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1 Introduction

Recent panel-data research has incorporated strong cross-section dependence into the conven-

tional panel regression model by introducing a factor structure into the regression error. A

prototypical panel regression with a factor error structure is given by

(1) yit = β′Xit + uit, uit = λu′i F
u
t + εit

where F u
t is a r-vector of latent common factors in the regression error uit, λ

u
i is a vector of fac-

tor loadings, and Xit is a vector of explanatory variables (see, e.g., Pesaran, 2006; Bai, 2009a).

No restriction is imposed on the relationship between the regressor Xit and the common com-

ponent λu′i F
u
t , so the conventional least squares (LS) or least-squares dummy variable (LSDV)

methods may yield inconsistent estimators due to endogeneity.

Several methods have recently been developed to consistently estimate the β parameter.

Ahn, Lee and Schmidt (ALS, 2006) extend the single factor model of Ahn, Lee and Schmidt

(2001) to allow multiple factors, and provide estimation methods based on moment restrictions

on the error term (e.g., white noise or parametric ARMA structure) for small T (time-series

observations). Pesaran (2006) proposes filtering out common factors by including the cross-

sectional averages of (yit, X
′
it)
′

in a regression. Under regularity this ‘common correlated ef-

fects’ (CCE) estimator is consistent provided a rank condition is satisfied (e.g., the number of

observed variables in the equation is at least as large as r). Recently, Bai (2009a) proposes

estimating β jointly with the factor space {F u
1 , . . . , F

u
T } and factor loadings {λu1 , . . . , λuN} by

minimizing

SSR(β, F uk
1 , . . . , F uk

T , λuk1 , . . . , λ
uk
N ) =

∑N
i=1

∑T
t=1(yit − λ

uk′
i F uk

t − β′Xit)
2,

subject to the normalizations T−1
∑T

t=1 F
uk
t F uk′

t = Ik andN−1
∑N

i=1 λ
uk
i λ

uk
i is diagonal, F uk

t ∈
Rk, and λuki ∈ Rk for given k. Bai (2009a) shows that this LS estimator is consistent asN, T →
∞ as long as k ≥ r, without requiring the rank condition of Pesaran (2006), and permitting

general weak dependence and heteroskedasticity in the error term εit. Note that Bai (2009a)

controls for common factors of the regression ‘residuals’ (i.e., yit − X ′itβ), whereas Pesaran

(2006), by using the cross-section averages of (yit, X
′
it)
′, controls for the common factors to the

‘observable’ variables (i.e. yit and Xit).

Alternatively one may augment the panel regression with some other factor estimate from

the observable variables, such as the principal components (PC) estimate. In fact, Kapetanios

and Pesaran (2007) consider a version of this factor augmented estimator and study the finite

sample properties by means of small Monte Carlo experiments. Giannone and Lenza (2008)

use a similar factor augmented panel regression to estimate the international saving-investment

relationship, in which global factors are extracted from the observables.

One purpose of the present paper is to establish formal asymptotics for these factor aug-

mented panel regressions. As yet, rigorous asymptotics have not been derived, although some

authors have suggested required conditions under which the PC estimate can replace the com-

mon factors in the panel regression without affecting the limiting distribution of the LS es-

timator. Specifically, based on his Theorem 1, Bai (2003, p. 146) states that the conditions

2



√
T/N → 0 and N, T →∞ are sufficient under regularity for replacing unobservable common

factors with the PC estimate in time series models (Stock and Watson, 2002; Bernanke, Boivin,

and Eliasz, 2005; Bai and Ng, 2006). Kapetanios and Pesaran (2007) and Giannone and Lenza

(2008) conjecture that this condition also applies to panel regression models such as (1). How-

ever, in the pooled panel regression, the fact that the factor loadings are individually specific

confounds this generalization, and
√
T/N → 0 is in fact not sufficient for using PC estimated

factors in place of the true factors. Instead we find that T/N → 0 and N/T 3 → 0 are sufficient

for the replacement of the unobservable common factors with the PC estimates under regularity.

This finding is supported by intuitive explanation and is verified by simulation. In establishing

these results we provide general conditions under which any factor estimate can replace the true

common factors in the regression, so that our results can be straightforwardly applied to various

other factor estimates such as GMM estimators (ALS, 2006) or efficient PC estimates (Choi,

2008). This is our first contribution.

Another purpose of this paper is to propose and establish asymptotics for a straightforward

one-step dynamic estimator. This method is of practical interest because it exhibits greater

efficiency in the presence of serial correlation in the regression errors.

The remainder of the paper consists of four sections. In the next section we explain the

model and the estimators. Section 3 derives the asymptotic properties of those estimators, and

provides Monte Carlo studies to verify the established theorems. Section 4 concludes. To save

the space, we do not provide technical proofs of the theorems presented herein. The proofs are

available from the authors upon request. Throughout, ‘→p’ denotes convergence in probability,

and ‘⇒’ convergence in distribution, as N → ∞ and T → ∞ jointly; ‖A‖ = tr(A′A); ‘LLN’

is an acronym for ‘law of large numbers’, and ‘CLT’ for ‘central limit theory’.

2 Model and Estimators

In vector notation, (1) is given by

(2) yi = Xiβ + F uλui + εi,

where yi = (yi1, . . . , yiT )′, F u = (F u
1 , . . . , F

u
T )′,Xi = (Xi1, . . . , XiT )′, and εi = (εi1, . . . , εiT )′.

Following convention (e.g. Pesaran, 2006; Bai, 2009a), we permit Xi to be arbitrarily corre-

lated with the unobservable F uλui . In many factor-error regressions this correlation is modelled

through a latent factor structure in Xi. That is, when

(3) Xi = FXλXi + Vi,

we permit FXλXi to be correlated with F uλui .

Let F y denote the common factors to yi, and let λyi denote the associated factor loading

vector. We define F to be the T ×m matrix consisting of a subset of the columns of FX and F y

such that T−1F ′F is nonsingular, and FX = FAX and F y = FAy for some selection matrices

AX and Ay. That is, F contains all unique columns in FX and F y, and when Xi and yi share

the same factor, it is included only once as a column in F . Then F uλui = F yλyi − FXλXi β =
F (Ayλyi − AXλXi β), which implies that F u = FAu for some selection matrix Au. Thus, by
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augmenting the panel regression equation yi = Xiβ + ui with F , we can always control for

F u. But since F is unobservable, this estimation method is infeasible. Instead we consider

augmenting the regression with the estimated common factors.

It is worth noting that this treatment partials out more variation in Xit than necessary for the

identification of β, thus it may lead to loss of efficiency.1 In contrast, Bai (2009a) controls for

the residual common factors only (i.e., common factors in yit−X ′itβ), and it is conjectured that

his estimator is asymptotically efficient if εit are iid over i and t (Bai, 2009a, Corollary 1). In

practical applications, factor number estimation is important, and Bai (2009b) provides a crite-

rion which gives a consistent factor number estimator. However, the small sample performance

of the LS estimator with the factor number estimated this way might be compromised, possibly

leading to a multi-modal sampling distribution of the β estimate. This problem is especially

likely for data generating processes in which fewer common factors exist in yit −X ′itb than in

yit −X ′itβ for some b 6= β.
We have defined F as the maximal common factor set of the observable variables (yi, X

′
i)
′

listed without duplication. Let λX,i and λu,i be such that FXλXi = FλX,i and F uλui = Fλu,i.
(When FX = FAX and F y = FAy as above, we have λX,i = AXλXi and λu,i = Ayλyi −
AXλXi β.) Let Zab ≡ N−1/2

∑N
i=1 aib

′
i for any column vectors ai and bi.

We impose the following restrictions on (2)–(3), which are expressed as high level assump-

tions for simplicity. Sufficient fundamental conditions are stated in the remarks to follow.

Assumption A (i) T−1F ′F is convergent and asymptotically nonsingular;

(ii) N−1
∑N

i=1 vec(λX,i, λu,i)vec(λX,i, λu,i)
′ = Op(1), and N−1

∑N
i=1(λX,iλ

′
X,i + λu,iλ

′
u,i) is

convergent and asymptotically nonsingular;

(iii) Let Qεε ≡ N−1
∑N

i=1 εiε
′
i, and Qvv = N−1

∑N
i=1 vec(Vi)vec(Vi)

′. We have E(‖Qεε‖2) =
O(T 2) and E(‖Qvv‖2) = O(T 2);

(iv) The maximal eigenvalues of T−1Qεε and T−1Qvv areOp(δ̃
−2
NT ), where δ̃

2

NT = min(N, T );

(v) E(‖Zελ‖2) = O(T ) and E(‖Za
V λ‖2) = O(T ) for all a, where Za

V λ ≡ N−1/2
∑N

i=1 Va,iλ
′
i

with Va,i denoting the ath column of Vi and λi ≡ (λ′X,i, λ
′
u,i)
′;

(vi) E(‖F ′Zελ‖2) = O(T ) and E(‖F ′Za
V λ‖2) = O(T ) for all a;

(vii) E(‖Za
V ε‖2) = O(T 2) for all a, where Za

V ε ≡ N−1/2
∑N

i=1 Va,iε
′
i;

(viii) E(‖Za
V εF‖2) = O(T 2) and E(‖F ′Za

V ε‖2) = O(T 2) for all a.

Assumptions A(i) and A(ii) are conventional in the approximate factor model literature. The

second part of condition (ii) ensures that each common factor has a nontrivial contribution to

the variance of at least one of the elements of (X ′it, uit)
′, so that the regularity conditions of Bai

(2003) are satisfied (see Kapetanios and Pesaran, 2007). Assumption A(iii) means that

1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E[εitεisεjtεjs] = O(1),

1This was pointed out by an anonymous referee to one of our previous drafts of this paper.
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which holds if E[εitεisεjtεjs] is uniformly bounded. The same arguments apply to the Vi part.

Assumption A(iv) for εi is taken from a result in Yin, Bai and Krishnaiah (1988, Theorem 3.1)

and Bai and Ng (2002b). For example, it holds for εit if εit is an element of AT eBN , where e is

the T×N matrix of iid random variables with finite fourth moments, and where the eigenvalues

of A′NAN and B′TBT are uniformly bounded, because then the maximal eigenvalue of T−1Qεε

is of order (T−1/2+N−1/2)2 ≤ 4/min(N, T ). A similar treatment can be made to permit weak

dependence and heteroskedasticity among the elements of Vit. Assumption A(v) is motivated

as follows: Note that ‖Zελ‖2 = N−1
∑

i

∑
j λ
′
iλjε

′
iεj . If |E(ε′iεj/T |λ1, . . . , λN)| ≤ ωij and

|E(λ′iλj)| ≤ C̄λ for some universal constant C̄λ, then we have

E(‖Zελ‖2) ≤
T

N

N∑
i=1

N∑
j=1

ωijC̄λ,

which is O(T ) if N−1
∑N

i=1

∑N
j=1 ωij < ∞. The same remarks apply to the second part. This

assumption relates to Lemmas 1(ii) and (iv) of Bai and Ng (2002). Assumption A(vi) means

1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
Ftεitλ

′
iλjεjsF

′
s

]
= O(1),

which holds if E(F ′sFtλ
′
iλj) is uniformly bounded and

1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E(εitεjs) = O(1),

under the assumption that εit is independent of the common factors and the factor loadings.

Similar arguments apply to the second part of the assumption. Assumption A(vii) is satisfied

if the second moments of the elements of Za
V ε, i.e., N−1

∑N
i=1

∑N
j=1E(V a

itV
a
jtεisεjs), are uni-

formly bounded. This would be satisfied in general unless cross section dependence is too

strong so, e.g., Za
V ε does not follow a CLT element-wise. The first part of Assumption A(viii)

can be written as E(F ′Za′
V εZ

a
V εF ) = O(T 2). Intuitively, each element of T−1/2Za

V εF is likely

bounded and asymptotically random (if EZa
V εF = 0), thus the sum of its squared elements

would be bounded in the mean. To illustrate this more rigorously, let Xit be scalar. Assumption

A(viii) means

1

NT 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

T∑
r=1

E[FsVisεitεjtVjrF
′
r] = O(1).

If |E(εitεjt|V1, . . . , VN , F )| ≤ ωεij for all t, then the left hand side (which is nonnegative) is

bounded by

1

NT

N∑
i=1

T∑
j=1

T∑
s=1

T∑
r=1

ωεij|E(VisVjrF
′
rFs)|.

If furthermore |E(VisVjr|F )| ≤ ωVsr for all i and j, and if |E(F ′rFs)| is uniformly bounded, then
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the above quantity is bounded by a universal constant times

1

NT

N∑
i=1

T∑
j=1

T∑
s=1

T∑
r=1

ωεijω
V
rs =

[
1

N

N∑
i=1

N∑
j=1

ωεij

]
·
[

1

T

T∑
s=1

T∑
r=1

ωVsr

]
.

Thus the first part of Assumption A(viii) holds if the right hand of the above displayed expres-

sion is bounded, which is a weak condition. The second part can be examined in a similar

manner.

Our interest is a pooled regression of yi onXi augmented with an estimate F̂ of the common

factors F . This factor augmented estimator (FAE) is defined as

(4) b̂FAE ≡
(∑N

i=1X
′
iMF̂Xi

)−1∑N
i=1X

′
iMF̂yi,

where MA ≡ I − A(A′A)−1A′ for any full column rank matrix A.

We also consider improving efficiency by estimating an equation that includes lagged de-

factored variables as regressors. More specifically, one can estimate β by fitting

(5) ÿit = Ẍ ′itβ + Ẍ ′it−1φ+ ρÿit−1 + errorit,

where ÿit and Ẍ ′it are the t-th rows of ÿi ≡MF̂yi and Ẍi ≡MF̂Xi respectively. The β estimate

from this regression, denoted as b̂SFAE, is called the FAE under serial correlation (SFAE in short).

When the common factors F are estimated using the PC method, we call the resulting

feasible estimator (4) the principal component augmented estimator (PCAE) and denote it by

b̂PCA. Similarly, the SFAE estimator from (5) using the PC factor estimates is called the PCAE

under serial correlation (SPCAE in short), and it is denoted by b̂SPCA.

3 Asymptotics

Replacing F u with the full factor set F , we can write (2) as

(6) yi = Xiβ + Fλu,i + εi,

where λu,i satisfies Fλu,i = F uλui as explained previously. In this section, we provide asymp-

totics for the factor augmented estimators b̂PCA and b̂SPCA defined in the previous section.

3.1 Ordinary Factor Augmented Estimator

We first consider an infeasible factor-augmented estimator, denoted as b̂I,FAE, which is obtained

from a pooled regression of MFyi on MFXi. It satisfies:

b̂I,FAE = β +
(∑N

i=1X
′
iMFXi

)−1∑N
i=1X

′
iMF εi.
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The estimator is infeasible since the factors are assumed to be known. When εit is stationary

over t, a
√
NT convergence rate would be obtained under regularity, and the limit distribution

of
√
NT (b̂I,FAE−β) is also naturally obtained from the behavior of (NT )−1

∑N
i=1X

′
iMFXi and

(NT )−1/2
∑N

i=1X
′
iMF εi. We maintain the following assumption.

Assumption B As N, T → ∞, (NT )−1
∑N

i=1X
′
iMFXi →p ΣX which is nonsingular, and

(NT )−1/2
∑N

i=1X
′
iMF εi⇒ N(0, AFAE) for some AFAE.

When F is replaced with an estimate F̂ , the corresponding FAE satisfies

(7) b̂FAE = β +
(∑N

i=1X
′
iMF̂Xi

)−1∑N
i=1X

′
iMF̂ (εi + Fλu,i).

The properties of b̂FAE depend heavily on the last term. In particular, consistency requires that

plim(NT )−1
∑N

i=1X
′
iMF̂ (εi +Fλu,i) = 0, while in order for b̂FAE to have an unbiased limiting

distribution, we require (NT )−1/2
∑N

i=1X
′
iMF̂ (εi + Fλu,i) to be centered at zero.

We will consider ‘consistent’ factor estimates F̂ in the sense that

(8) T−1(F̂ − FH)′(F̂ − FH) = Op(δ
−2
NT ) for some δNT →∞,

where H is asymptotically nonsingular. (Note that Fλu,i = FHH−1λu,i, so any nonsingular

transformation of the columns of F can also be regarded as common factors. See Bai and Ng,

2002a.) In (8), δNT is a function of N and T . For example, Bai and Ng (2002a) show that for

the PC estimator, δNT = min[N, T ]1/2.
Theorem 1 below gives asymptotic theory for the standard FAE. Given that the PC factor

estimation method is popular in practice, we also provide theory for the PCAE b̂PCA. For the

PCAE, we take the results given in Bai and Ng (2002a) as a high level assumption in Theorem

1. We have the following results as N, T →∞.

Theorem 1 Under Assumption A: (i) if (8) is satisfied for some δNT → ∞ and asymptotically

nonsingular H , then plim b̂FAE = β; (ii) If the conditions in (i) hold, and if (a) T 1/2δ−2NT → 0,

(b) F ′MF̂F = op(1), and (c) F ′MF̂F = op(
√
T/N), then

√
NT (b̂FAE − b̂I,FAE) →p 0; (iii) If

T/N → 0, N/T 3 → 0 and if the PC estimator F̂ satisfies (8) for some δ2NT = min(N, T ), then√
NT (b̂PCA − b̂I,FAE)→p 0.

Remarks.

1. Theorem 1(i) states that the consistency of an standard FAE requires only the consistency

of the associated factor estimator in the sense of (8). For example, the PC estimator is

consistent when N, T →∞ in the presence of serial correlation and weak cross-sectional

dependence in the idiosyncratic errors Vit and εit (Bai and Ng, 2002a). If T is fixed

and the errors are uncorrelated over t, then various
√
N -consistent factor estimates are

available (e.g., ALS, 2006, classical PC estimates, etc.).
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2. Theorem 1(ii) means that under three additional conditions, the standard FAE and its

infeasible counterpart are asymptotically equivalent up to order (NT )−1/2, thus having

the same asymptotic distribution. When T/N → 0, condition (c) implies condition (b).

Note that conditions (a)–(c) are not automatically satisfied by consistent F estimates and

should be checked for each factor estimate. If T is fixed and F̂ is
√
N -consistent (e.g.,

ALS, 2006), then all the conditions are satisfied.

3. The condition that δ2NT = min(N, T ) is a result derived by Bai and Ng (2002a, Theorem

1) from a set of fundamental assumptions. See Bai and Ng (2002a) for full discussion.

4. Theorem 1(iii) gives conditions under which the PC estimate satisfies the requirements

of Theorem 1(ii), such that
√
NT (b̂PCA − b̂I,FAE) →p 0. These conditions merit some

discussion. Notably these conditions are different from the
√
T/N → 0 condition given

in Kapetanios and Pesaran (2007) and Giannone and Lenza (2008). The condition that

N/T 3 → 0 and T/N → 0 is justified as follows. When the idiosyncratic errors Vit and

εit are serially correlated, the factor estimate may be biased for small T . If N increases

fast while T increases too slowly, then the remaining small bias can be amplified greatly

(when multiplied by
√
NT ), so the limiting distribution can be biased. The condition that

N/T 3 → 0 precludes this possibility. On the other hand, if T grows too fast compared

to N , then the discrepancy between FH and F̂ may accumulate, possibly resulting in a

biased asymptotic distribution. This possibility is precluded by the condition that T/N →
0.

5. Theorem 1(iii) suggests that if N is large compared to T and if T is not too small, then

the asymptotic distribution of the PCAE is equivalent to that of its infeasible counterpart.

But if T > N , the asymptotic distribution of
√
NT (b̂PCA − β) is biased. But in that

case, one can simply estimate the factor loadings of (yit, X
′
it)
′ first and then augment

the panel regression with the estimated factor loadings. By switching the roles of N
and T , and of the common factors and the factor loadings, we can see that this ‘factor

loading augmented’ estimator is asymptotically equivalent to the corresponding infeasible

estimator if N/T → 0 and T/N3 → 0. However if N/T → c > 0, then the asymptotic

distribution of the FAE is biased. A bias correction as proposed in Bai, 2009a, for this

case would be an interesting future research topic.

We next consider the computation of standard errors for the standard FAE under the as-

sumption that the random variables are independent across i, such that

(9) AFAE = lim
N,T→∞

1

NT

∑N
i=1E(X ′iMF εiε

′
iMFXi).

When the FAE is equivalent to its infeasible counterpart, the variance of the asymptotic distri-

bution of
√
NT (b̂FAE − β) is VFAE ≡ Σ−1X AFAEΣ−1X , because of Theorem 1(ii) and Assumption

B. The ΣX term is naturally estimated by Σ̂X ≡ (NT )−1
∑N

i=1X
′
iMF̂Xi, and AFAE in (9) is

estimated by

(10) ÂFAE ≡
1

NT

∑N
i=1X

′
iMF̂ ε̂iε̂

′
iMF̂Xi, ε̂i ≡ yi −Xib̂FAE,

8



under the assumption of cross sectional independence for εit.
Pesaran (2006) proposes another method of estimating the asymptotic variance. Let b̂i be

the individual feasible β estimate, i.e., b̂i = (X ′iMF̂Xi)
−1X ′iMF̂yi. Then we have b̂i = β +

(X ′iMF̂Xi)
−1X ′iMF̂ (εi + Fλu,i), thus

X ′iMF̂ εi +X ′iMF̂Fλu,i = X ′iMF̂Xi(b̂i − β),

where the second term on the left hand side is negligible in the sense that its second sample

moment (NT )−1
∑N

i=1X
′
iMF̂Fλu,iλ

′
u,iF

′MF̂Xi asymptotically disappears. ThusAFAE can also

be estimated by

(11) ÃFAE =
1

NT

∑N
i=1X

′
iMF̂Xi(b̂i − b̄)(b̂i − b̄)′X ′iMF̂Xi, b̄ =

1

N

∑N
i=1 b̂i.

According to supplementary simulations (not reported) this variance estimate performs quite

well even in small samples.

The analysis so far is based on the supposition that the factor numbers are known or correctly

estimated. When the factor numbers are unknown, they can be consistently estimated using the

selection criteria suggested by Bai and Ng (2002a), for example.

3.2 FAE under Serial Correlation

In this subsection we provide asymptotic results for the SFAE, which is proposed in order to

enhance efficiency in the presence of serial correlation in εit. The analysis is similar to the

previous case: We consider an infeasible estimator first, and then show that a feasible estimator

is asymptotically equivalent to the infeasible counterpart under certain conditions. Let ẏi ≡
MFyi and Ẋi ≡ MFXi, and let ẏit and Ẋ ′it denote the t-th rows of ẏi and Ẋi respectively. The

infeasible estimator b̂I,SFAE of β under serial correlation is the estimated coefficient of Ẋit when

ẏit is regressed on Ẋit, Ẋit−1 and ẏit−1 by pooled least squares. (To specify a higher AR order,

one can simply use more lagged variables on the right hand side. For example, if an AR(2)

specification is to be fitted, Ẋit, Ẋit−1, Ẋit−2, ẏit−1 and ẏit−2 appear on the right hand side.)

Importantly, β is consistently estimated by this autoregressive estimation, despite ẏit−1 being

correlated with the regression error. (This is shown by Phillips and Sul, 2007, p. 169, for the

case when case for Ft = (1, t)′.)
Under regularity similar to Assumption B for a panel CLT, the infeasible estimator b̂I,SFAE is

asymptotically normal. The assumption below ensures this holds. LetWit ≡ [Ẋ ′it, Ẋ
′
it−1, ẏit−1]

′,

which is the infeasible de-factored regressor vector. Let ε̇it be the t−th row of ε̇i ≡ MF εi. We

assume the following.

Assumption C As N → ∞ and T → ∞, (NT )−1
∑N

i=1

∑T
t=1WitW

′
it →p ΣW , which is non-

singular, and (NT )−1/2
∑N

i=1

∑T
t=1(ξit − Eξit), where ξit ≡ Wit(ε̇it, ε̇it−1), is asymptotically

normal.

The SFAE b̂SFAE is obtained by replacing F with an estimate F̂ satisfying (8). That is, letting

ÿi ≡ MF̂yi and Ẍi ≡ MF̂Xi and MF̂ = I − F̂ (F̂ ′F̂ )−1F̂ ′, the feasible estimator b̂SFAE is
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obtained by regressing ÿit on Ẍit, Ẍit−1 and ÿit−1, where ÿit and Ẍ ′it are the t-th rows of ÿi
and Ẍi respectively. The PCAE estimator for this autoregressive case is the feasible estimator

using the PC estimator. As stated above, b̂SPCA denotes the feasible estimator with PC estimated

factors. We have the following result.

Theorem 2 The results in Theorem 1 also hold when b̂FAE, b̂I,FAE and b̂PCA are replaced with

b̂SFAE, b̂I,SFAE and b̂SPCA, respectively.

The required conditions of Theorem 2 are identical to those of Theorem 1.

To evaluate the asymptotic variance, we note that the autoregressive estimator is alge-

braically identical to the slope estimate from the regression on z̈it = Ẍ ′itβ + ηit where z̈it ≡
ÿit − Ẍ ′it−1b̂1 − ρ̂ÿit−1 with ρ̂ and b̂1 being the estimated coefficients of ÿit−1 and Ẍit−1 respec-

tively from the autoregressive feasible regression, viz.,

(12)
√
NT (b̂SFAE − β) =

[
1

NT

∑N
i=1

∑T
t=1 ẌitẌ

′
it

]−1
1√
NT

∑N
i=1

∑T
t=1 Ẍit(z̈it − Ẍ ′itβ).

Because of the asymptotic equivalence of the feasible and infeasible estimators under Theorem

2, and under the assumption that εit are cross section independent, the variance of the numerator

is approximated by

(13)
1

NT

N∑
i=1

[
T∑
t=1

Ẍit(z̈it − Ẍ ′itβ)

] [
T∑
t=1

Ẍit(z̈it − Ẍ ′itβ)

]′
.

Now (13) can be estimated by replacing β with b̂SFAE, and the asymptotic variance of (12) is

estimated using the usual sandwich form.

Alternatively Pesaran’s (2006) method can again be employed. Specifically, for each i, let

b̃i = (
∑

t ẌitẌ
′
it)
−1∑

t Ẍitz̈it, which is the individual autoregressive estimator is obtained by

regressing z̈it on Ẍit. Then we have

T∑
t=1

ẌitẌ
′
it(b̃i − β) =

T∑
t=1

Ẍit(z̈it − Ẍ ′itβ),

so (13) equals (NT )−1
∑N

i=1

[∑T
t=1 ẌitẌ

′
it(b̃i − β)

] [∑T
t=1 ẌitẌ

′
it(b̃i − β)

]′
. This can be es-

timated by replacing β with the average of b̃i over i. According to simulations this alternative

estimator performs well even when the sample size is small, a result similar to that obtained for

the standard FAE.

3.3 Monte-Carlo Study

Monte Carlo experiments are used to evaluate both the finite sample and asymptotic properties

of the PCAEs. We generate data from yit = Xitβ + γ
∑r

j=1 λjiFjt + εit with scalar Xit =∑r
j=1 λjiFjt+

∑p
j=1 κjiF

x
jt+Vit. Here εit, Vit, {Fjt}rj=1 and {F x

jt}
p
j=1 follow independent AR(1)

processes based on iid N(0, 1) innovations with coefficients equal to 0.5; and {λji}rj=1 and
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{κji}pj=1 are independently drawn from iid N(1, 1) for each i. We set β = 1 in all simulations

and vary r, p and γ. Each simulation is replicated 2,000 times.

Table 1 reports the simulated finite sample properties of several estimators of β: The infea-

sible standard and dynamic FAE (with true factors {Fjt}rj=1); the standard and dynamic PCAE

(using {F̂jt}rj=1 estimated from the pooled observable variables); and the estimator proposed in

Bai (2009a). For the feasible estimators the factor number is known.

We consider two different pairs of factor numbers. The first setting is r = 2 and p = 0,

so that the PCAEs and Bai (2009a) estimator should exhibit similar bias and variance in the

large sample since both methods partial out the same factors. Panel A in Table 1 confirms this

conjecture. Panel A also shows that the finite sample performance of the two estimators is

dependent on the ‘signal’ of the common factors. For the Bai (2009a) estimator the factors are

estimated using the regression residual, and thus the ‘signal’ is increasing in the magnitude of γ.

Thus the bias and variance of the estimator decrease as |γ| increases. The signal of the common

factors in observable yit increases as the magnitude of γ + β increases for this particular DGP.

Thus as γ + β gets larger, the bias and variance of the PCAEs decrease. Overall, the small

sample performance of the PCAEs relative to the Bai (2009a) estimator is dependent on the β
and γ parameters. For example, for γ = −0.5, the PCAEs outperform the Bai (2009a) estimator

in terms of bias and variance, but for γ = 1, the Bai (2009a) estimator exhibits smaller bias.

For N = T = 100 all estimators have variance close to that of the infeasible estimator.

In the second DGP we set r = 1 and p = 5, so the regressor has additional common

factors and the PCAEs partial out more variation than necessary for consistency. As discussed

in section 2, the Bai (2009a) estimator is more efficient in this DGP. Panel B in Table 1 confirms

that the Bai (2009a) estimator has smaller variance as well as bias than the PCAEs.

Additional results available from the authors upon request consider the case where the factor

number is estimated using the Bai and Ng (2002a) and Bai (2009b) criteria. In general, with

large enough N and T the factor number is estimated consistently so that there is little, if any,

effect on estimator performance. However for small N or T , the Bai (2009a) estimates often

exhibit large bias when γ is small due to the underestimation of the number of factors in the

error. In contrast the number of factors in the observable yit and Xit is overestimated for the

considered DGPs. Thus all the endogenous factors are partialled out in the PCAE procedures

and the point estimates consequently exhibit much less bias.

Table 2 reports the mean and variance of
√
NT (b̂PCA − b̂I,FAE) in order to verify Theorem

1(iii). Again the factor number is known. (Our conclusions do not change when the factor

number is estimated.) Because the infeasible estimator is unbiased, the mean of
√
NT (b̂PCA −

b̂I,FAE) is the normalized bias of the PCAE. Note the (absolute) bias has a “U” shape as N
increases for given T (this is particularly prominent for small T ). This would imply that bias

results when growth in T is too slow (compared to N ), which partly illustrates the necessity

of the N/T 3 → 0 condition. Also, as T → ∞ for fixed N , the absolute bias either increases

for small N , or has a “U” shape for large N , which suggests the requirement that T/N → 0
in order for the bias to diminish. In addition the bias does not dissipate as N and T grow with

N = T , which is also in accordance with the T/N → 0 condition. Additional simulation results

available online also verify Theorem 2(iii) for this DGP.
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4 Concluding Remarks

In this paper we establish asymptotics for linear panel regression estimators augmented with

estimated common factors. A specific rate condition (T/N → 0 and N/T 3 → 0) is derived for

the asymptotic equivalence of PC-augmented panel estimators. These conditions are different

from those for time series models augmented with factors (i.e., that
√
T/N → 0; see Bai and

Ng, 2006). Monte-Carlo studies support these asymptotic results. We also derive asymptotics

for a one-step dynamic estimator which can achieve efficiency gains in the presence of serial

correlation in the idiosyncratic regression error.
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Table 1: Simulated properties of factor-augmented panel estimators

Bias Variance × 1000

γ N T A B C D E A B C D E

Panel A: r = 2, p = 0
-0.5 25 25 0.003 0.001 -0.076 -0.076 -0.132 2.867 2.093 3.521 2.678 21.74

-0.5 25 100 0.001 0.000 -0.056 -0.056 -0.011 0.693 0.428 0.781 0.493 1.026

-0.5 100 25 0.000 0.000 -0.023 -0.023 -0.054 0.680 0.485 0.733 0.529 5.525

-0.5 100 100 0.000 0.000 -0.013 -0.013 -0.003 0.157 0.103 0.161 0.106 0.169

1 25 25 0.003 0.001 -0.038 -0.039 0.012 2.867 2.093 3.073 2.265 3.553

1 25 100 0.001 0.000 -0.040 -0.040 0.002 0.693 0.428 0.746 0.463 0.764

1 100 25 0.000 0.000 -0.010 -0.009 0.003 0.680 0.485 0.695 0.494 0.719

1 100 100 0.000 0.000 -0.010 -0.010 0.001 0.157 0.103 0.159 0.105 0.160

Panel B: r = 1, p = 5
-0.5 25 25 0.000 0.000 -0.187 -0.185 -0.002 0.253 0.185 4.055 3.672 0.405

-0.5 25 100 0.000 0.000 -0.157 -0.155 0.000 0.061 0.038 0.982 0.629 0.087

-0.5 100 25 0.000 0.000 -0.043 -0.043 -0.001 0.065 0.047 0.848 0.760 0.100

-0.5 100 100 0.000 0.000 -0.034 -0.034 0.000 0.015 0.010 0.189 0.121 0.019

1 25 25 0.000 0.000 -0.169 -0.167 0.001 0.253 0.185 3.886 3.473 0.347

1 25 100 0.000 0.000 -0.154 -0.152 0.000 0.061 0.038 0.946 0.613 0.085

1 100 25 0.000 0.000 -0.035 -0.035 0.000 0.065 0.047 0.820 0.721 0.085

1 100 100 0.000 0.000 -0.033 -0.033 0.000 0.015 0.010 0.189 0.121 0.019

A = b̂I,FAE, B = b̂I,SFAE, C = b̂PCA, D = b̂SPCA, E = Bai (2009a) estimator

Table 2: Mean (left) and variance (right) of
√
NT (b̂PCA − b̂I,FAE); γ = −0.5, r = 2, p = 0

N\T 15 25 50 100 200 15 25 50 100 200

25 -1.904 -1.867 -2.198 -2.849 -3.879 1.391 0.817 0.561 0.455 0.438

50 -1.505 -1.353 -1.513 -1.925 -2.617 0.998 0.456 0.261 0.215 0.215

100 -1.272 -1.060 -1.091 -1.352 -1.795 0.782 0.241 0.133 0.101 0.097

200 -1.268 -0.927 -0.819 -0.979 -1.281 0.781 0.194 0.066 0.054 0.046

1000 -1.893 -1.039 -0.599 -0.510 -0.595 2.115 0.204 0.033 0.014 0.010

2000 -2.431 -1.305 -0.638 -0.440 -0.448 2.904 0.382 0.034 0.009 0.006

4000 -3.373 -1.706 -0.749 -0.417 -0.352 5.280 0.536 0.048 0.008 0.003
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