 50 0.042 0.309 0.486 0.307 6.136 2.731 3.315 2.933

100 50 0.021 0.231 0.367 0.171 3.183 1.418 1.796 1.449

200 50 0.010 0.174 0.275 0.089 1.550 0.722 0.959 0.715

500 50 0.004 0.115 0.183 0.037 0.623 0.327 0.436 0.286

50 100 0.022 0.153 0.232 0.152 5.778 2.548 3.103 2.808

100 100 0.011 0.113 0.176 0.082 3.025 1.270 1.582 1.376

200 100 0.005 0.081 0.130 0.042 1.494 0.627 0.799 0.668

500 100 0.002 0.055 0.086 0.017 0.626 0.268 0.350 0.270

Note: “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG,

and “XTMG” is the marginally trimmed MG estimators.
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Table 2: Sizes of tests under the absence of any outliers

(Nominal size: 5%)

1 = 1 & 2 = 1 for all  1 ∼ N (1 1) & 2 ∼ N (1 1)

n T FE MG DTMG XTMG FE MG DTMG XTMG

50 5 0.084 0.044 0.045 0.047 0.120 0.062 0.057 0.058

100 5 0.066 0.044 0.041 0.047 0.084 0.056 0.052 0.057

200 5 0.064 0.047 0.045 0.049 0.070 0.051 0.048 0.051

500 5 0.054 0.043 0.046 0.047 0.058 0.050 0.048 0.050

50 10 0.081 0.042 0.045 0.050 0.106 0.088 0.079 0.071

100 10 0.064 0.045 0.045 0.052 0.077 0.071 0.061 0.057

200 10 0.058 0.045 0.046 0.050 0.064 0.061 0.054 0.057

500 10 0.052 0.045 0.047 0.047 0.056 0.055 0.050 0.051

50 25 0.077 0.044 0.046 0.051 0.098 0.100 0.087 0.080

100 25 0.062 0.043 0.042 0.048 0.077 0.082 0.077 0.066

200 25 0.056 0.042 0.043 0.051 0.063 0.071 0.064 0.058

500 25 0.051 0.045 0.045 0.051 0.060 0.060 0.059 0.054

50 50 0.074 0.042 0.043 0.049 0.097 0.106 0.096 0.085

100 50 0.061 0.041 0.039 0.048 0.079 0.087 0.083 0.064

200 50 0.058 0.043 0.042 0.048 0.063 0.070 0.069 0.058

500 50 0.055 0.048 0.046 0.052 0.055 0.061 0.056 0.053

50 100 0.075 0.042 0.040 0.052 0.094 0.114 0.111 0.092

100 100 0.068 0.041 0.042 0.048 0.077 0.094 0.089 0.070

200 100 0.057 0.041 0.045 0.050 0.062 0.071 0.067 0.059

500 100 0.054 0.045 0.046 0.047 0.058 0.066 0.060 0.056

Note: “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG,

and “XTMG” is the marginally trimmed MG estimators.
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Table 3: MSE comparisons under the presence of two outliers

 = 1 for all  except  = − 1   ∼ N (1 1) except  = − 1 
2−1 = 2 = 25; −1 =  = 5 2−1 = 2 = 25; −1 =  = 5

n T FE MG DTMG XTMG FE MG DTMG XTMG

50 5 402.9 64.73 23.98 14.15 406.2 68.28 28.32 18.25

100 5 191.2 21.87 17.71 9.161 194.2 23.93 20.85 8.513

200 5 74.43 10.28 13.90 3.467 76.00 11.26 15.15 4.098

500 5 16.48 5.465 8.865 1.313 17.25 6.063 9.366 1.544

50 10 413.7 43.23 3.577 2.203 417.8 46.16 7.008 5.053

100 10 189.0 10.58 2.806 1.263 191.3 12.03 4.420 2.526

200 10 69.44 3.022 2.063 0.635 71.59 3.732 2.957 1.280

500 10 15.24 1.078 1.421 0.260 15.79 1.301 1.690 0.507

50 25 423.4 38.30 0.988 0.610 424.3 40.32 3.947 3.290

100 25 186.7 8.334 0.762 0.358 189.7 9.324 2.211 1.629

200 25 68.0 1.861 0.555 0.182 69.08 2.425 1.264 0.807

500 25 14.04 0.403 0.384 0.077 14.38 0.614 0.667 0.319

50 50 425.6 36.53 0.439 0.275 428.0 38.90 3.322 2.904

100 50 187.2 7.744 0.330 0.163 188.5 8.837 1.714 1.417

200 50 67.00 1.592 0.260 0.084 68.03 2.124 0.943 0.723

500 50 13.66 0.256 0.172 0.035 14.26 0.479 0.441 0.281

50 100 426.7 36.08 0.207 0.130 429.0 37.94 3.085 2.758

100 100 187.3 7.535 0.163 0.077 188.0 8.389 1.523 1.320

200 100 66.41 1.459 0.120 0.040 67.35 1.973 0.804 0.678

500 100 13.60 0.196 0.084 0.017 14.10 0.406 0.346 0.267

Note: “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG,

and “XTMG” is the marginally trimmed MG estimators.
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Table 4: Sizes of tests under the presence of two outliers

(Nominal size: 5%)

 = 1 for all  except  = − 1   ∼ N (1 1) except  = − 1 
2−1 = 2 = 25; −1 =  = 5 2−1 = 2 = 25; −1 =  = 5

n T FE MG DTMG XTMG FE MG DTMG XTMG

50 5 0.709 0.434 0.045 0.051 0.689 0.395 0.059 0.060

100 5 0.387 0.223 0.044 0.047 0.417 0.210 0.051 0.051

200 5 0.091 0.107 0.048 0.047 0.166 0.107 0.046 0.052

500 5 0.001 0.062 0.040 0.048 0.063 0.062 0.049 0.052

50 10 0.867 0.778 0.043 0.053 0.817 0.669 0.078 0.071

100 10 0.491 0.493 0.042 0.051 0.501 0.386 0.062 0.058

200 10 0.053 0.214 0.044 0.050 0.174 0.182 0.059 0.054

500 10 0.000 0.079 0.045 0.050 0.060 0.079 0.053 0.050

50 25 0.979 0.970 0.045 0.050 0.919 0.830 0.095 0.081

100 25 0.638 0.797 0.046 0.052 0.572 0.528 0.075 0.062

200 25 0.015 0.416 0.046 0.046 0.180 0.256 0.064 0.058

500 25 0.000 0.116 0.042 0.049 0.062 0.097 0.059 0.052

50 50 0.997 0.998 0.042 0.049 0.954 0.890 0.106 0.088

100 50 0.745 0.950 0.041 0.049 0.615 0.605 0.079 0.067

200 50 0.004 0.637 0.043 0.048 0.185 0.304 0.069 0.059

500 50 0.000 0.180 0.046 0.050 0.073 0.115 0.057 0.050

50 100 1.000 1.000 0.045 0.048 0.965 0.911 0.112 0.091

100 100 0.829 0.996 0.043 0.045 0.631 0.641 0.084 0.070

200 100 0.001 0.848 0.042 0.046 0.183 0.330 0.073 0.060

500 100 0.000 0.285 0.046 0.051 0.069 0.127 0.063 0.054

Note: “FE” is the fixed effect, “MG” is the mean group, “DTMG” is the Mahalanobis-depth-based trimmed MG,

and “XTMG” is the marginally trimmed MG estimators.
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Table 5: MSE comparisons among CCEs under the presence of two outliers

 = 1 for all  except  = − 1   ∼ N (1 1) except for  = − 1 
2−1 = 2 = 25; −1 =  = 5 2−1 = 2 = 25; −1 =  = 5

n T pool MG DTMG XTMG pool MG DTMG XTMG

50 10 217.3 14.67 12.782 15.08 233.2 16.56 16.40 15.10

50 25 214.1 7.185 2.190 2.013 229.0 9.045 4.868 4.698

50 50 214.6 6.178 0.932 0.757 233.2 8.259 3.600 3.429

50 100 214.4 5.894 0.433 0.357 231.8 7.624 2.952 2.917

100 10 86.52 8.189 9.109 8.469 99.84 8.860 10.30 9.780

100 25 81.00 2.891 1.569 1.354 94.96 3.778 2.780 2.684

100 50 79.74 2.275 0.620 0.552 93.90 3.221 1.985 1.871

100 100 79.05 2.044 0.308 0.263 92.63 2.948 1.598 1.594

200 10 31.78 5.230 6.987 6.560 39.42 5.974 9.567 6.190

200 25 27.70 1.360 1.047 0.902 36.19 1.928 1.919 1.771

200 50 27.08 0.946 0.603 0.428 35.11 1.418 1.135 1.084

200 100 26.60 0.760 0.207 0.185 34.70 1.221 0.863 0.832

500 10 7.655 2.853 4.391 3.558 10.84 3.088 4.449 3.931

500 25 6.423 0.612 0.680 0.585 9.343 0.775 0.903 0.822

500 50 6.207 0.332 0.269 0.234 8.999 0.519 0.525 0.491

500 100 6.093 0.231 0.127 0.111 8.872 0.422 0.391 0.372

Note: “pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed

CCEMG, and “XTMG” is the marginally trimmed CCEMG estimators.
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Table 6: Sizes of CCE tests under the presence of two outliers

(Nominal size: 5%)

 = 1 for all  except  = − 1   ∼ N (1 1) except  = − 1 
2−1 = 2 = 25; −1 =  = 5 2−1 = 2 = 25; −1 =  = 5

n T pool MG DTMG XTMG pool MG DTMG XTMG

50 10 0.502 0.124 0.043 0.050 0.524 0.113 0.054 0.061

50 25 0.618 0.256 0.044 0.041 0.611 0.168 0.058 0.061

50 50 0.703 0.357 0.042 0.043 0.655 0.197 0.059 0.058

50 100 0.759 0.457 0.043 0.044 0.662 0.192 0.063 0.065

100 10 0.178 0.087 0.042 0.044 0.281 0.080 0.048 0.052

100 25 0.110 0.203 0.041 0.042 0.291 0.126 0.052 0.056

100 50 0.067 0.324 0.042 0.042 0.287 0.154 0.058 0.059

100 100 0.036 0.459 0.043 0.042 0.283 0.166 0.058 0.059

200 10 0.015 0.066 0.045 0.045 0.120 0.066 0.048 0.048

200 25 0.000 0.139 0.046 0.043 0.128 0.098 0.051 0.052

200 50 0.000 0.240 0.049 0.046 0.123 0.122 0.056 0.060

200 100 0.000 0.375 0.042 0.045 0.129 0.133 0.055 0.056

500 10 0.002 0.053 0.051 0.044 0.065 0.051 0.047 0.048

500 25 0.000 0.084 0.044 0.049 0.081 0.070 0.052 0.049

500 50 0.000 0.125 0.048 0.047 0.079 0.083 0.049 0.053

500 100 0.000 0.209 0.045 0.046 0.079 0.097 0.057 0.053

Note: “pool” is the pooled CCE, “MG” is the CCEMG, “DTMG” is the Mahalanobis-depth-based trimmed

CCEMG, and “XTMG” is the marginally trimmed CCEMG estimators.
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