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Abstract

Utilizing recursive mean adjustment we provide two unit root tests: the covariate-recursive

mean adjusted unit root test and the panel feasible generalized recursive mean adjusted unit root

test. The first test uses the cross sectional average of the panel data to test for non-stationarity

in the common factors of the panel. The second test is designed for testing non-stationarity in the

idiosyncratic errors. The proposed panel unit root tests are precise and powerful, especially when

T is larger than N.
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1 Motivation and Models

This paper utilizes So and Shin (1999)’s and Shin and So(2001)’s recursive mean adjustment method

for testing panel unit roots under cross section dependence. The cross section dependence is modelled

through a common factor structure, given by

yit = λ0iFt + yoit for i = 1, ...,N and t = 1, ..., T (1)

where Ft is a k × 1vector of common factors, λi is a k × 1 vector of factor loading coefficients, k is the
number of common factors, and yoit is an idiosyncratic error. According to this model, the panel data
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yit is I (0) only when both Ft and yoit are I (0) :

yit ∼ I (0)⇐⇒ Ft ∼ I (0) and yoit ∼ I (0)

yit ∼ I (1)⇐⇒ Ft ∼ I (1) and/or yoit ∼ I (1)

Bai and Ng (2004; hereafter BN) were the first to propose panel unit root tests based on this factor

model of cross section dependence. BN propose two panel unit root tests based on principal component

estimation of the factor structure. However, BN’s method works only when both T and N are large.

When either T or N is less than 20, both the number of common factors and the factors themselves are

difficult to estimate accurately.

We suggest a simple panel unit root test to fill in this gap. The proposed panel unit root test consists

of two sequential tests. The first test is a ‘covariate unit root test’ with recursive mean adjustment

(CRMA) to test if the common factors are I (1), we use the cross sectional average of yit. The second

test is a panel feasible generalized unit root test combined with recursive mean adjustment (PF-RMA),

which tests if the idiosyncratic components, yoit, are non-stationary. Here we explain the second test

first under the assumption that the common factor is stationary. Of course, if the first null hypothesis

is not rejected, then there is no need to test the second null hypothesis.

2 PFGLS-RMA Test

The latent model for yit, is given by

Constant (M1): yit = ai + xit, xit = ρxit−1 + εit (2)

Linear Trend (M2): yit = ai + bit+ xit, xit = ρxit−1 + εit (3)

where εit is stationary process, and the initialization of xit is taken to be xi0 = Op (1) and uncorrelated

with {εit}t≥1. Under the null of unit root, ρ = 1 for all i. Define cit−1 = 1
t−1

Pt
s=1 yis. We start from

the following simple panel AR(p) models under the assumption of homogeneity:

yit − cit−1 = ρ (yit−1 − cit−1) +
Pp

j=1 φij∆yit−j + eit for M1

yit − 2cit−1 = βi + ρ (yit−1 − 2cit−1) +
Pp

j=1 φij∆yit−j + eit for M2
(4)

Note that for M1, the use of the common recursive mean is first suggested by Shin and So (2001). For M2,

subtracting the double recursive mean method is a new idea. To eliminate the linear trend term com-

pletely, we consider the following simple modification. Note that under M2, ȳit−1 = (t− 1)−1
Pt−1

s=1 yis

= ai +
1
2bi (t− 1) + x̄it−1. Subtracting two times of ȳit−1 from yit−1 and yit yields

yit−1 − 2ȳit−1 = −ai + (xit−1 − 2x̄it−1) , yit − 2ȳit−1 = −ai + bi + (xit − 2x̄it−1) .

Hence the linear trend term is completely eliminated. Even under the null of ρi = 1, the trend is

eliminated but the constant is still present. Taking an overall mean adjustment yields

yit − ȳi − 2 (ȳit−1 − μi) = ρi [yit−1 − ȳi,−1 − 2 (ȳit−1 − μi)] + (eit − ēi),

where μi = (T − 1)−1PT
t=2 ȳit−1, ȳi,−1 = (T − 1)−1PT

t=2 yit−1 and eit = −2 (1− ρi) x̄it−1 + εit. By

means of Monte Carol simulation, we found that the proposed new estimator works very well.
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When yit is cross sectionally dependent, the PFGLS-RMA estimator requires the estimation of the

covariance matrix. To obtain a more accurate covariance estimator, we consider the following additional

step. The first stage estimator of ρ̂PRMA in (4) is treated as the true value of ρ, and we run the following

regression to obtain ε̂†it. If ρ̂PRMA > 1, set ρ̂PRMA = 1.

yit − ρ̂PRMAyit−1 = ai +
Pp

j=1 φij∆yit−j + ε†it for M1

yit − ρ̂PRMAyit−1 = ai + βit+
Pp

j=1 φij∆yit−j + ε†it for M2
(5)

Let yt = (y
0
1t, ..., y

0
Nt)

0 , ct−1 = (c01t, ..., c
0
Nt) , and εt = (ε

0
1t, ..., ε

0
Nt)

0 . Denote Σ̂ε,prma as the estimated

covariance matrix using ε̂†it, and consider the decomposition Σ̂
−1
ε,prma = ΛΛ

0. Further define the the
transformed vector y+t = Λyt, c

+
t−1 = Λct−1. Let y

+
it , c

+
it−1 and e+it denote the ith elements of y

+
t , c

+
t−1

and e+t , respectively. Then we have

y+it − c+it−1 = ρ
¡
y+it−1 − c+it−1

¢
+
Pp

j=1 φij∆y
+
it−j + e+it for M1

y+it − 2c+it−1 = βi + ρ
¡
y+it−1 − 2c+it−1

¢
+
Pp

j=1 φij∆y
+
it−j + e+it for M2

(6)

and denote

trc =
ρ̂rcp
V (ρ̂rc)

and trτ =
ρ̂rτp
V (ρ̂rτ )

(7)

where ρ̂rc and ρ̂rτ are point estimates in (6). The null and alternative hypotheses are given by

H2
0 : ρi = 1 for all i, Against H2

A : ρi < 1 for all i.

Note that we may alternatively consider a heterogeneous panel unit root test. See Shin, Kang and

Oh (2004) for more on this issue. We do not consider the heterogeneous panel unit root test here since

(preliminary simulations showed) the power and size of the two tests are very similar.

We now consider the local asymptotic power of the pooled test. Let ρ = 1 + γ/T, and derive the

limit distributions of trc and trτ .

Proposition 1 (PFGLS-RMA Unit Root Tests) The limiting distribution of the test statistics are

given by

trκ →d Aκ + γBκ, for κ = c and τ (8)

where

Aκ =

"
NX
i=1

Z 1

0

Jκi dWi

#"
NX
i=1

Z 1

0

(Jκi )
2
dr

#− 1
2

,

Bκ =
NX
i=1

½
Φi

∙Z 1

0

(Jκi )
2 dr +

Z 1

0

J̃κi dr

¸¾" NX
i=1

Z 1

0

(Jκi )
2 dr

#− 1
2

and

Φi =

⎛⎝1− p−1X
j=1

φij

⎞⎠−1 , Ji = Ji (r) =

Z r

0

ec(r−s)dWi (s)

J̄i = J̄i (r) = r−1
Z r

0

Ji (s) ds, J̇i = 2J̄i −
Z 1

0

Ji (s) ds+ 2

Z 1

0

J̄idr

Jci = Ji − J̄i, Jτi = Ji − J̇i, J̃
c
i = Jci J̄i, J̃

τ
i = Jτi

µ
J̄i −

Z 1

0

J̄idr

¶
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where Ji (r) is the Ornstein-Uhlenbeck process.

The proof of Proposition 1 is straightforward and hence it is omitted. The critical values for RMA

unit root test can be obtained by letting γ = 0 and replacing J by the standard Brownian motion W.

The asymptotic critical values for the Brownian motion case are as follows: For M1, the 5% critical

values are -1.88, -1.86, -1.83, -1.77, -1.73 meanwhile for M2, they are -1.86, -1.82, -1.80, -1.75, -1.73

with N=1,2,3,10,20, respectively.

3 Unit Root Tests on Cross Sectional Average

Note that either when N or T is less than 20, it is hard to estimate both the factor number and the

common factors. To test if the common factors stationary or not, we suggest the use of the cross

sectional average of yit to approximate the common factors. We assume that

λ̄s = N−1
NX
i=1

λis 6= 0. (9)

Under this assumption, the cross section average, ȳt, is given by

ȳt =
1

N

NX
i=1

yit =
KX
s=1

λ̄sFst +
1

N

NX
i=1

yoit := F̄t +Mt, let say (10)

Even though Mt = Op

¡
N−1/2

¢
, we will show later that the cross sectional average of yit approximates

F̄t well even with a small N . Note that one can use Shin and So (2001)’s univariate unit root test by

using ȳt to examine if F̄t is I (1) or not. Here we provide a better way to improve the power of the

univariate unit root test by combining Hansen’s covariate ADF (CADF) test with the recursive mean

adjustment method.

When a nonstationary covariate, gt, is available, the principle of RMA can be directly applied

to obtain more power. Following Hansen (1995), consider the following covariate augmented DF

CADF(p, q1, q2) regressions for the unknown constant:

ȳt = α+ ρȳt−1 +
pX

j=1

φj∆ȳt−j +
q2X

j=−q1
φj∆gt+j + ut

Define εt =
Pq2

j=−q1 φj∆gt+j + ut,

Ω =
∞X

l=−∞
E

"Ã
εt

ut

!³
εt−k ut−k

´#
=

Ã
σ2ε σεu

σεu σ2u

!

and ϕ2 = σ2εu
£
σ2uσ

2
ε

¤−1
and R2 = σ2u/σ

2
ε.

The RMA-modified covariate augmented DF regression is given by

ȳt − ct−1 = ρ (ȳt−1 − ct−1) +
Pp

j=1 φj∆ȳt−j +
Pq1

j=−q2 ψj∆gt−j + ut for M1

ȳt − 2ct−1 = β + ρ (ȳt−1 − 2ct−1) +
Pp

j=1 φj∆ȳt−j +
Pq1

j=−q2 ψj∆gt−j + ut for M2
(11)

The covariate RMA (CRMA) test statistics are defined as

trccrma = (ρ̂
rc
crma − 1) /

p
V (ρ̂rccrma), t

rτ
crma = (ρ̂

rτ
crma − 1) /

p
V (ρ̂rτcrma).

where ρrccrma and ρrτcrma are point estimates in (11) for M1 and M2, respectively. Let ρ = 1 + γ/T.
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Proposition 2 (Covariate-RMA test) The limiting distribution of the test statistics are given by

trκcrma
d→ ϕAκ +

γ

R
Bκ +

¡
1− ϕ2

¢1/2N (0, 1) , for κ = c, τ

where Aκ and Bκ are defined in Proposition 1.

The proof of Proposition 2 is straightforward and hence it is omitted.

For CADF test case, the critical value is very sensitive to ϕ. Meanwhile the 5% critical values of

the RMA unit root tests for unknown constant and linear trend cases are given by -1.88 and -1.86,

respectively, which are equivalent to the 5% critical values for ϕ = 1 but to the 3% critical values

for ϕ = 0. This implies that practitioners do not need to estimate ϕ to pin down the critical value.

They can use the asymptotic critical value of the RMA unit root test, which makes the tests slightly

conservative. For choice of a covariate, practitioners may choose the covariate of which the long run

correlation is highest.

4 Monte Carlo Simulation and Summary

We consider the following data generating process

yit = λiFt + yoit, Ft = ϑFt−1 + vt, y
o
it = ρyoit−1 + εit (12)

vt =
p
1− ϕ2∆gt +

p
ϕ2wt, ∆git = λi∆gt (13)

where ∆gt ∼ iidN (0, 1) , wt ∼ iidN (0, 1) , εit ∼ iidN (0, IN ) , but λi is generated either from U (0, 1)

and iidN (0, 1). The latter case is violating the assumption in (9). Two null hypotheses are tested are

our proposed unit root test.

H1
0 : Ft ∼ I (1) or ϑs = 1 for all s, H2

0 : y
o
it ∼ I (1) or ρi = 1 for all i

We consider two cases: ‘No-cointegrated’ and ‘cointegrated’ panel. The no-cointegrated panel under

the null is given by ρ = ϑ = 1. The cointegrated panel under the null is given by ρ < 1 but ϑ = 1.

We set ϕ2 = 0.2. To investigate the size properties of tests, we consider three cases: Case I: (no-

cointegrated panel) ρ = ϑ = 1, Case II (cointegrated panel): ρ = 0.95, ϑ = 1, and Case III (alternative):

ρ = ϑ = 0.95. For all cases, we set T ∈ [50, 100] . For the CRMA regression, we use the cross sectional
average of git as the covariate for the cross sectional average of yit. The autoregressive order is assumed

to be known.

We compare the finite sample performance of our tests with BN’s tests. For BN’s univariate ADF

tests with the principal-component estimated Ft, we assume the number of common factors are known

(in this case K = 1).We grant the BN method this advantage since preliminray simulations showed that

the selected number of common factors are always equal to the maximum number tested for. However,

when we construct BN’s pooled tests with the estimated εit, we estimate the number of common factors

based on BIC3 in Bai and Ng (2002). The maximum number of common factors is set to be 4 for N = 5

and 8 for N = 15.

Table 1 reports the rejection rates of the two tests for the first null hypothesis. For the CRMA

tests, we use the asymptotic critical values of -1.88 and -1.86 for the constant and linear trend cases.

Here is a summary of the findings: First, when λi ∼ U (0, 1) , the sizes of all tests are accurate. When
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λi ∼ N (0, 1) , the assumption in (9) does not hold so that the cross sectional average of yit in (10) is

not well defined asymptotically. However in the finite sample, the size distortion of CRMA test is mild.

Note that the power of CRMA test decreases also when λi ∼ N (0, 1) . Second, for all cases CRMA test

provides more power than BN’s test.

Table 2 reports the joint testing results of both H1
0 and H2

0: ‘RMA’ stands for the joint tests of

CRMA and PF-RMA and ‘BN’ is the joint tests of BN. Only joint testing results for Case I and III are

reported. Here is a summary of the findings: First, for the no-cointegrated panel, both BN’s and our

tests are seriously under sized regardless of N and T. Second, the joint tests of CRMA and PF-RMA

produce good power for both the constant and linear trend cases.

This paper suggests new panel unit root tests to somewhat restore the panel power gain by using

recursive mean adjustment under the situation where T is larger than N. If N is larger than T, the

suggested panel unit root tests may be used indirectly by forming panel subgroups.
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Table 1: Rejection Rates for H1
0 : Ft − I (1)

Size of Tests (5%); Case I: ρ = ϑ = 1

λi ∼ U (0, 1) λi ∼ N (0, 1)

Constant Trend Constant Trend

T N CRMA BN CRMA BN CRMA BN CRMA BN

50 5 5.3 5.5 5.1 6.7 5.6 5.6 5.5 6.4

50 15 4.8 5.5 4.9 6.4 5.3 5.8 5.1 6.9

100 5 5.2 5.8 5.0 5.7 5.4 5.8 5.3 6.1

100 15 4.3 6.2 4.2 5.9 5.2 5.4 5.2 6.0

Size of Tests (5%): Case II: ρ = 0.95, ϑ = 1

50 5 4.8 6.4 5.5 6.8 7.0 6.0 5.8 6.9

50 15 4.9 6.1 4.6 6.8 7.8 6.0 6.3 6.9

100 5 4.3 7.8 6.2 7.3 11.4 6.3 7.9 6.7

100 15 5.1 6.7 4.7 6.2 11.0 6.1 7.1 6.1

Size Adjusted Power: Case III: ρ = ϑ = 0.95

50 5 30.7 8.3 11.9 7.7 16.6 8.9 9.9 7.8

50 15 31.4 7.5 17.9 7.3 16.3 8.7 10.8 8.1

100 5 61.4 13.5 23.8 9.8 33.6 13.8 18.9 10.5

100 15 64.0 13.5 41.0 10.2 34.2 12.5 18.6 9.7

Table 2: Joint Rejection Rates for RMA against BN’s Tests

Empirical Size: ρ = ϑ = 1

λi ∼ U (0, 1) λi ∼ N (0, 1)

Constant Trend Constant Trend

T N RMA BN RMA BN RMA BN RMA BN

50 5 0.6 0.5 0.7 0.9 0.7 0.6 0.7 1.3

50 15 0.2 0.4 0.2 1.0 0.2 0.3 0.2 0.4

100 5 0.6 0.4 0.7 0.8 0.5 0.8 0.6 1.0

100 15 0.1 0.6 0.2 0.9 0.5 0.2 0.3 0.3

Size Unadjusted Power: ρ = ϑ = 0.95

50 5 8.4 2.9 2.3 1.7 7.4 3.1 2.1 1.8

50 15 19.7 4.3 2.4 2.0 10.9 3.6 1.6 0.9

100 5 36.4 9.1 9.9 4.2 29.7 9.6 7.9 4.8

100 15 63.3 12.4 25.5 6.8 34.1 11.7 12.3 4.0
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