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Abstract

Empirical researchers may wonder whether or not a two-way fixed effects estimator (with in-

dividual and period fixed effects) is suffi ciently sophisticated to isolate the influence of common

shocks on the estimation of slope coeffi cients. If it is not, practitioners need to run the so-called

panel factor augmented regression instead. There are two pre-testing procedures available in

the literature: the use of the estimated number of factors and the direct test of estimated factor

loading coeffi cients. This paper compares the two pre-testing methods asymptotically. Under

the presence of the heterogeneous factor loadings, both pre-testing procedures suggest using the

Common Correlated Effects (CCE) estimator. Meanwhile, when factor loadings are homoge-

neous, the pre-testing method utilizing the estimated number of factors always suggests more

effi cient estimation methods. By comparing asymptotic variances, this paper finds that when

the slope coeffi cients are homogeneous with homogeneous factor loadings, the two-way fixed ef-

fects estimation is more effi cient than the CCE estimation. However, when the slope coeffi cients

are heterogeneous with homogeneous factor loadings, the CCE estimation is, surprisingly, more

effi cient than the two-way fixed effects estimation. By means of Monte Carlo simulations, we

verify the asymptotic claims. We demonstrate how to use the two pre-testing methods through

the use of an empirical example.
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1 Introduction

The following two-way fixed effects (TFE) regression has been the most commonly used panel

model:

yit = ai + β′xit + Ft + εit, (1)

where ai is an individual fixed effect for i = 1, ..., n, and Ft is a common shock to all individuals

at time t = 1, .., T , which is called a period or time fixed effect. If the common shock Ft, which

can cause cross-sectional dependence among yit, influences each individual differently, the TFE

regression is not suffi ciently sophisticated to isolate the heterogeneous effect from the common

shock. In this case, the following factor augmented regression is used instead:

yit = ai + β′xit + γ′iFt + εit, (2)

where Ft does not need to be a single common shock and can be a (r × 1) vector of latent common

factors, and γi is a (r × 1) vector of factor loadings. More importantly, the (k × 1) vector of

regressors xit may share the same common factors. That is, the regressors can be modeled by

xit = bi + Γ′iFt + Ψ′iGt + xoit, (3)

where bi is a (k × 1) vector of individual fixed effects, Gt is a (m× 1) vector of other common

factors, Γi is a (r × k) matrix of factor loadings, Ψi is a (m× k) matrix of factor loadings, and xoit
is a (k × 1) vector of idiosyncratic terms.

When the true factor loadings in (2) are homogeneous (γi = γ) but we run (2), the resulting

estimator of β is less effi cient. When the factor loading coeffi cients in (2) are heterogeneous

(γi 6= γ), the TFE estimator has the following two problems. First, when Γi is correlated with

γi, the TFE estimator becomes inconsistent since xit is correlated with εit. Second, even when

Γi is not correlated with γi, the typical panel robust variance estimator is no longer consistent

due to the existence of the cross-sectional dependence. The solution is rather simple. Once the

common factors are included as additional regressors, one can exclude the source of cross-sectional

correlation from estimation. Under some regularity conditions, the latent common components

γ′iFt can be approximated as a linear combination of the sample cross-sectional averages of xit and

yit. The so-called Common Correlated Effects (CCE hereafter) estimator, a simple and intuitive

estimation method proposed by Pesaran (2006), has been frequently used in practice. Along with

the CCE estimator, empirical researchers have also used the Interactive Fixed Effects estimator (IE

hereafter) developed by Bai (2009). The IE estimator approximates the latent common factors to

regression errors by using the Principal Components (PC) estimation. See Reese and Westerlund

(2018) and Hayakawa, Nagata, and Yamagata (2018) for more recent reference, and Chudik and

Pesaran (2013) for a survey on this literature.
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There are broadly three types of pre-tests available in the literature. The first two types are

proposed by Bai (2009): a Hausman-type test and the use of the number of common factors. The

Hausman type test examines whether or not panel factor augmented estimators share the same

probability limit of the TFE estimators. A pre-test with a fixed T is considered by Westerlund

(2019). However, as Castagnetti, Rossi, and Trapani (2015a) point out, the Hausman-type test may

fail when Γi is not correlated with γi. In this case, the TFE shares the same probability limit with

the CCE or IE estimator. The second method is based on estimation of the number of common

factors. As Bai (2009) and Parker and Sul (2016) point out, the TFE residual does not include any

significant factors if γi = γ for all i since the within group transformation successfully eliminates

unknown common factors. Throughout the paper, we will call this method the BPS method. The

last method is a direct test proposed by Castagnetti, Rossi, and Trapani (2015b, CRT hereafter).

The CRT method tests whether or not the maximum of estimated γ̂i is significantly different from

the sample cross-sectional average of it.

Table 1: Effi ciency Gain from Correct Pre-Testing (T = 25)

yit = xit + uit, uit = Ft + εit, xit = ψiFt + xoit, ψi ∼ N
(
s, s2

)
V(β̂cce,p)/V(β̂tfe,p)

n V(β̂tfe,p) s = 0 s =1 s =2 s =5 s =10

25 1.738 1.080 2.036 2.954 5.698 10.17

50 0.873 1.093 2.112 3.078 5.937 10.62

100 0.416 1.089 2.036 2.954 5.734 10.30

200 0.207 1.101 2.162 3.225 6.189 11.45

500 0.081 1.099 2.171 3.143 6.286 11.00

Since the CCE estimator is consistent regardless of whether γi 6= γ and the computational cost

is minor, one may think that the TFE estimator does not need to be considered if the effi ciency gain

by using the TFE is small. We will show the effi ciency gain in detail in the Monte Carlo simulation

section later, but here we provide evidence of why we need a pre-testing procedure. Table 1 reports

the effi ciency gain, which is measured by the relative variance ratio of the TFE estimator, β̂tfe,p,

to the CCE estimator, β̂cce,p. The underlying data generating process is given by yit = xit + uit,

uit = Ft + εit, xit = ψiFt + xoit, ψi ∼ N
(
s, s2

)
, and other random variables are generated from

a standard normal distribution. See (23) in the next section for the formula of the pooled CCE

regression. As s increases, the regressor xit is more cross-sectionally dependent. Both the TFE and

the CCE estimators are not biased in this case. However, as shown in Table 1, the TFE becomes

more effi cient than the CCE as s increases. This is because CCE estimation eliminates all factors
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from yit and xit, so that the variance of β̂cce,p is asymptotically independent of s. Meanwhile, the

TFE eliminates the homogeneous factor in the regression errors, uit, and regressor, xit, but does

not remove the heterogeneous common components in xit. As a result, as s increases, the variance

of the modified regressor increases, so that the TFE becomes more effi cient.

The purpose of this paper is to provide asymptotic analyses of pre-testing procedures when the

slope coeffi cients are either heterogeneous or homogeneous across cross-sectional units. To evaluate

each pre-testing procedure, we derive asymptotic variances of estimators suggested by pre-testing

procedures. Under homogeneity of the slope coeffi cients, both the BPS and the CRT methods

detect precisely whether the factor loadings are homogeneous. However, the CRT test allows a

false rejection of the null with probability α, which is equivalent to the size of the test. Due to this

minor difference, the BPS method leads to more effi cient estimation than the CRT method.

Under heterogeneity of the slope coeffi cients (βi 6= β), the two pre-testing procedures lead to

different results even when γi = γ. The BPS procedure requires the homogeneity restriction on

the slope coeffi cients. Suppose that βi 6= β, but one imposes the homogeneity restriction on the

slope coeffi cients. In this case, the regression error includes the additional term of (βi − β)′ xit. If

regressors, xit, have heterogeneous factor loadings, then the regression error includes heterogeneous

factor loadings as well. Hence, the BPS method suggests the factor augmented estimation in (2) is

preferrable even when γi = γ. Meanwhile, the CRT method examines whether the estimated factor

loadings to the regression residuals are homogeneous, where the regression residuals are estimated

with the heterogenous slope coeffi cients. If the homogeneity restriction on the slope coeffi cients is

imposed, it is impossible to identify the source of heterogeneous factor loadings in the regression

errors. Hence, the CRT method tests only whether γi = γ regardless of βi 6= β. If γi = γ, the

CRT method suggests the TFE estimation in (1) even when βi 6= β. As we mentioned earlier, the

homogeneity restriction on βi leads to heterogeneous factor loadings in the regression error. As a

result, the CRT method may lead to inconsistent estimation when βi 6= β but γi = γ.

The literature of testing cross-sectional dependence is also indirectly relevant. See Pesaran

(2004, 2015), Ng (2006), Pesaran, Ullah and Yamagata (2008), Sarafidis, Yamagata and Robertson

(2009), Baltagi, Feng and Kao (2011), Sarafidis and Wansbeek (2012) and Baltagi, Kao and Na

(2013) for recent references.

The rest of the paper is organized as follows. Section 2 provides a short review and the notion

of local heterogeneity of factor loadings. We also provide a formal pre-testing procedure for the

BPS method. Asymptotic results under homogeneity and heterogeneity of slope coeffi cients are

discussed in Section 3. Key theorems and some important remarks are provided. Section 4 includes

Monte Carlo results and one empirical example. Section 5 concludes. All technical proofs are in

the Appendix.
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2 Extant Pre-Testing Procedures

This section provides a short review on extant pre-testing procedures for panel factor augmented

regressions, and discusses how to evaluate each pre-testing procedure.

2.1 Hausman-type Test

Here we assume the true data generating process of yit is given by

yit = ai + β′xit + uit, with uit = γ′iFt + εit. (4)

If γi is correlated with Γi, which is the vector of factor loadings in regressors in (3), then the

regressors, xit, are correlated with the regression error, uit, even when both γi and Γi have zero

means. Define ỹit as the deviation of yit from its time series mean. For example, ỹit = yit −
T−1

∑T
t=1 yit, and x̃it = xit − T−1

∑T
t=1 xit. Further define ẏit and ẋit as

ẏit = ỹit −
1

n

∑n

i=1
ỹit, ẋit = x̃it −

1

n

∑n

i=1
x̃it.

That is, ẏit = yit− T−1
∑T

t=1 yit− n−1
∑n

i=1 yit + n−1T−1
∑n

i=1

∑T
t=1 yit. Then the TFE regression

can be rewritten as

ẏit = β′ẋit + u̇it with u̇it =

(
γi −

1

n

∑n

i=1
γi

)
F̃t + ε̇it. (5)

If γi 6= γ, then the TFE estimator in (5) becomes inconsistent since ẋit is still correlated with u̇it.

Meanwhile either the CCE or the IE estimator is consistent. Bai (2009) points out this difference,

and proposes a Hausman-type test to detect whether or not γi = γ.Westerlund (2019) extends this

test to the case where the number of time series observations is small.

However, this test is not airtight in the sense that the TFE can be consistent even when γi 6= γ.

If γi is not correlated with Γi, or simply regressors do not have any common factors, then both TFE

and factor augmented estimators are consistent. Castagnetti, Rossi, and Trapani (2015a) point out

this issue, and formally show that the Hausman-type test for testing γi = γ is not consistent

asymptotically. Therefore, we do not consider this test in this paper.

2.2 CRT Test

The second test is a maximum value test proposed by CRT. Instead of (2), CRT consider the

following factor augmented regression.

yit = ai + β′ixit + γ′iFt + εit (6)
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The basic idea of the CRT test is straightforward. The null hypothesis of the CRT test1 is given

by

H0 : γi = γ. (7)

If γi = γ, then the number of common factors becomes one. For example, consider the case of the

two factors, and rewrite γ′iFt as γ1iF1t + γ2iF2t. If γ1i = γ1 and γ2i = γ2, then γ1iF1t + γ2iF2t =

γ1F1t + γ2F2t = F3t where F3t is a (T × 1) vector. If the estimated number of the common factors

is more than one, then the null hypothesis is naturally rejected.

Here we provide a step-by-step procedure for the CRT test.

Step 1: Define êit = yit − âi − β̂
′
ixit as the residual from the CCE regression for each i.

yit = ai + β′ixit + δ′x,ix̄t + δy,iȳt + uit, (8)

where x̄t = n−1
∑n

i=1 xit and ȳt = n−1
∑n

i=1 yit. Alternatively, one can run the IE regression

augmented with the PC estimators of Ft proposed by Song (2013).

Step 2: Set the number of common factors r = 1, and estimate γi by applying the PC estimator

to êit.2 Let γ̂i be the PC estimator. Then construct the following Mahalanobis distance.
3

Oi =
(
γ̂i − µ̂γ

)2
/Σ̂γ , (9)

where µ̂γ and Σ̂γ are the sample mean and variance of γ̂i. That is,

µ̂γ =
1

n

∑n

i=1
γ̂i, and Σ̂γ =

1

n− 1

∑n

i=1

(
γ̂i − µ̂γ

)2
.

Step 3: Construct the following max-type test given by

Sγ,nT = T · max
1≤i≤n

Oi. (10)

CRT show that the limiting distribution of Sγ,nT becomes a Gumbel distribution. The exact
critical value, cαn, can be calculated by

cαn = 2 lnn− ln lnn− 2 ln Γ (1/2)− ln |ln (1− α)|2 , (11)

where Γ (·) is a gamma function, and α is the significance level.
1Note that CRT (2015b) also propose a pre-test for Ft = F for all t. The procedure is exactly identical, but here

we do not consider this test jointly since in practice, the null hypothesis of γi = γ becomes of interest.
2As CRT (2015b) claim, there is no reason to test the null of homogeneous factor loadings when the number of

common factors is more than one. To see this, let uit = γ1iF1t + γ2iF2t + εit. Suppose that γ1i = γ1 and γ2i = γ2

for all i. Then uit has a single factor, or uit = Ft + εit with Ft = γ1F1t + γ2F2t. If γ1i = γ1 but γ2i 6= γ2, then uit

has two factors.
3The Mahalanobis distance is a well known statistic to measure the degree of outlyingness. As γ̂i departs further

from its center or central location, the outlyingness approaches infinity. There are many statistical outlyingness

functions available. See Zuo and Serfling (2000) for more discussions.
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Here we address an important issue. Suppose that one imposes the homogeneity restriction on (6).

Then the factor augmented regression in (6) becomes

yit = ai + β′xit + uit, with uit = (βi − β)′ xit + γ′iFt + εit. (12)

Substituting (3) into (12) results in

uit =
[
(βi − β)′ Γ′i + γ′i

]
Ft + (βi − β)′Ψ′iGt + (βi − β)′ xoit + εit. (13)

When βi = β for all i, it does not matter whether one imposes the homogeneity of βi on (6) since

uit = γ′iFt + εit. A serious problem exists when βi 6= β. When βi 6= β for some i, the regression

error includes extra terms of (βi − β)′ Γ′iFt + (βi − β)′Ψ′iGt + (βi − β)′ xoit. In this case, the CRT

test is no longer directly testing the homogeneity of γi. That is, the CRT test fails to perform its

own purpose, which is directly testing the homogeneity of γi. If βi 6= β, but the homogeneous

restriction is imposed on (6), then the CRT test will reject the null (γi = γ) , even when γi = γ.

2.3 BPS Procedure

Both Bai (2009) and Parker and Sul (2016) use the estimated number of common factors to evaluate

the homogeneity of factor loadings. Suppose that a panel data wit follows a single factor structure4

given in

wit = ai + γiFt + woit, (14)

where woit is a pure idiosyncratic term. Taking off the time series and cross-sectional averages yields

ẇit =

(
γi −

1

n

∑n

i=1
γi

)(
Ft −

1

T

∑T

t=1
Ft

)
+ ẇoit. (15)

The homogeneity of γi leads to ẇit = ẇoit. Define # (w̃it) and #̂ (w̃it) as the true and estimated

number of common factors to w̃it = wit−T−1
∑T

t=1wit, respectively. Then it becomes obvious that

# (w̃it) = 1 & # (ẇit) = 0. (16)

Hence following Bai and Ng (2002, BN hereafter), as n, T →∞,

Pr
[
#̂ (w̃it) = 1

]
= 1 & Pr

[
#̂ (ẇit) = 0

]
= 1, (17)

with a proper information criterion.

In a regression setting, this method can be easily implemented as well. Here we propose the

following two-step procedure.

4As we mentioned earlier, if the number of common factors to wit is more than one, the factor loadings are

heterogeneous.
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Step 1: Run the following two-way fixed effects regression with the homogeneity restriction on βi.

ẏit = β′ẋit + u̇it. (18)

Get the residuals, ûit = ẏit − β̂
′
tfeẋit, where β̂tfe is the TFE estimator in (18).

Step 2: Use BN’s IC2 criterion to estimate the number of common factors with ûit.5

From (13), it is easy to show only with γi = γ and βi = β for all i, the number of common factors

with u̇it becomes zero.

# (u̇it) = 0 if γi = γ & βi = β. (19)

Otherwise, the true number of common factors with u̇it becomes a non-zero constant. That is,

# (u̇it) ≥ 1 if either γi 6= γ or βi 6= β. (20)

It is because the BPS method is not directly testing the null of γi = γ, but just focusing on whether

or not u̇it has a factor structure. If #̂ (ûit) > 0, then the following CCE type regression should be

run.

yit =

{
ai + β′ixit + δ′x,ix̄t + δy,iȳt + εit for CCE Mean Group (CCEMG),

ai + β′xit + δ′x,ix̄t + δy,iȳt + εit for CCE Pooled (CCEP).
(21)

Note that instead of the CCEP and CCEMG, the pooled IE estimation by Bai (2009) and the

heterogeneous IE estimator by Song (2013) can be used in (21), respectively.

If #̂ (ûit) = 0, then it implies that both βi = β and γi = γ. Hence in this case, the TFE

regression in (18) or (1) should be run for the pooled estimation. For the MG estimation, one can

run the following regression.

ẏit = β′iẋit + εit. (22)

2.4 Summary and Resulting Estimators

We consider the following two cases separately: pooled and MG estimation. Except for a few,

almost all empirical studies have considered pooled estimation. Consider the following two choices

we discussed in the Introduction.

Pooled Case: yit =

{
ai + β′xit + Ft + εit

ai + β′xit + δ′x,ix̄t + δy,iȳt + εit
. (23)

Alternatively, researchers may be interested in an individual-specific estimator for the slope coeffi -

cient. In this case, the following two choices are considered.

MG Case:

{
ai + β′ixit + Ft + εit

ai + β′ixit + δ′x,ix̄t + δy,iȳt + εit
. (24)

5Sul (2019) reports that BN’s IC2 criterion performs best among other criteria considered by Bai and Ng (2002).
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The first and second regressions for each case yield TFE and CCE estimators, respectively. Let β̂tfe,i
be the LS estimator in the first regression, and β̂cce,i be the LS estimator in the second regression

in (24). Then the TFE MG and CCE MG estimators can be constructed by taking the sample

cross-sectional averages of β̂tfe,i and β̂cce,i, respectively.
6

Table 2 shows the results of the BPS and the CRT methods under four different conditions.

Since the BPS method imposes the homogeneity restriction on the slope coeffi cients, and the CRT

method does not impose the restriction, the pre-testing results do not alter whether or not empirical

researchers are interested in either the pooled or MG estimation. There are two differences between

the BPS and the CRT methods. Table 1 shows the first difference between the two pre-tests. When

either βi 6= β or γi 6= γ, the BPS method always recommends the CCE estimator asymptotically.

Meanwhile the CRT method precisely differentiates the heterogeneous γi from the case of the

homogeneous factor loadings. Hence, the two pre-tests recommend different outcomes when βi 6= β

but γi = γ. The CRT procedure suggests TFE, while the BPS recommends CCE. If empirical

researchers are interested in pooling regressions, then the BPS method provides a ‘correct’answer

in this case since the regression error, u̇it, includes more than a single factor as it is shown in

(20). When the MG estimation becomes of interest, the situation becomes converted. The CRT

method assists a ‘correct’guide under the case of βi 6= β. However, it does not imply that the TFE

estimator in the case of βi 6= β and γi = γ is more effi cient than the CCE MG estimator. We will

investigate this case asymptotically in the next section.

Table 2: Pre-Testing Results Under Various DGPs

Conditions BPS CRT

βi = β & γi = γ TFE TFE

βi = β & γi 6= γ CCE CCE

βi 6= β & γi = γ CCE TFE

βi 6= β & γi 6= γ CCE CCE

The second difference between the two pre-tests is not shown in Table 2. Precisely speaking,

the BPS method is not a test, but just an identification procedure since the BPS method utilizes

BN’s IC2 criterion. As n, T →∞, the probability of selecting a correct number of common factors
becomes unity. Meanwhile the CRT method is a well constructed test, so that it makes a mistake

with probability α, where α is the significance level. This difference is minor, but in the Monte

6Note that instead of the CCE estimators, one may consider IE least squares estimators suggested by Bai (2009).

However, in this paper we consider only the CCE estimators to avoid any issues related to weak factors. When both

xit and uit in (4) have weak factors, it is well known that Bai’s estimator becomes inconsistent. Meanwhile, the CCE

estimator is still consistent in this case.

9



Carlo simulation, this difference matters somewhat significantly.

In the next section, we will provide asymptotic comparisons between the two pre-tests.

3 Asymptotic Comparison

We first consider the case of βi = β for all i. In the next subsection, we consider the case in which

βi 6= β for some i. As we discussed in the previous section, the results of the asymptotic comparisons

are hinging on the assumption of the slope coeffi cients. Since it is unknown whether or not βi = β,

an overall comparison will be made at the end of this section.

We take the following assumptions.

Assumption 1 (Common Factors)

(i) ∃M > 0, E ‖Ft‖12 < M and E ‖Gt‖12 < M.

(ii) The unobserved common factors, Ft and Gt, are distributed independently of εit and xois for

all i, t and s.

(iii) As T →∞, T−1
∑T

t=1 FtF
′
t →p ΣF > 0 and T−1

∑T
t=1GtG

′
t →p ΣG > 0 for some r× r and

m×m matrices ΣF and ΣG.

Assumption 2 (Individual-Specific Error) ∃M > 0,

(i) E ‖xoit‖
12 < M.

(ii) E
(
εitx

o
js

)
= 0, for all i, j, s and t.

(iii) E
∣∣∣∑T

t=1 xitεit

∣∣∣r ≤ME ∣∣∣∑T
t=1 (xitεit)

2
∣∣∣r/2 for all i, r < 6.

Assumption 3 (Factor Loadings) The unobserved factor loadings γi, Γi and Ψi, are indepen-

dently and identically distributed across i, and of individual specific errors εjt and xojt, the common

factors, Ft and Gt for all i, j and t with fixed means γ, Γ and Ψ, respectively, and finite variances.

Assumption 4 (Serial and Cross-Sectional Weak Dependence and Heteroskedasticity)

∃M,M1 > 0,

(i) E (εit) = 0 and E |εit|12 ≤M.
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(ii) E (εitεjs) = σij,ts, |σij,ts| ≤ σ̄ij for all t, s and |σij,ts| ≤ τ ts for all i, j such that

1

n

n∑
i=1

n∑
j=1

σ̄ij ≤M ,
1

T

T∑
t=1

T∑
s=1

τ ts ≤M ,
1

nT

n∑
i=1

n∑
j=1

T∑
t=1

T∑
s=1

|σij,ts| ≤M .

(iii) For every t and s, E
∣∣n−1/2

∑n
i=1 [εitεjs − E (εitεjs)]

∣∣4 ≤M .
(iv)

T−2n−1
T∑
t=1

T∑
s=1

T∑
p=1

T∑
q=1

n∑
i=1

n∑
j=1

|cov (εitεjs, εjpεjq)| ≤M ,

T−1n−2
T∑
t=1

T∑
s=1

n∑
i=1

n∑
j=1

n∑
l=1

n∑
m=1

|cov (εitεjt, εlsεms)| ≤M .

(v) 1
nT

∑n
i=1

∑T
t=1

(
εit − n−1

∑n
i=1 εit − T−1

∑T
t=1 εit + (nT )−1∑n

i=1

∑T
t=1 εit

)2
→p M1 > 0.

(vi) E
∣∣∣∑T

t=1 εit

∣∣∣r ≤ ME
∣∣∣∑T

t=1 εit

∣∣∣r/2 for all i, r < 12; E |
∑n

i=1 εit|
r ≤ ME |

∑n
i=1 εit|

r/2 for all t,

r < 12.

Assumption 5 (Rank Condition) The total number of common factors in the regression error,

uit, is less than or equal to k + 1, where k is the number of regressors.

Assumption 6 (Homogeneous Slope Coeffi cients) Under homogeneity,

βi = β,

where ‖β‖ < M .

Assumption 7 (Identification)

(i) Let Xi = [xi1, · · · , xiT ]′, Yi = [yi1, · · · , yiT ]′ , zit = [yit, x
′
it]
′ , Mz = IT − Z̄(Z̄ ′Z̄)−Z̄ ′,

Z̄ = [z̄1, · · · , z̄T ]′ , and z̄t = n−1
∑n

i=1 zit, where (Z̄ ′Z̄)− is the generalized inverse of

Z̄ ′Z̄. The k × k matrices (nT )−1
∑n

i=1

∑T
t=1 ẋitẋ

′
it, T

−1
∑T

t=1 ẋitẋ
′
it, T

−1X ′iMzXi and

(nT )−1
∑n

i=1X
′
iMzXi are full rank.

(ii) Let F = (F1, · · · , FT )′, G = (G1, · · · , GT )′, P = (F,G), MP = IT − P (P ′P )−1 P ′, and

MXi = IT −Xi (X ′iXi)
−1X ′i. The k× k matrices T−1 (X ′iMPXi) and T−1 (P ′MXiP ) are full

rank.
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Assumptions 1 and 2 allow for serial and cross-sectional dependences in both common factors

and individual-specific errors. Assumption 3 entails the factor loadings, with non-zero fixed means,

to be strong in the sense of Chudik et al. (2011). Assumptions 1 through 3 are fairly general since

the case in which the error components might be correlated with the regressor xit are not excluded.

Assumption 4 allows weak serial and cross-sectional correlation for εit. Assumption 6 restricts βi to

be homogeneous. Assumption 7 (i) rules out the possibility that the defactored regressors become

rank deficient. The existence of the 12−th moment of Ft, Gt, xoit and εit is required to establish
the consistency of the principal component estimator γ̂i in Step 2 of the CRT test. Assumption 7

(ii) ensures the identification of γi in this step. Further, note that two additional assumptions are

required for the consistency of the CRT test. See Appendix A for the additional conditions.

We define the two pooled estimators as

β̂tfe,p =

(∑n

i=1

∑T

t=1
ẋitẋ

′
it

)−1(∑n

i=1

∑T

t=1
ẋitẏit

)
, (25)

β̂cce,p =
(∑n

i=1
X ′iMzXi

)−1 (∑n

i=1
X ′iMzYi

)
. (26)

The MG estimators are defined as

β̂tfe,mg =
1

n

∑n

i=1
β̂tfe,i with β̂tfe,i =

(∑T

t=1
ẋitẋ

′
it

)−1(∑T

t=1
ẋitẏit

)
, (27)

β̂cce,mg =
1

n

∑n

i=1
β̂cce,i with β̂cce,i =

(
X ′iMzXi

)−1 (
X ′iMzYi

)
. (28)

3.1 Under the Homogeneity of Slope Coeffi cients

When βi = β, both the BPS and the CRT methods provide the same answer as Table 1 showed.

In practice, it is more realistic that γi 6= γ for a few individuals. Also, the case where the variation

of γi is small enough not to influence the consistency of the TFE cannot be ruled out. To consider

these cases formally, we define the following notion of local heterogeneity.

Definition (Local-Heterogeneity of γi): The (r × 1) factor loading vector γi is locally-heterogeneous

such that

γi = γ + τ i, τ i ∼ iid(0,Ωτ ,i) (29)

where

Ωτ ,i =

{
0 or τ i = 0 if i ∈ G
Ω0 or τ i 6= 0 if i ∈ Gc

(30)

where the number of individuals in Gc is a fixed number υ, which is not dependent on n.
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Here we consider a case where γi 6= γ for a few individuals. The local heterogeneity implies the

weak factor if γ = 0. Note that

E
1

n

∑n

i=1
(γi − γ)2 = υΩ0/n. (31)

This implies that as n → ∞, the variance of γi goes to zero. The condition in (31) states that
the common factors Ft are weak factors if γ = 0. Meanwhile the weak factors do not imply local

heterogeneity. For example, Reese and Westerlund (2015) consider the following notion of the weak

factors when γ = 0.

τ i = τ oi /n
α with α ∈ (0, 1] and τ oi = Op (1) . (32)

Under (32), as n → ∞, the maximum of τ i also converges to zero (or γ = 0). In this case, CRT’s

max-type test fails.7 Because of the same reason, CRT assume no weak factor given in (32).

Next, we will study the asymptotic behaviors of the BPS and the CRT pre-testing methods

under the local heterogeneity.

Theorem 1: (Consistency of Tests for Local Heterogeneity of Factor Loadings) Under

local heterogeneity of γi in (30) and Assumptions 1-7,

(i) as n, T →∞,
lim

n,T→∞
Pr[#̂(ûit) = 0] = 1, and (33)

(ii) additionally, if Assumptions 8-10 hold, as n, T →∞ with T/n5/3 → 0 and n/T 3 → 0,

lim
n,T→∞

Pr(Sγ,nT > cαn) = 1. (34)

The technical proof of Theorem 1 and Assumptions 8-9 are given in Appendix A. Here we provide

an intuitive explanation. Under the homogeneity of factor loadings, the residuals, ûit, do not include

any factor so that the estimated number of common factors becomes zero. The point of interest

here is whether a few factor loadings are different from the rest of them. As Parker and Sul (2016)

showed, BN’s (2002) information criteria (IC) are not precise enough to detect weak factors. Under

the local heterogeneity (29) and (30), the demeaned factor loading is given by

γ̆i = γi −
1

n

∑n

i=1
γi =

{
Op
(
n−1

)
if i ∈ G

Op (1) if i ∈ Gc
.

7To see this, assume that γi = γ + εi, with εi = Op
(
n−1/2

)
. Then as n, T → ∞ with T/n → 0, the following

condition becomes
T

lnn
‖εi‖2 =

T

n lnn
Op(1)→ 0,

which implies the failure of Theorem 3 in CRT (2015b).
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As a result, n−1
∑n

i=1 γ̆iγ̆
′
i = Op

(
n−1

)
, which is too small for IC to detect. Moreover, when the

factor loadings to the regression error, γi, is correlated with the factor loadings to the regressors,

Γi, the TFE estimator has an Op
(
n−1

)
bias under the local heterogeneity. Hence, the regression

residuals contain only weak factors:

ûit = ẏit − β̂
′
tfe,pẋit = (β − β̂tfe,p)′ẋit + γ̆′iF̃t + ε̇it.

Bai and Ng’s IC cannot detect any weak common factor even with very large n and T. Meanwhile,

the CRT test is based on the maximum value of Mahalanobis distances. The maximum value is,

of course, very sensitive to a non-zero τ i in (30). Even when only one of γi is different from the

rest of γi = γ, the CRT method rejects the null of homogenous factor loadings. Hence, the CRT

method detects the local heterogeneity precisely as n, T →∞.
Next, we compare the asymptotic variances of the TFE and the CCE estimators under the

homogeneity of γi. Under suitable conditions, both the TFE and the CCE estimators are consistent

since asymptotically the modified regressors are independent of the modified regression errors. Let

Ẋi = [ẋi1, · · · , ẋiT ]′, Xo
i = [xoi1, · · · , xoiT ]′ and εi = [εi1, · · · , εiT ]′ . Further define Ωcce,p and Ωtfe,p

as

Ωcce,p = E
1

nT

∑n

i=1
Xo′
i εiε

′
iX

o
i , & Ωtfe,p = E

1

nT

∑n

i=1
Ẋ ′iεiε

′
iẊi, (35)

and

Qcce,p = plimn,T→∞
1

nT

∑n

i=1
Xo′
i X

o
i , & Qtfe,p = plimn,T→∞

1

nT

∑n

i=1
Ẋ ′iẊi. (36)

The main difference between the two variances comes from the asymptotic covariance of the modified

regressors. Interestingly, the CCE estimation cleans up the common components of the regressors

effectively by projecting out the cross-sectional averages of yit and xit. The covariance matrix

with the remained terms becomes asymptotically equivalent to the covariance matrix with the

idiosyncratic terms of xit.Meanwhile, the TFE estimation does not effectively eliminate the common

components of xit if the factor loadings to xit are strongly heterogeneous, which results in a larger

covariance matrix of the modified regressors. This difference makes the TFE estimator more effi cient

than the CCE estimator in general. Only when the two-way within group transformation eliminates

the common components of xit effectively, does the discrepancy between two variances become zero

asymptotically.

Define the asymptotic variances of TFE and CCE pooled estimators as

V`,p = Q−1
`,pΩ`,pQ

−1
`,p , (37)

for ` ∈ {cce, tfe} . It is easy to show that as n, T →∞, under i.i.d. assumption of εit over i and t,
the difference between Vcce,p and Vtfe,p becomes non-negative definite. That is,

Vcce,p − Vtfe,p ≥ 0. (38)
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The equality holds only when the factor loadings to xit are homogeneous.

In Theorem 2, we compare the asymptotic variances of the CCE and the TFE estimators under

the local heterogeneity. Since both estimators are consistent under the local heterogeneity, it is not

hard to show that the probability limits of the denominator terms for the CCE are smaller than

those of TFE estimators in general as n, T →∞ with T/n→ 0.

Theorem 2 (Comparison of Asymptotic Variances) Assume that Assumptions 1-7 hold,

and further assume that εit is i.i.d. over i and t . As n, T → ∞ with T/n → 0, the asymptotic

variances satisfy that

Vcce,p − Vtfe,p ≥ 0. (39)

See Appendix B for the proof of Theorem 2. Note that Pesaran (2006) already showed the asymp-

totic variance of the CCE pooled estimator. Here we fix the weight function in Pesaran (2006) at

1/n. The result for the asymptotic variance of the TFE estimator may be new, but nothing special.

When εit is not i.i.d. over i, it is not easy to show that Theorem 2 holds unless we know the weak

dependence structure. The equality holds only when Γ̆i = Ψ̆i = 0 for all i.

Next, we consider the mean group estimators,

β̂`,mg =
1

n

n∑
i=1

β̂`,i, with ` ∈ {cce,tfe} .

It is well known that the pooled estimator can be re-written as

β̂`,p =

(
n∑
i=1

W`,i

)−1( n∑
i=1

W`,iβ̂`,i

)
, with ` ∈ {cce,tfe} , (40)

where the weight function W`,i is given by

W`,i =

{
T−1Xo′

i X
o
i if ` = cce

T−1Ẋ
′
iẊi if ` = tfe

. (41)

When βi = β for all i, it is easy to show that the asymptotic variance of the CCE MG estimator

is relatively larger than that of the TFE MG estimator under i.i.d. assumption of εit over i and t.

Finally, we combine the results of Theorem 1 and Theorem 2 together. Define the BPS and

CRT estimators as

β̂BPS =

{
β̂tfe,p if #̂(ûit) = 0

β̂cce,p if #̂(ûit) 6= 0
, and β̂CRT =

{
β̂tfe,p if Sγ,nT ≤ cαn
β̂cce,p if Sγ,nT > cαn

,

or alternatively they can be rewritten as

β̂m,p = ωmβ̂tfe,p + (1− ωm)β̂cce,p, with m ∈ {BPS, CRT} , (42)
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where ωBPS = 1[#̂(ûit) = 0] and ωCRT = 1 (Sγ,nT ≤ cαn). Note that 1 (·) is an indicator function,
so that β̂m,p is not a weighted average of β̂tfe,p and β̂cce,p. The asymptotic variances of the BPS

and CRT estimators can be written as

V (β̂m,p) = ωmVtfe,p + (1− ωm)Vcce,p. (43)

Similarly we can define the MG BPS and CRT estimators as follows.

β̂m,mg = ωmβ̂tfe,mg + (1− ωm)β̂cce,mg, with m ∈ {BPS, CRT} . (44)

Note that the indicator function is not dependent on the choice of the MG or pooled estimation.

Now, we are ready to propose the following Theorem.

Theorem 3 (Asymptotic Comparison under Homogeneous Slope Coeffi cients) Under

Assumptions 1-10, as n, T →∞ with T/n→ 0 and n/T 3 → 0,

VCRT,p − VBPS,p ≥ 0, & VCRT,mg − VBPS,mg ≥ 0. (45)

See Appendix C for the proof of Theorem 3. Note that Theorem 3 holds when βi = β by Assumption

6. The equality holds if ωBPS = ωCRT . There are two cases in which the equality always holds.

The first case is when regressors have the same or zero factor loadings (Γ̆i = Ψ̆i = 0 for all i). In

this case, the BPS estimator becomes equivalent to the CRT estimator. The second case is when

γi 6= γ for all i. In this case, the equality holds since the power of the CRT test becomes unity

as n, T → ∞. Meanwhile under the null of γi = γ, the variance of the CRT estimator is always

greater than that of the BPS estimator since ωCRT = 1 with probability α. Lastly, under the local

heterogeneity of γi, the inequality holds since asymptotically ωCRT converges to unity, but ωBPS

converges to zero.

The next subsection considers the case where βi 6= β.

3.2 Under the Heterogeneity of Slope Coeffi cients

To investigate the heterogeneous slope coeffi cients case, we change Assumption 6 to 6A.

Assumption 6A (Heterogeneous Slope Coeffi cients) (i) Under heterogeneity,

βi = β + ηi, with ηi ∼ iid (0,Ωη) , (46)

where ‖β‖ < M , ‖Ωη‖ < M , Ωη is a k × k symmetric non-negative definite matrix, and
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(ii) the random deviations ηi are distributed independently of γj, Γi, Ψi, εjt, vjt for all i and

j.

Assumption 6A is a standard assumption for the heterogeneous slope coeffi cients. Note that we

particularly need the independence between ηi and xitx
′
it. Otherwise, any pooled estimator leads

to inconsistency due to the correlation between the weights in (40) and βi.

It is very important to note that if βi 6= β for some i, the regression error has heterogeneous

factor loading coeffi cients even when γi = γ for all i. Suppose that empirical researchers are inter-

ested only in pooled estimators even with βi 6= β. Imposing the homogeneity restriction on the

slope coeffi cients leads to

yit = ai + β′xit + uit, with uit =
(
η′iΓ
′
i + γ′i

)
Ft + η′iΨ

′
iGt + ξit, (47)

where ηi = βi − β and ξit = η′ix
o
it + εit.

Recall that the CRT method in (6) is based on the panel regression without imposing the

homogeneity restriction of βi = β. In contrast, the BPS method requires imposing the homogeneity

restriction. As shown in Table 2, when βi 6= β, the BPS suggests the CCE regardless of γi 6= γ.

It is natural since uit in (47) has heterogeneous factor loadings as long as βi 6= β. Meanwhile,

the CRT’s max-type test examines only whether or not γi = γ. Even when γi = γ, as shown in

(47), the regression error, uit, includes multiple factors if either Γi 6= 0 or Ψi 6= 0. If Assumption

6A (ii) is violated, then the TFE pooled estimator becomes inconsistent, so that the CRT method

leads to an inconsistent estimation. Only when Γi = Γ and Ψi = Ψ for all i, does the TFE

pooled estimator become consistent. However, even in this case, the CCE pooled estimator could

be more effi cient. To see this, let Mt = Γ′Ft + Ψ′Gt, and rewrite (47) as ẏit = β′ẋit + u̇it, with

u̇it =
(
βi − n−1

∑n
i=1 βi

)′
M̃t + ξ̇it. The TFE error, u̇it, still has a single factor M̃t. Meanwhile, the

CCE error, ξit, does not have any factor structure.

If either Γi 6= Γ or Ψi 6= Ψ, but Assumption 6A (ii) holds, then the TFE pooled estimator

becomes consistent. However, as shown in Appendix D, the TFE pooled estimator may not be

effi cient compared with the CCE pooled estimator. See next Monte Carlo simulation section for

more detailed discussions.

Next, we consider the MG estimation, which is an alternative way to pool the cross-sectional

and time series information as shown in (40). The only difference between the MG and pooled

estimators is weight functions8: the MG estimation assigns an equal weight, 1/n, meanwhile the

pooled estimation assigns heavier weights if the variances of regressors are larger. We consider

the case where the MG estimation becomes of interest to empirical researchers. Suppose that the

8See Lee and Sul (2020b) for the asymptotic comparison between the MG and the conventional pooled estimations.
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CRT’s test does not reject the null of γi = γ. Then the TFE MG estimator in (27) is expected to

be used. That is, the following regression is supposed to be run.

yit = ai + β′ixit + Ft + εit. (48)

Interestingly, it is not straightforward to run (48). The typical two-way fixed effects transformation

leads to

ẏit = β′iẋit + eit, (49)

where

eit = ξit + ε̇it, with ξit = β′i
1

n

∑n

i=1
x̃it −

1

n

∑n

i=1
β′ix̃it.

Since the cross-sectional average of x̃it approximates the common factors to x̃it, ξit can be treated

as additional common components in the modified error term, eit in (49). The existence of ξit
influences the asymptotic variance of the TFE MG estimator. There are various other ways to

reduce the asymptotic variance. For example, an iterative method might work in this case. Let β̂
1

i

be the first stage estimator for each i based on (49). Next, estimate the common factor by taking

the cross-sectional average of the following residuals.

F̂t,c =
1

n

∑n

i=1

(
ỹit − β̂

1′
i x̃it

)
. (50)

Next let β̂
2

i be the second stage estimator for each i in the following regression.

ỹit − F̂t,c = β′ix̃it + errorit (51)

Repeating (50) and (51) until the LS estimator converges. This estimator is almost equivalent to

the IE estimator proposed by Bai (2009). Instead of the PC estimation for Ft, here we use the

cross-sectional average of the residuals. However, we do not consider this estimator further simply

because this new iterative estimator cannot be viewed as a TFE MG estimator anymore.

Next, we provide an important remark regarding dynamic panel regressions.

Remark 1 (Dynamic Panel Regression): A latent model can be written as follows.

yit = ai + ρyit−1 + λ′iFt + εit, (52)

or

yit = ai (1− ρL)−1 + λ′iFt (1− ρL)−1 + εit (1− ρL)−1 ,

where L is a lag operator. Let ρ̂fe be the one-way fixed effect or within group (WG) estimator.

From a direct calculation, as long as the pooled estimator is used, we can show that

ûit = ỹit − ρ̂feỹit−1 = ε̃it + λ′iF̃t + (ρ− ρ̂fe)ỹit−1 = ε̃∗it + λ′iF̃
∗
t , (53)
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where F̃ ∗t = F̃t + (ρ − ρ̂fe)
∑∞

j=0 ρ
jF̃t−1−j , and ε̃∗it = ε̃it + (ρ − ρ̂fe)

∑∞
j=0 ρ

j ε̃it−1−j . Therefore the

number of common factors is not influenced by the WG estimation. Hence as n, T →∞,

lim
n,T→∞

Pr[#̂(ûit) = 0] = 1.

Meanwhile if λi 6= λ, then it is easy to show that

lim
n,T→∞

Pr[#̂(ûit) = 0] = 0.

Appendix E provides a general proof of remark 1 in the dynamic panel models with weakly exoge-

nous (or predetermined) regressors. Remark 1 states that the BPS method works continuously in

dynamic panel regressions. However, to achieve a more effi cient estimation, one should use a bias

corrected estimation method. See Chudik et al. (2018) for more discussion.

Lastly, we discuss how to implement the BPS method in unbalanced panels in Appendix F.

Specific Stata estimation methods and commands are also described.

4 Monte Carlo Simulations and an Empirical Example

This section consists of two subsections. The first subsection examines theoretical findings of this

paper, and investigates how the pre-testing methods perform in finite samples by means of Monte

Carlo simulations. The second subsection demonstrates the usefulness of the suggested method

with violent crime rates across 48 US contiguous states.

4.1 Monte Carlo Simulations

The data generating process (DGP) is given by

yit =

2∑
j=1

βj,ixj,it + γiFt + εit,

where each regressor has the following factor structure.

xj,it = λj,iFt + δj,iGt + xoj,it for j = 1, 2.

Based on restrictions on factor loadings with xj,it, the following two cases are considered: λj,i 6= 0,

δj,i 6= 0 v.s. λj,i = δj,i = 0. In the first case, both regressors have two common factors. The second

case does not allow any cross sectional dependence in the regressors. All common factors, εit, xoj,it
are drawn from N (0, 1), and factor loadings are drawn from N (1, 1). Here we report only the first

case to save the space. All other simulation results are reported online.
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We compare the finite sample performances of the following three estimators: BPS, CRT and

CCE pooled and MG estimators. Note that the CCE estimator is robust compared with the BPS

or the CRT estimator since the factor augmented regression nests the TFE regression. We first

consider the finite sample performances of three estimators in the case of the homogeneous slope

coeffi cients.

We set β1,i = β2,i = 1. Table 3 shows the finite sample performances of three estimators when

γi = γ. As we discussed in Section 2, IC2 always selects the correct number of common factors.

Surprisingly even with small n and T, IC2 never fails. Meanwhile the Sγ,nT statistic shows a

somewhat mild size distortion with small n. The nominal size used in the test is 5%. With n = 25,

the size of the test is slowly decreasing over T , but never reaches the 5% level even with T = 200.

However as n increases, the size distortion quickly disappears. With n = T = 200, the CRT test

shows little size distortion. As we discussed in Introduction and Theorem 3, the variance of the BPS

pooled estimator is always the smallest among three pooled estimators when the factor loadings in

regressors, xj,it, are heterogeneous (or the signal-to-noisy ratio is strong). Only when the regressors

do not have any factor structure (λj,i = δj,i = 0) or the signal-to-noisy rate is very weak, the

variances of other pooled estimators are similar to the variance of the BPS pooled estimator. See

the online supplementary appendices for more detailed evidence. Meanwhile, the variance of the

BPS MG estimator is more or less similar to that of the CRT MG estimator. The CCE pooled and

MG estimators are robust but the least effi cient.

Table 4 reports the case of γi 6= γ. Evidently, both the BPS and the CRT methods detect this

case precisely, which leads to the relative variance ration becoming unity. Also note that in this

case, both the BPS and CRT methods always suggest the CCE estimation. Hence the relative

variance ratio of the CCE pooled to the BPS pooled estimator becomes unity. A similar finding is

observed for the case of the MG estimation.

Table 5 displays the case of the local heterogeneous factor loadings. Only one factor loading is

different from the rest. As Theorem 1 shows, the CRT detects this case precisely even with large

n. As either n or T → ∞, the rejection rate becomes unity. Meanwhile the BPS method fails
to detect the local heterogeneity, so that the BPS method always suggests the TFE estimation.

As Theorem 2 states, in this case, the variance of the TFE estimator is smaller than that of the

CCE estimator. Meanwhile the CRT method is suggesting the CCE estimation more as n, T →∞.
Hence asymptotically the variance of the BPS estimator is smaller than either the CCE or CRT

estimator. By combining all results from Table 3, 4 and 5, we can confirm our theoretical findings

in Theorem 3.

Next, we investigate the finite sample performance under heterogeneous slope coeffi cients. Table

6 reports the case where βi 6= β but γi = γ. As shown in Table 3, the BPS method suggests the
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CCE estimator, while the CRT method leads to the TFE estimator. As n, T →∞ jointly, the CRT

method selects the TFE estimation more. As shown in Lemmas 1 in Appendix D, both the BPS

pooled and MG estimators are more effi cient than the CRT pooled and MG estimators.

Table 7 shows the case where βi 6= β and γi 6= γ. In this case, both pre-testing procedures

suggest the CCE estimator. Hence the variance ratio becomes unity even with small n and T.

4.2 Empirical Example: Determination of Violent Crimes

This subsection demonstrates how to use the pre-testing procedures studied in the previous section

in practice. Levitt (1997) investigated the determinants of the change in the violent crimes (Cit)

across cities in the US. The main variable of interest was the number of sworn police offi cers per

capita. Figure 1 shows national trends of violent crime rates and the number of sworn police offi cers

per capita. We take the logarithm of all variables. As shown in Figure 1, the crime rates had been

increasing until 1991, and have been declining continuously since then. Meanwhile, the number of

police offi cers had been continuously increased until 2010.

Figure 1: National Trends of Violent Crime and the number of Police Offi ers

Levitt used several control variables. Furthermore, Levitt used contemporaneous variables as

regressors, which may invite the non-zero correlations between regressors and regression errors. To

avoid such endogeneity, Levitt used various election variables as IVs. Here we use pre-determined

variables to detour this issue. Among various control variables, we select only two control variables:

unemployment rates (Uit) and the percentage of the black population (Bit). Adding more control

variables does not change the results dramatically. The annual violent crimes and the number

of sworn police offi cers (Pit) across 48 contiguous states from 1970 to 2013 are collected from
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the uniform crime statistics reported by the FBI. Unemployment rates and black population are

collected from the Bureau of Economic Analysis and Census survey, respectively. The following

two modified regressions are run.

∆ lnCit = ai + Ft + β1,i∆ lnPit−1 + β2,i∆ lnUit−1 + β3,i∆ lnBit−1 + ε1,it, (54)

∆ lnCit = ai + β1,i∆ lnPit−1 + β2,i∆ lnUit−1 + β3,i∆ lnBit−1 + λ′iF̄n,t + ε2,it, (55)

where F̄n,t is a vector of the cross-sectional averages of regressand and regressors. We follow the

CRT’s procedure from (8) to (11), and get the CRT’s test statistics: Sγ,nT = 13.99, but the 5%

critical value is 11.28. Hence we reject the null of the homogeneous factor loadings. The CRT

procedure suggests using the CCE estimation. Meanwhile, with homogeneous restrictions on all

slope coeffi cients except for ai, the residuals from (54) do not have any factor so that the BPS’

procedure suggests running TFE regressions.

Table 8: Comparison between TFE and CCE Estimations

Sample: 1970-2013 WG MG

Variables TFE t-ratio CCE t-ratio TFE t-ratio CCE t-ratio

∆ lnPit−1 0.018 0.204 0.022 0.256 -0.060 -0.875 -0.057 -0.763

∆ lnUit−1 -0.073 -3.894 -0.070 -3.786 -0.070 -3.516 -0.076 -3.647

∆ lnBit−1 -0.748 -3.015 -0.538 -1.464 -0.634 -2.241 -0.458 -1.044

Sample: 1991-2013

∆ lnPit−1 0.119 1.526 0.102 1.381 0.088 1.127 0.088 0.944

∆ lnUit−1 -0.027 -0.857 -0.024 -0.653 -0.023 -0.684 -0.040 -1.082

∆ lnBit−1 -0.363 -0.668 0.468 0.590 0.167 0.286 0.668 0.686

Table 8 reports the pooled and mean group TFE and CCE estimates. Interestingly, regardless

of the choice of estimations, the estimates of the slope coeffi cient, β1, on ∆ lnPit−1 become insignif-

icant. For the WG estimation, the panel robust covariance estimation is used for the t−ratios.
The WG estimators for β1 are all positive, but the MG estimators are all negative. But they are

not significantly different from zero. Note that Levitt (1997) reported the negative, but significant

estimated slope coeffi cient on ∆ lnPit−1. Nonetheless the difference between the TFE and CCE

estimation can be found on the estimated β3. The TFE estimates are slightly larger in absolute

value: β̂tfe,p is -0.748, but β̂cce,p is -0.538. Similarly β̂tfe,mg is -0.634, but β̂cce,mg is just -0.458. Both

CCE pooled and mean group estimates are insignificant.
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Since the negative correlation between the crime rates and the number of sworn police offi cers

is found after 1991, we consider the sub-sample period from 1991 to 2013. We re-examined the

two pre-testing procedures. The BPS’procedure continuously suggests the TFE. The CRT’s test

statistics are now changed to 7.66, so that the CRT test suggests the TFE as well. However, we

cannot find any empirical evidence that the growth rate of the number of police offi cers is negatively

correlated with the growth rate of the crime rates. In fact, the point estimate of β̂1,tfe,p is positive,

and more importantly, becomes significant at the 20% level. Since the FBI crime rates are all rates

reported by local and federal agencies, this result may be interpreted that the more police offi cers

are hired, the more criminals are captured.

5 Conclusion

This paper compared the effectiveness of the two pre-testing procedures —BPS and CRT methods

—asymptotically, and showed that the BPS method is more effective. When the slope coeffi cients

are homogeneous, the BPS and the CRT methods are basically the same except for the case of

the local heterogeneity of the factor loadings. Of course, the CRT method is based on a max-type

test so that it allows some minor mistakes under the homogeneous factor loadings. Surprisingly,

when the slope coeffi cients are heterogeneous, the BPS always suggests running a correctly specified

regression. Meanwhile, the original CRT method fails to suggest one under the homogeneous factor

loadings case. We did not consider altering the original CRT method in this paper, which does

not impose the homogeneous restriction on the slope coeffi cients. But if the restriction is imposed,

then the modified CRT method restores the virtue except for the local heterogeneity case.

The finding of this paper is helpful for empirical researchers. After a TFE regression is run, a

simple BPS procedure can be run to check whether or not a factor augmented regression is needed

to be run.
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Technical Appendix

Appendix A: Proof of Theorem 1

The consistency of the CRT test requires the following conditions.

Assumption 8 (Serial Dependence)

(i) Let δ > 0 and α ∈ (1,+∞). εit, Ft, and xit are L2+δ-NED (Near Epoch Dependent) of size

α on a uniform mixing base {vt}+∞t=−∞ of size −q/ (q − 2) and q > 2α−1
α−1 .

(ii) Let V Fε
iT := T−1E

[(∑T
t=1 Ftεit

)(∑T
t=1 Ftεit

)′]
. V Fε

iT > 0 uniformly in T , and as T → ∞,

V Fε
iT −→ V Fε

i with
∥∥V Fε

i

∥∥ <∞. The same holds for V xε
iT := T−1E

[(∑T
t=1 xitεit

)(∑T
t=1 xitεit

)′]
,

V Fx
iT := T−1E

(
ω̄FxiT ω̄

Fx′
iT

)
with ω̄FxiT = vec

(∑T
t=1 Ftx

′
it

)
− E

[
vec

(∑T
t=1 Ftx

′
it

)]
, and V xx

iT :=

T−1E (ω̄xxiT ω̄
xx′
iT ) with ω̄xxiT = vec

(∑T
t=1 xitx

′
it

)
− E

[
vec

(∑T
t=1 xitx

′
it

)]
.

(iii) Let ωFεkt be the kth element of Ftεit and define S
Fε
kT,m :=

∑m+T
t=m+1 ω

Fε
kt . There exists a positive

definite matrix Ω̄Fε =
{
$Fε
kh

}
such that T−1

∣∣∣E(SFεkT,mSFεhT,m)−$Fε
kh

∣∣∣ ≤MT−ψ, for all k and

h and uniformly in m, with ψ > 0. The same holds for xitεit.

Assumption 9 (Cross Sectional Dependence) It holds that T−1
∑T

t=1

∑T
s=1 |E (εitεjs)| lnn −→

0 as n, T →∞ for all i 6= j.

Assumptions 8 and 9 are identical to Assumptions 6-7 in CRT (2015b).

Part I: Proof of Theorem 1 (i)

First, we show

E
(

1

n

∑n

i=1
γ̆′iγ̆i

)
= O

(
n−1

)
,

under the local heterogeneity defined in Definition 1. Without loss of generality, assume that the

number of individuals in Gc, υ = 1, such that

γi =

{
γ if i < n

γ + τn with τn ∼ iid (0,Ω0) if i = n
.

Then the demeaned factor loading is given by

γ̆i = γi −
1

n

∑n

i=1
γi =

 −τn
n

if i < n

n− 1

n
τn if i = n

,
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in light of which, the following holds,

E
(

1

n

∑n

i=1
γ̆′iγ̆i

)
=

1

n
Ω0 +Op

(
n−2

)
. (56)

Next, we derive the order of residual, ûit, obtained using the BPS method. Define

ûit = ẏit − β̂
′
tfe,pẋit =

(
β − β̂tfe,p

)′
ẋit + u̇it, (57)

where

u̇it = γ̆′iF̃t + ε̇it.

Consider the first term in (57). The TFE pooled estimator is given by

β̂tfe,p − β =

(
1

nT

n∑
i=1

T∑
t=1

ẋitẋ
′
it

)−1 [
1

nT

n∑
i=1

T∑
t=1

ẋitε̇it + I + II

]
,

where

I =
1

nT

∑T

t=1

∑n

i=1
Γ̆′iF̃tF̃

′
t γ̆i,

II =
1

nT

∑T

t=1

∑n

i=1

[(
Ψ̆′iG̃t + ẋoit

)
F̃ ′t γ̆i

]
.

Note that Eẋitε̇js = E
[(
γ̆′iF̃t + Ψ̆′iG̃t + ẋoit

)
ε̇js

]
= 0 for all i, j, s, t, so

(
1

nT

n∑
i=1

T∑
t=1

ẋitẋ
′
it

)−1
1

nT

n∑
i=1

T∑
t=1

ẋitε̇it = Op

(
n−1/2T−1/2

)
.

Next, consider I. By Assumption 1, we have 1
T

∑T
t=1 F̃tF̃

′
t →p ΣF . If Γi is correlated with γi such

that Γi = qγi+ Γoi , where Γoi is independent of γi. Then I is biased, and the order of which is given

by

E
(

1

n

∑n

i=1
Γ̆′iγ̆i

)
= q

1

n
Ω0 +O

(
n−2

)
= O

(
n−1

)
which is the same as the bias of CCEP estimator. Let ΣΓ̆ = E

(
Γ̆iΓ̆

′
i

)
, which is bounded by

Assumption 3. If Γi is not correlated with γi, such that

E
(

1

nT

∑T

t=1

∑n

i=1
Γ̆′iγ̆i

)
= 0,

then the following holds,

E
∥∥∥∥ 1

n

∑n

i=1
Γ̆′iγ̆i

∥∥∥∥2

=
1

n2

n∑
i=1

E
(
γ̆′iΓ̆iΓ̆

′
iγ̆i

)
= O

(
n−2

)
,

which implies I = Op
(
n−1

)
.
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For II, first note that E (II) = 0 if Ψi is independent of γi. Then it holds that

E
∥∥∥∥ 1

nT

∑T

t=1

∑n

i=1

(
Ψ̆′iG̃t + ẋoit

)
F̃ ′t γ̆i

∥∥∥∥2

=
1

n2T 2

∑T

t=1

∑n

i=1
E
{
γ̆′iF̃t

(
Ψ̆′iG̃t + ẋoit

)′ (
Ψ̃′iG̃t + ẋoit

)
F̃ ′t γ̆i

}
=

1

n2T

∑n

i=1
E
{
γ̆′i

[
1

T

∑T

t=1
F̃t

(
Ψ̆′iG̃t + ẋoit

)′ (
Ψ̆′iG̃t + ẋoit

)
F̃ ′t

]
γ̆i

}
= O

(
1

n2T

)
.

Putting all together, we have

β̂tfe,p − β =

(
1

nT

n∑
i=1

T∑
t=1

ẋitẋ
′
it

)−1
1

nT

n∑
i=1

T∑
t=1

ẋitε̇it +Op

(
1

n

)
+Op

(
1

n
√
T

)
. (58)

This implies that we need the T/n→ 0 condition for the
√
nT -consistency of TFE estimator under

the local heterogeneity. That is,

√
nT (β̂tfe,p − β) =

(
1

nT

n∑
i=1

T∑
t=1

ẋitẋ
′
it

)−1
1√
nT

n∑
i=1

T∑
t=1

ẋitε̇it +Op

(√
T/n

)
+Op

(
1/
√
n
)
.

For the second term in (57), it holds that

u̇it =


− 1

n
τ ′nF̃t + ε̇it if i < n

n− 1

n
τ ′nF̃t + ε̇it if i = n

. (59)

Let P̃ ′t =
(
F̃ ′t , G̃

′
t

)
.

ûit =


(
β − β̂tfe,p

)′ (
Γ̆′iF̃t + Ψ̆′iG̃t

)
− 1

n
τ ′nF̃t +

[
ε̇it +

(
β − β̂tfe,p

)′
ẋoit

]
if i < n,(

β − β̂tfe,p
)′ (

Γ̆′iF̃t + Ψ̆′iG̃t
)

+
n− 1

n
τ ′nF̃t +

[
ε̇it +

(
β − β̂tfe,p

)′
ẋoit

]
if i = n,

= : Λ′iP̃t + vit, (60)

with

Λ′i =


[(
β − β̂tfe,p

)′
Γ̆′i −

1

n
τ ′n

(
β − β̂tfe,p

)′
Ψ̆′i

]
if i < n,[(

β − β̂tfe,p
)′

Γ̆′i +
n− 1

n
τ ′n

(
β − β̂tfe,p

)′
Ψ̆′i

]
if i = n,

vit = ε̇it +
(
β − β̂tfe,p

)′
ẋoit.
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Eq. (58) and the local heterogeneity of the factor loadings imply that

Λ′iΛi =


Op
(

1
n2

)
+Op

(
1
nT

)
if i < n,

Op
(

1
n

)
+Op

(
1√
nT

)
+

(
n− 1

n

)2

τ ′nτn if i = n.
(61)

Define κ = #̂ (ûit). Last, we need to show that under the local heterogeneity of γi,

lim
n,T→∞

Pr
[
#̂ (ûit) = 0

]
= 1.

We shall prove for all 0 < κ ≤ κmax,

lim
n,T→∞

Pr [IC2(κ) < IC2(0)] = 0,

where

IC2(κ) = ln
(
V̂ (κ)

)
+ κ

(
n+ T

nT

)
ln (min[n, T ]) , IC2(0) = ln

(
V̂ (0)

)
.

Define the eigenvalues of a n×n matrix A as ψ1 (A) , · · · , ψn (A), ordered from largest to smallest.

Then we have

V̂ (0) =
1

nT

∑n

i=1

∑T

t=1
û2
it =

∑κ

j=1
ψj

(
û′û

nT

)
,

V̂ (κ) =
∑n

j=κ+1
ψj

(
û′û

nT

)
,

by optimal algebraic properties of principal components (Jolliffe, 2002, pp. 13-15), with û =

(û1, · · · , ûT )′ and ût = (û1t, · · · , ûnt)′ . The penalty function of IC2(κ) satisfies that

κ

(
n+ T

nT

)
ln (min[n, T ]) = κ

(
1

n
+

1

T

)
ln (min[n, T ]) > Op

(
1

min [n, T ]

)
.

Hence, it suffi ces to show that

ln
(
V̂ (κ)

)
− ln

(
V̂ (0)

)
≤ Op

(
1

min [n, T ]

)
.

By Assumption 4, V̂ (0) = Op (1) and is bounded away from zero,

ln
(
V̂ (κ)

)
− ln

(
V̂ (0)

)
= ln

(
V̂ (κ)

V̂ (0)

)
≤ V̂ (κ)

V̂ (0)
− 1 =

V̂ (κ)− V̂ (0)

V̂ (0)

for
(
V̂ (κ) /V̂ (0)

)
> 0. It is thus suffi cient to show that

V̂ (κ)− V̂ (0) =
∑n

j=κ+1
ψj

(
û′û

nT

)
−
∑n

j=1
ψj

(
û′û

nT

)
= −

∑κ

j=1
ψj

(
û′û

nT

)
≤ Op

(
1

min [n, T ]

)
.
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Rewrite the residual given in (60) in matrix form

û = v + P̃Λ′,

where P̃ =
(
P̃1, · · · , P̃T

)′
, Λ = (Λ1, · · · ,Λn)′, v = (v1, · · · , vT )′, and vt = (v1t, · · · , vnt)′. Note that

for T × n matrices A and B for some 1 ≤ T ≤ n, by the singular value version of Weyl inequality,

we have

σi+j−1 (A+B) ≤ σi (A) + σj (B) , for 1 ≤ i, j, (i+ j − 1) ≤ T,

where σi (·) denotes the ith singular value. Let i = 1, A = v and B = P̃Λ′, for j = 1, · · · , κ,

σj (û) ≤ σ1 (v) + σj

(
P̃Λ′

)
.

Since σi (A) =
√
ψi (A′A), √

ψj (û′û) ≤
√
ψ1 (v′v) +

√
ψj

(
ΛP̃ ′P̃Λ′

)
.

Hence,

ψj

(
û′û

nT

)
≤ ψj

(
ΛP̃ ′P̃Λ′

nT

)
+ ψ1

(
v′v

nT

)
+ 2

√√√√ψj

(
ΛP̃ ′P̃Λ′

nT

)√
ψ1

(
v′v

nT

)
.

Following eq. (61),

ψj

(
ΛP̃ ′P̃Λ′

nT

)
= Op

(
1

n

)
.

By Assumption 4,

ψ1

(
v′v

nT

)
= ψ1

(
ε̇′ε̇

nT

)
+Op

(
1

n2

)
+Op

(
1

nT

)
= Op

(
1

n

)
+Op

(
1

T

)
.

Then for a fixed κ ≤ κmax, ∑κ

j=1
ψj

(
û′û

nT

)
≤ Op

(
1

n

)
+Op

(
1

T

)
.

Therefore,

V̂ (κ)− V̂ (0) = −
∑κ

j=1
ψj

(
û′û

nT

)
≤ Op

(
1

min [n, T ]

)
.

Q.E.D.�

Part II: Proof of Theorem 1 (ii)

As long as γi 6= γ for any i, the local heterogeneity implies the alternative in CRT (2015b). See

the proof of Theorem 3 in CRT (2015b).

Q.E.D.�
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Appendix B: Proof of Theorem 2

Let Ẋi = [ẋi1, · · · , ẋiT ]′, Xo
i = [xoi1, · · · , xoiT ]′ , F̃ =

[
F̃1, ..., F̃T

]′
, G̃ =

[
G̃1, ..., G̃T

]′
and εi =

[εi1, · · · , εiT ]′ . Under the local heterogeneity, we have

√
nT (β̂tfe,p − β) =

(
1

nT

∑n

i=1
Ẋ ′iẊi

)−1 1√
nT

∑n

i=1
Ẋ ′i ε̇i +Op

(√
T/n

)
+Op

(
1/
√
n
)
.

By definition,

Ωcce,p = E
1

nT

∑n

i=1
Xo′
i εiε

′
iX

o
i , Ωtfe,p = E

1

nT

∑n

i=1
Ẋ ′i ε̇iε̇

′
iẊi

and

Qcce,p = p lim
n,T→∞

1

nT

∑n

i=1
Xo′
i X

o
i , Qtfe,p = p lim

n,T→∞

1

nT

∑n

i=1
Ẋ ′iẊi,

where Ẋi = F̃ Γ̆i + G̃Ψ̆i + Ẋo
i . Note that

Ωtfe,p = E
1

nT

∑n

i=1
Ẋ ′iεiε

′
iẊi

= E
1

nT

∑n

i=1

(
Γ̆′iF̃

′εiε
′
iF̃ Γ̆i + Ψ̆′iG̃

′εiε
′
iG̃Ψ̆i + Ẋo′

i εiε
′
iẊ

o
i

)
,

and

Qtfe,p = p lim
n,T→∞

1

nT

∑n

i=1
Ẋ ′iẊi

= p lim
n,T→∞

1

nT

∑n

i=1

(
Γ̆′iF̃

′F̃ Γ̆i + Ψ̆′iG̃
′G̃Ψ̆i + Ẋo′

i Ẋ
o
i

)
.

Hence, as n, T →∞ with T/n→ 0

Vcce,p − Vtfe,p = Q−1
cce,pΩcce,pQ

−1
cce,p −Q−1

tfe,pΩtfe,pQ
−1
tfe,p.

Assume εit is i.i.d. over i and t, and let Eεiε′i = σ2
εI. Then, it is easy to show that

Q−1
cce,pΩcce,pQ

−1
cce,p −Q−1

tfe,pΩtfe,pQ
−1
tfe,p = σ2

ε(Q
−1
cce,p −Q−1

tfe,p) ≥ 0.

The equality holds when Γi = Ψi = 0.

Q.E.D.�

Appendix C: Proof of Theorem 3

There are three sub-cases: under the null, alternative and local heterogeneity. We consider each

case separately, and then combine them later.
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Case A: Under the null of γi = γ As n, T →∞, it is easy to show that

lim
n,T→∞

ωBPS = lim
n,T→∞

Pr[#̂(ûit) = 0] = 1.

Meanwhile as n, T →∞ with T/n5/3 → 0 and n/T 3 → 0, CRT (2015b) showed that

lim
n,T→∞

ωCRT = lim
n,T→∞

Pr(Sγ,nT ≤ cαn) = α.

Hence

lim
n,T→∞

β̂BPS,p = β̂tfe,p, lim
n,T→∞

β̂CRT,p = αβ̂tfe,p + (1− α) β̂cce,p.

Since Vcce,p − Vtfe,p ≥ 0 in this case, the following inequality holds.

VBPS,p − VCRT,p ≤ 0.

Similarly, we can show that

lim
n,T→∞

β̂BPS,mg = β̂tfe,mg, lim
n,T→∞

β̂CRT,mg = αβ̂tfe,mg + (1− α) β̂cce,mg,

and

VBPS,mg − VCRT,mg ≤ 0.

Case B: Under the alternative In this case, both the BPS and CRT methods suggest the

CCE estimation. Hence we have

VBPS,p = VCRT,p, & VBPS,mg = VCRT,mg.

Case C: Under the local heterogeneity Under the local heterogeneity, as n, T →∞, the BPS
method suggests,

lim
n,T→∞

ωBPS = lim
n,T→∞

Pr[#̂(ûit) = 0] = 1,

meanwhile as n, T →∞ with T/n5/3 → 0 and n/T 3 → 0, the CRT method suggests

lim
n,T→∞

ωCRT = lim
n,T→∞

Pr(Sγ,nT ≤ cαn) = 0.

Hence it is easy to show that

lim
n,T→∞

β̂BPS,p = β̂tfe,p, lim
n,T→∞

β̂CRT,p = β̂cce,p.

Similarly,

lim
n,T→∞

β̂BPS,mg = β̂tfe,mg, lim
n,T→∞

β̂CRT,mg = β̂cce,mg.

Therefore

VBPS,p − VCRT,p ≤ 0, & VBPS,mg − VCRT,mg ≤ 0.

Combining all three cases, we can verify (45).

Q.E.D.�
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Appendix D: Asymptotic Comparison between TFE and CCE Estimators When

βi 6= β

We establish the following lemma. We assume the independence of ηi and xitx
′
it, and we derive the

limiting distributions of TFE and CCE pooled estimators when βi 6= β but γi = γ.

Lemma 1: (Asymptotic Distributions of TFE and CCE Pooled Estimators under Het-

erogeneous Slope Coeffi cients) Under Assumption 1-5, 6A and 7, if either Γi 6= 0 or Ψi 6= 0,

but γi = γ, as n, T →∞,
(i)

√
n
(
β̂cce,p − β

)
−→d N (0,Ωcce,p) ,

where Ωcce,p = Q−1
xo Ωxo,ηQ

−1
xo , Ωxo,η and Qxo are defined in (62).

(ii)
√
n
(
β̂tfe,p − β

)
→d N (0,Ωtfe,p) ,

where Ωtfe,p = Q−1
ẋ Ωẋx̃,ηQ

−1
ẋ , Qẋ and Ωẋx̃,η are defined in (63) and (64).

Proof of Lemma 1 (i) Let Qxo,i =plimT→∞ T
−1Xo′

i MPX
o
i . If βi = β + ηi and the factor

loadings γi = γ for all i, as shown in Proof of Theorem 3 in Pesaran (2006), β̂cce,p can be written

as

β̂cce,p − β =

(
1

n

∑n

i=1
Qxo,i

)−1( 1

n

∑n

i=1
Qxo,iηi

)
+Op

(
1

n

)
+Op

(
1√
nT

)
.

As n, T →∞,
√
n
(
β̂cce,p − β

)
−→d N (0,Ωcce,p) ,

Ωcce,p = Q−1
xo Ωxo,ηQ

−1
xo , (62)

where Ωxo,η = n−1
∑n

i=1 E (Qxo,iΩηQxo,i), Ωη = E (ηiη
′
i), and Qxo =plimn,T→∞

(
n−1

∑n
i=1Qxo,i

)
.

Proof of Lemma 1 (ii) If γi = γ, we rewrite the panel regression as

yit = ai + β′xit + η′ixit + γFt + εit.

After the within transformation,

ẏit = β′ẋit + η′ix̃it −
(

1

n

∑n

i=1
η′ix̃it

)
+ ε̇it,

with x̃it = xit − T−1
∑T

t=1 xit. The TFE pooled estimator is given by

β̂tfe,p − β =

(
1

nT

∑n

i=1

∑T

t=1
ẋitẋ

′
it

)−1

×{
1

nT

∑n

i=1

∑T

t=1
ẋit

[
x̃′itηi −

(
1

n

∑n

i=1
x̃′itηi

)]}
+Op

(
1√
nT

)
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By Assumption 7 and the WLLN, as n, T →∞,

plimn,T→∞
1

nT

∑n

i=1

∑T

t=1
ẋitẋ

′
it = Qẋ, (63)

where Qẋ is a k × k positive definite matrix. By the independence of xitx′it and ηi for all i and j,
we have

E
{

1

nT

∑n

i=1

∑T

t=1
ẋit

(
x̃′itηi −

(
1

n

∑n

i=1
x̃′itηi

))}
= 0.

Note that n−1
∑n

i=1 x̃
′
itηi = Op

(
n−1/2

)
. The variance is thus given by

Var
{

1

nT

∑n

i=1

∑T

t=1
ẋit

[
x̃′itηi −

(
1

n

∑n

i=1
x̃′itηi

)]}
= n−2

∑n

i=1
E (Qẋx̃,iΩηQẋx̃,i) +Op

(
n−2

)
,

where Ωη = E (ηiη
′
i) ≥ 0, and Qẋx̃,i =plimT→∞ T

−1
∑T

t=1 ẋitx̃
′
it. By CLT, as n, T →∞,

√
n
(
β̂tfe,p − β

)
→d N (0,Ωtfe,p) , (64)

with Ωtfe,p = Q−1
ẋ Ωẋx̃,ηQ

−1
ẋ , and Ωẋx̃,η = n−1

∑n
i=1 E (Qẋx̃,iΩηQẋx̃,i) . Q.E.D.�

Asymptotic Variance Comparison We can further decompose Ωcce,p and Ωtfe,p as follows:

Ωcce,p = Ωη +Q−1
xo

{
n−1

∑n

i=1
E [(Qxo,i −Qxo) Ωη (Qxo,i −Qxo)]

}
Q−1
xo ,

Ωtfe,p = Ωη +Q−1
ẋ

{
n−1

∑n

i=1
E [(Qẋx̃,i −Qẋ) Ωη (Qẋx̃,i −Qẋ)]

}
Q−1
ẋ

+Q−1
ẋ

[
n−1

∑n

i=1
E (Qẋx̃,i −Qẋ)

]
Ωη + Ωη

[
n−1

∑n

i=1
E (Qẋx̃,i −Qẋ)

]
Q−1
ẋ .

Suppose that Qxo,i = Qxo for all i, it is easy to show that as n, T →∞, Ωcce,p → Ωη. Next, observe

this.

Ωtfe,p − Ωcce,p

= Q−1
ẋ

{
n−1

∑n

i=1
E [(Qẋx̃,i −Qẋ) Ωη (Qẋx̃,i −Qẋ)]

}
Q−1
ẋ

+Q−1
ẋ

[
n−1

∑n

i=1
E (Qẋx̃,i −Qẋ)

]
Ωη + Ωη

[
n−1

∑n

i=1
E (Qẋx̃,i −Qẋ)

]
Q−1
ẋ

= A+B + C.

Recall that Ῠi = Υi − n−1
∑n

i=1 Υi and Υ′i = [Γ′i,Ψ
′
i] . By WLLN,

Qẋx̃,i = plimT→∞T
−1
∑T

t=1

(
Ῠ′iP̃t + ẋoit

)(
Υ′iP̃t + x̃oit

)′
= Ῠ′iΣP̃Υi +Qẋox̃o,i,

Qẋ = plimn,T→∞ (nT )−1
∑n

i=1

∑T

t=1

(
Ῠ′iP̃t + ẋoit

)(
Ῠ′iP̃t + ẋoit

)′
= E

(
Ῠ′iΣP̃ Ῠi

)
+Qẋo ,
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with Qẋox̃o,i =plimT→∞T
−1
∑T

t=1 ẋ
o
itx̃

o′
it , Qẋo =plimn,T→∞ (nT )−1∑n

i=1

∑T
t=1 ẋ

o
itẋ

o′
it , and ΣP̃ =

E
(
P̃tP̃

′
t

)
being a (r +m) × (r +m) positive definite matrix. Since we assume that Qẋo,i = Qẋo ,

then

Qẋox̃o,i −Qẋo = Qẋox̃o,i −Qẋo,i + (Qẋo,i −Qẋo)

= plimT→∞T
−1
∑T

t=1
ẋoit

(
n−1

∑n

j=1
x̃o′jt

)
= O

(
n−1

)
,

Qẋx̃,i −Qẋ = Ῠ′iΣP̃Υi − E
(

Ῠ′iΣP̃ Ῠi

)
+O

(
n−1

)
6= 0, if Ῠi 6= 0 for some i.

As n, T →∞,

A = Q−1
ẋ

{
n−1

∑n

i=1
E [(Qẋx̃,i −Qẋ) Ωη (Qẋx̃,i −Qẋ)]

}
Q−1
ẋ ≥ 0.

Moreover,

n−1
∑n

i=1
E (Qẋx̃,i −Qẋ) = n−1

∑n

i=1
E
[
Ῠ′iΣP̃Υi − E

(
Ῠ′iΣP̃ Ῠi

)]
+O

(
1

n

)
= n−1

∑n

i=1
E
[
Ῠ′iΣP̃

(
n−1

∑n

j=1
Υj

)]
+O

(
1

n

)
= n−2

∑n

i=1
E
(

Ῠ′iΣP̃Υi

)
+O

(
1

n

)
= O

(
1

n

)
,

which implies that as n, T →∞,

B = Ωη

[
n−1

∑n

i=1
E (Qẋx̃,i −Qẋ)

]
Q−1
ẋ → 0,

C = Q−1
ẋ

[
n−1

∑n

i=1
E (Qẋx̃,i −Qẋ)

]
Ωη → 0.

Therefore, as n, T →∞,
Ωtfe,p − Ωcce,p = A+B + C → A ≥ 0.

If Qxo,i 6= Qxo for some i, then it is not straightforward to compare two variances mathemati-

cally. We investigate this issue by means of Monte Carlo simulations.

Appendix E: Proof of Remark 1

In this part, we establish the consistency of the BPS method in dynamic panel data models with

weakly exogeneous regressors. Consider the following DGP:

yit = ai + βxit−1 + λiFt + uit,

where we assume

xit = λx,iFt + φiGt + xoit,

xoit = ci + ρxoit−1 + εit,
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and

uit = δεit + εit,

where εit ∼ iid
(
0, σ2

ε

)
, εit ∼ iid

(
0, σ2

ε

)
and E (εitεjs) = 0 for all i, j, t, and s. Note that we

can consider a more complicated data generating process, but the main result does not change.

Furthermore, the current setting has been popularly used in this literature. Let β̂fe be the one way

fixed effects or WG estimator. We consider the following cases:

For the first four cases (βi = β), we have

β̂fe − β = δ

∑n
i=1

∑T
t=1 ẋit−1ε̇it∑n

i=1

∑T
t=1 ẋ

2
it−1

+

∑n
i=1

∑T
t=1 ẋit−1ε̇it∑n

i=1

∑T
t=1 ẋ

2
it−1

.

Case 1: When λi = λ, λx,i = λx, and φi = φ for all i

plimn→∞

(
β̂fe − β

)
= −δ1 + ρ

T
+Op

(
n−1/2T−1/2

)
.

Then we have

ûit = u̇it +
(
β − β̂fe

)
ẋoit−1 = u̇it +Op

(
T−1

)
+Op

(
(nT )−1/2

)
.

Let û = (û1, · · · , ûT )′, and ût = (û1t, · · · , ûnt)′. As in the Proof of Theorem 1, we can show that

V̂ (κ)− V̂ (0) = − 1

nT

∑κ

j=1
ψj
(
û′û
)
≤ Op

(
1

min [n, T ]

)
.

Case 2: When λi = λ for all i, but λx,i 6= λx and φi 6= φ for some i

Note that
p limn→∞ n−1

∑n
i=1

∑T
t=1 ẋit−1ε̇it

p limn→∞ n−1
∑n

i=1

∑T
t=1 ẋ

2
it−1

6= −
(

1 + ρ

T

)
,

since

p lim
n→∞

1

n

∑n

i=1

∑T

t=1
ẋ2
it−1 = σ2

λxσ
2
F + σ2

φσ
2
G + σ2

xo 6= σ2
xo ,

where

σ2
λxσ

2
F = p lim

n→∞
1

n

∑n

i=1

∑T

t=1
λ2
x,iF

2
t−1,

σ2
φσ

2
G = p lim

n→∞
1

n

∑n

i=1

∑T

t=1
φ2
iG

2
t−1,

and

σ2
xo = p lim

n→∞
1

n

∑n

i=1

∑T

t=1

(
xoit−1

)2
.
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Then we have

ûit = u̇it +
(
β − β̂fe

)
ẋit−1 = u̇it +Op

(
T−1

)
+Op(n

−1/2T−1/2).

Hence, it is straightforward to show

lim
n,T→∞

Pr[#̂(ûit) = 0] = 1.

Case 3: When λi 6= λ, λx,i = λx, and φi = φ for all i

In this case, we have

β̂fe − β = −δ1 + ρ

T
+Op

(
n−1/2T−1/2

)
,

then we have

ûit = u̇it +
(
λi − n−1

∑n

i=1
λi

)
F̃t +

(
β − β̂fe

)
ẋoit−1.

Hence the estimated number of common factor becomes non-zero.

Case 4: When λi 6= λ, λx,i 6= λx, and φi 6= φ for some i

In this case, we have

ûit = u̇it +
(
λi − n−1

∑n

i=1
λi

)
F̃t +

(
β − β̂fe

)
ẋit−1.

Hence the estimated number of common factor must be greater than zero.

Case 5: When βi is heterogeneous (βi = β + ηi)

Note that

yit = ai + βxit−1 + λiFt + (βi − β)xit−1 + uit

= ai + βxit−1 + λiFt + ηixit−1 + uit,

ûit = u̇it + λ̆iF̃t + ηix̃it−1 −
(
n−1

∑n

i=1
ηix̃it−1

)
+
(
β − β̂fe

)
ẋit−1.

Hence, the estimated number of common factor is always greater than zero.
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When ρ is heterogeneous, an imposing homogeneous restriction on ρ induces a factor structure

in ûit. In this case, the estimated number of common factor becomes non-zero even when λi = λ,

λx,i = λx, and φi = φ for all i. Table E-1 shows the results of an asymtotic factor number in various

cases.

Table E-1: Summary of The Results with Various Cases

Aymptotic Factor Number

βi = β λi = λ λx,i = λx, φi = φ limn,T→∞ Pr[#̂(ûit) = 0] = 1

λi = λ λx,i 6= λx or φi 6= φ limn,T→∞ Pr[#̂(ûit) = 0] = 1

λi 6= λ λx,i = λx, φi = φ limn,T→∞ Pr[#̂(ûit) = 0] = 0

λi 6= λ λx,i 6= λx or φi 6= φ limn,T→∞ Pr[#̂(ûit) = 0] = 0

βi 6= β No restriction limn,T→∞ Pr[#̂(ûit) = 0] = 0

Appendix F: Unbalanced Panel

Here we only extend the application of the BPS method to unbalanced panels. Let nt be the

number of cross-sectional units observed in period t. For i = 1, · · · , nt and t = 1, · · · , T , we can
modify the proposed two-step procedure as follows:

Step 1: Hansen (2020, p. 620) discusses how to estimate β̂tfe for the unbalanced panel data. Here

we briefly describe his procedure. Let τ t be a set of T dummy variables where the t-th element

of τ t is equal to one, otherwise zero. Instead of (18), run the following one-way fixed effects

regression.

ỹit = β′x̃it + τ̃ ′tF
o + uit, (65)

where ỹit = yit−T−1
∑T

t=1 yit, x̃it = xit−T−1
∑T

t=1 xit, and τ̃ t = τ t−T−1
∑T

t=1 τ t. This pro-

duces estimates of the slope coeffi cients β̂tfe and the time effects F̂
o. Next, get the residuals,

ûit = ỹit − β̂
′
tfex̃it − τ̃ ′tF̂ o.

Step 2 This algorithm is introduced in Appendix B in Bai (2009) and can be implemented by

regife in Stata, which computes both the factor and the factor loadings γ̂∗i and F̂
∗
t . Obtain

a new balanced panel data matrix1 with

û∗it =

{
γ̂∗′i F̂

∗
t if ûit is missing,

ûit o.w.

1See Appendix A in Stock and Watson (1998) for more discussions about different imputing methods of dealing

with specific data irregularities.
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Use BN’s IC2 criterion to estimate the number of common factors with û∗it.

If # (û∗it) = 0, then the regression in (65) should be run. Otherwise, the factor-augmented

regressions should be considered. Pesaran (2015, p. 793) provides detailed procedures on how to

deal with unbalanced panel data. Also, note that the CCE estimation in unbalanced panels can be

implemented using the Stata package xtdcce2.
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Table 3: Finite sample performances of pre-testing procedures

under homogeneous factor loadings and slope coeffi cients

Pooled Case MG Case

Frequencies∗ Variance Comparison Variance Comparison

n T IC2 > 0 Sγ,nT > cα,n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 0.000 0.255 0.304 1.516 2.997 0.530 1.281 2.040

25 50 0.000 0.185 0.148 1.345 2.709 0.239 1.172 1.803

25 100 0.000 0.159 0.072 1.319 2.736 0.113 1.159 1.805

25 200 0.000 0.139 0.036 1.333 2.778 0.055 1.164 1.855

50 25 0.000 0.210 0.143 1.531 3.245 0.250 1.264 2.144

50 50 0.000 0.131 0.071 1.268 2.972 0.120 1.125 1.875

50 100 0.000 0.099 0.035 1.200 2.971 0.058 1.086 1.845

50 200 0.000 0.090 0.017 1.118 2.882 0.028 1.036 1.786

100 25 0.000 0.174 0.070 1.414 3.257 0.128 1.203 2.078

100 50 0.000 0.107 0.035 1.229 3.057 0.058 1.103 1.966

100 100 0.000 0.084 0.017 1.176 3.118 0.029 1.069 1.897

100 200 0.000 0.079 0.009 1.111 2.889 0.014 1.071 1.857

200 25 0.000 0.178 0.036 1.417 3.333 0.066 1.182 2.106

200 50 0.000 0.097 0.017 1.235 3.059 0.028 1.107 1.964

200 100 0.000 0.075 0.008 1.250 3.250 0.014 1.071 1.929

200 200 0.000 0.056 0.004 1.250 3.250 0.007 1.000 1.857

Note: *) The nominal size equals 5%. All variances are multiplied by 103.
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Table 4: Finite sample performances of pre-testing procedures

under heterogeneous factor loadings but homogeneous slope coeffi cients

Pooled Case MG Case

Frequencies Variance Comparison Variance Comparison

n T IC2 > 0 Sγ,nT > cα,n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 0.990 1.000 1.006 0.990 0.990 1.150 0.989 0.989

25 50 1.000 1.000 0.475 1.000 1.000 0.489 1.000 1.000

25 100 1.000 1.000 0.262 1.000 1.000 0.253 1.000 1.000

25 200 1.000 1.000 0.155 1.000 1.000 0.140 1.000 1.000

50 25 1.000 1.000 0.474 1.000 1.000 0.555 1.000 1.000

50 50 1.000 1.000 0.271 1.000 1.000 0.231 1.000 1.000

50 100 1.000 1.000 0.111 1.000 1.000 0.112 1.000 1.000

50 200 1.000 1.000 0.059 1.000 1.000 0.058 1.000 1.000

100 25 1.000 1.000 0.238 1.000 1.000 0.277 1.000 1.000

100 50 1.000 1.000 0.106 1.000 1.000 0.114 1.000 1.000

100 100 1.000 1.000 0.053 1.000 1.000 0.054 1.000 1.000

100 200 1.000 1.000 0.026 1.000 1.000 0.026 1.000 1.000

200 25 1.000 1.000 0.121 1.000 1.000 0.140 1.000 1.000

200 50 1.000 1.000 0.055 1.000 1.000 0.059 1.000 1.000

200 100 1.000 1.000 0.026 1.000 1.000 0.027 1.000 1.000

200 200 1.000 1.000 0.013 1.000 1.000 0.013 1.000 1.000
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Table 5: Finite sample performances of pre-testing procedures

under local heterogeneous factor loadings and homogeneous slope coeffi cients

Pooled Case MG Case

Frequencies Variance Comparison Variance Comparison

n T IC2 > 0 Sγ,nT > cα,n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 0.000 0.845 0.549 1.590 1.689 0.705 1.451 1.545

25 50 0.000 0.953 0.360 1.189 1.172 0.400 1.123 1.133

25 100 0.000 0.993 0.298 0.695 0.681 0.269 0.796 0.788

25 200 0.000 0.999 0.248 0.415 0.415 0.208 0.505 0.505

50 25 0.000 0.823 0.198 2.116 2.384 0.300 1.657 1.837

50 50 0.000 0.950 0.122 1.721 1.762 0.155 1.432 1.465

50 100 0.000 0.994 0.088 1.136 1.136 0.092 1.130 1.130

50 200 0.000 1.000 0.066 0.742 0.742 0.062 0.806 0.806

100 25 0.000 0.784 0.087 2.333 2.655 0.142 1.761 1.951

100 50 0.000 0.934 0.048 2.063 2.125 0.066 1.621 1.667

100 100 0.000 0.990 0.031 1.742 1.742 0.038 1.447 1.447

100 200 0.000 1.000 0.021 1.190 1.190 0.022 1.182 1.182

200 25 0.000 0.754 0.039 2.564 3.051 0.067 1.836 2.075

200 50 0.000 0.915 0.020 2.500 2.650 0.031 1.742 1.839

200 100 0.000 0.987 0.012 2.167 2.167 0.017 1.588 1.588

200 200 0.000 0.999 0.007 1.857 1.857 0.009 1.444 1.444
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Table 6: Finite sample performances of pre-testing procedures

under homogeneous factor loadings but heterogeneous slope coeffi cients

Pooled Case MG Case

Frequencies Variance Comparison Variance Comparison

n T IC2 > 0 Sγ,nT > cα,n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 1.000 0.320 22.86 1.525 0.999 20.82 1.247 1.000

25 50 1.000 0.251 21.57 1.666 1.000 20.45 1.288 1.000

25 100 1.000 0.246 21.37 1.657 1.000 20.76 1.254 1.000

25 200 1.000 0.295 20.25 1.577 1.000 19.93 1.203 1.000

50 25 1.000 0.253 11.92 1.647 1.000 10.63 1.246 1.000

50 50 1.000 0.171 10.50 1.767 1.000 10.02 1.276 1.000

50 100 1.000 0.153 10.41 1.803 1.000 10.06 1.243 1.000

50 200 1.000 0.147 10.40 1.836 1.000 10.32 1.300 1.000

100 25 1.000 0.197 5.603 1.801 1.000 5.077 1.321 1.000

100 50 1.000 0.124 5.311 1.911 1.000 5.030 1.286 1.000

100 100 1.000 0.095 5.164 2.025 1.000 4.983 1.298 1.000

100 200 1.000 0.092 5.078 1.968 1.000 5.000 1.303 1.000

200 25 1.000 0.179 2.932 1.796 1.000 2.667 1.272 1.000

200 50 1.000 0.100 2.694 1.952 1.000 2.562 1.310 1.000

200 100 1.000 0.072 2.644 1.985 1.000 2.578 1.263 1.000

200 200 1.000 0.063 2.591 1.969 1.000 2.557 1.282 1.000
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Table 7: Finite sample performances of pre-testing procedures

under heterogeneous factor loadings and slope coeffi cients

Pooled Case MG Case

Frequencies Variance Comparison Variance Comparison

n T IC2 > 0 Sγ,nT > cα,n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 1.000 1.000 26.205 1.000 1.000 21.588 1.000 1.000

25 50 1.000 1.000 23.696 1.000 1.000 20.466 1.000 1.000

25 100 1.000 1.000 23.292 1.000 1.000 20.290 1.000 1.000

25 200 1.000 1.000 22.985 1.000 1.000 19.830 1.000 1.000

50 25 1.000 1.000 12.315 1.000 1.000 10.546 1.000 1.000

50 50 1.000 1.000 11.690 1.000 1.000 10.443 1.000 1.000

50 100 1.000 1.000 11.089 1.000 1.000 10.289 1.000 1.000

50 200 1.000 1.000 10.579 1.000 1.000 9.826 1.000 1.000

100 25 1.000 1.000 6.128 1.000 1.000 5.275 1.000 1.000

100 50 1.000 1.000 5.476 1.000 1.000 5.073 1.000 1.000

100 100 1.000 1.000 5.164 1.000 1.000 4.909 1.000 1.000

100 200 1.000 1.000 5.292 1.000 1.000 5.162 1.000 1.000

200 25 1.000 1.000 3.061 1.000 1.000 2.671 1.000 1.000

200 50 1.000 1.000 2.678 1.000 1.000 2.543 1.000 1.000

200 100 1.000 1.000 2.604 1.000 1.000 2.504 1.000 1.000

200 200 1.000 1.000 2.538 1.000 1.000 2.503 1.000 1.000
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