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Abstract

This paper introduces a new estimation method for dynamic panel models with fixed effects
and AR() idiosyncratic errors. The proposed estimator uses a novel form of systematic differ-
encing, called X-differencing, that eliminates fixed effects and retains information and signal
strength in cases where there is a root at or near unity. The resulting “panel fully aggregated”
estimator (PFAE) is obtained by pooled least squares on the system of X-differenced equa-
tions. The method is simple to implement, consistent for all parameter values, including unit
root cases, and has strong asymptotic and finite sample performance characteristics that domi-
nate other procedures, such as bias corrected least squares, GMM and system GMM methods.
The asymptotic theory holds as long as the cross section () or time series ( ) sample size is
large, regardless of the  ratio, which makes the approach appealing for practical work. In
the time series AR(1) case ( = 1), the FAE estimator has a limit distribution with smaller bias
and variance than the maximum likelihood estimator (MLE) when the autoregressive coeffi-
cient is at or near unity and the same limit distribution as the MLE in the stationary case, so
the advantages of the approach continue to hold for fixed and even small . Some simulation
results are reported giving comparisons with other dynamic panel estimation methods.
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1 Introduction

There is now a vast empirical literature on dynamic panel regressions covering a wide arena of data

sets and applications that extend beyond economics across the social sciences. Much of the appeal

of panel data stems from its potential to address general socio-economic issues involving decision

making over time, so that dynamics play an important role in model formulation and estimation.

To the extent that there is commonality in dynamic behavior across individuals, it is natural to

expect that pooling cross section data will be advantageous in regression. However, since Nickell

(1981) pointed to the incidental-parameter-induced bias effects in pooled least squares regression,

there has been an ongoing search for improved statistical procedures.

Prominent among these alternative methods is GMM estimation, which is now the most com-

mon approach in practical empirical work with dynamic panel regression. The popularity of GMM

is manifest in the extensive citation of articles such as Arellano and Bond (1991) which developed

a general GMM approach to dynamic panel estimation. GMM is convenient to implement in em-

pirical research and its widespread availability in packaged software enhances the usability of this

methodology. On the other hand, it is now well understood that the original first difference IV

(Anderson and Hsiao, 1982) and more general GMM approaches to the estimation of autoregres-

sive parameters in dynamic panels often suffer from problems of inefficiency and substantial bias,

especially when there is weak instrumentation as in the commonly occurring case of persistent or

near unit root dynamics. Solutions to the weak instrument problem have followed several direc-

tions. One approach focuses on the levels equation, where there is no loss of signal in the unit

root case, combined with the use of differenced lagged variables as instruments under the assump-

tion that the fixed effects are uncorrelated with the idiosyncratic errors, as developed by Arellano

and Bover (1995) and Blundell and Bond (1998). Another approach corrects for the bias of least

squares estimators based on parametric assumptions, leading to improved estimation procedures.

For example, Kiviet (1995) proposed a bias correction that is based on Nickell’s (1981) bias cal-

culations for the panel AR(1); and Hahn and Kuersteiner (2002) modified the pooled least squares

(LSDV) method to remove bias up to order (−1), where  is the time dimension. Other recent

work suggests alternative methods of bias-free parametric estimation. For instance, Hsiao, Pesaran

and Tahmiscioglu (2002) and Kruiniger (2008) propose the use of quasi-maximum likelihood on

differenced data under some parametric assumptions on the distribution of the idiosyncratic er-

rors, which appears to reduce bias without making an explicit bias correction. Han and Phillips

(2010a) suggest a simple least squares procedure applied to a difference-transformed panel model
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that effectively reduces bias in the panel AR(1) case and leads to an asymptotic theory that is

continuous as the autoregressive coefficient passes through unity. While the first approach makes

moment assumptions on the unobservable individual effects, the other approaches effectively make

parametric assumptions on the idiosyncratic error process.

The methods developed in the present paper belong to the second category above but they

introduce a novel technique of systematic differencing, which we call “X-differencing”, that elim-

inates fixed effects while retaining information and signal strength in cases of practical importance

where there is an autoregressive root at or near unity. The resulting “panel fully aggregated” esti-

mator (PFAE) is obtained by applying least squares regression to the full system of X-differenced

equations. The method is simple to implement, is asymptotically free from bias for all parameter

values, and in the unit root case has higher asymptotic efficiency than bias-corrected LSDV es-

timation, thereby retaining signal strength and resolving many of the difficulties associated with

weak instrumentation and dynamic panel regression bias. In the stationary case, both PFAE and the

bias-corrected LSDV estimator are large- efficient. The general model considered here is a linear

dynamic panel model with AR() idiosyncratic errors and exogenous variables, so the framework

is well suited to a wide range of models used in applied work.

Unlike the Hahn and Kuersteiner (2002) bias corrected LSDV estimator, the PFAE method

does not require large  for consistency. The PFAE procedure also supersedes the Han and Phillips

(2010a) least squares method by generalizing it to AR() models and by considerably improving

its efficiency both in stationary and unit root cases. Since the PFAE is a least squares estimator,

there is no dependence on distributional assumptions besides time series stationarity, and none of

the computational burden and potential singularities that exist in numerical procedures such as first

difference MLE (Hsiao et al, 2002; Kruiniger, 2008). Moreover, since X-differencing eliminates

fixed effects, the asymptotic distribution of the PFAE estimator does not depend on the distribution

of the individual effects, whereas GMM in levels (Arellano and Bover, 1995) and system GMM

(Blundell and Bond, 1998) are both known to suffer from this problem (Hayakawa, 2008). Fur-

thermore, because the autoregressive coefficients are consistently estimated, it is straightforward to

implement parametric panel GLS estimation in a second stage regression (e.g., generalizing Bhar-

gava et al, 1982, to panel AR() models). Finally, note that X-differencing removes fixed effects

and attains at the same time strong identification by making use of moment conditions implied by

the AR() error structure and the stationarity of the differenced data. Thus, the procedure requires

that fixed effects be additive in the model and that the processes be temporally stationary.

The current paper relates to a companion work by the authors (Han, Phillips and Sul, 2011; HPS
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hereafter), which introduced the ‘time-reversal’ technology used here to design the X-differencing

transformations that eliminate fixed effects and correct for autoregressive estimation bias. Us-

ing this methodology, the companion paper developed a new “fully aggregated” estimator (FAE)

specifically for the time series AR(1) model. That paper focused on the process of information

aggregation in X-differenced equation systems to enhance efficiency in time series regression and

to retain asymptotic normality for inference purposes, while the current paper emphasizes bias re-

moval and efficiency improvement in the panel context. The present paper also extends the HPS

technology to AR(p) panel regressions and to models with exogenous variables.

The remainder of the paper is organized as follows. Section 2 provides the key motivating ideas

and some heuristics that explain the X-differencing process and how the new estimation method

works in the simple panel AR(1) model. Section 3 extends the methodology to the panel AR(p)

model, develops the X-differenced equation system, verifies orthogonality, and discusses imple-

mentation of the PFAE procedure. Section 4 presents the limit theory of the PFAE and provides

comparisons with other methods such as bias corrected LSDV and first difference MLE (FDMLE).

This section also discusses issues of lag length selection in the context of dynamic panels with un-

known lag length. Section 5 reports some simulation results which compare the finite sample

performance of the new procedure with existing estimators. Section 6 concludes. Some more

general limit theory, proofs, and supporting technical material are given in the Appendices.

2 Key Ideas and X-Differencing

We start by developing some key ideas and provide intuition for the new procedure using the simple

panel AR(1) model with fixed effects

(1)  =  +  with  = −1 +   = 1   ;  = 1  

where the innovations  are  (0 2) over  and  The model can be written in alternative form

as

(2)  =  + −1 +   = (1− )

which corresponds to the conventional dynamic panel AR(1) model  =  + −1 +  when

||  1 When  = 1, the individual effects are eliminated by differencing and both (1) and (2)

reduce to∆ =  The AR(1) specification is used only for expository purposes and is replaced

by AR() dynamics in the rest of the paper, where we also relax the conditions on the innovations
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. Initial conditions are set in the infinite past in the stable case ||  1 and at  = 0 with

some (1) initialization when  = 1, although various other settings, while not our concern here,

are possible and can be treated as in Phillips and Magdalinos (2009).1 Observe that there is no

restriction on  in (1), whereas in (2)  is effectively restricted to the region −1   ≤ 1 because
for   1  = (1− ) 6= 0 in which case the system has a deterministic explosive component
in contrast to (1). This implicit restriction in (2) is not commonly recognized in the literature but,

as mentioned later in the paper, it is important in comparing different estimation procedures where

some may be restricted in terms of their support but not others.

No distributional assumptions are placed on the individual effects  So the model corre-

sponds to a fixed effects environment where the incidental parameters need to be estimated or

eliminated. Various approaches have been developed in the literature, including the within-group

(regression) transformation, first differencing, recursive mean adjustment, forward filtering, and

long-differencing. However, all of these methods lead to final estimating equations for  in which

the transformed (dynamic) regressor is correlated with the transformed error. In the simple time

series case, where the intercept is fitted in least squares regression leading to a demeaning trans-

formation, the effects of bias in the estimation of  have long been known to be exacerbated by

demeaning (e.g., Orcutt and Winokur, 1969) and in the panel case these bias effects persist asymp-

totically as  → ∞ for  fixed (Nickell, 1981). Accordingly, various estimation methods have

been proposed to address the difficulty such as instrumental variable and GMM methods, direct

bias correction methods, and the various transformation and quasi-likelihood methods discussed

in the Introduction.

The essence of the technique introduced in the present paper is a novel differencing procedure

that successfully eliminates the individual effects (like conventional differencing) while at the same

time making the regressor and the error uncorrelated after the transformation (which other methods

fail to do). A key advantage is that the new approach does not suffer from the weak identification

and instrumentation problems that bedevil IV/GMMmethods based on first differenced (or forward

filtered) equations when the dynamics are persistent. This failure of GMM in unit root and near unit

root cases produces some undesirable performance characteristics in the GMM estimator and poor

approximation by the usual asymptotic theory2. At the same time, because the  are eliminated,

1Stationary initialization in the infinite past for ||  1 is also assumed in levels GMM (Arellano and Bover, 1995;
Blundell and Bond, 1998), and is more restrictive than error serial uncorrelatedness which is assumed by Anderson

and Hsiao (1981) and Arellano and Bond (1991). Hahn (1999) discusses how assumptions about initial conditions

may affect efficiency.
2For instance, the finite sample variance of the first difference GMM estimator in the stationary case increases
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the new method is unaffected by the relative variance ratio between the individual effects  and

the idiosyncratic errors , which, if large, makes the system GMM estimator (Blundell and Bond,

1998) perform poorly (see Hayakawa, 2008). Hence, we expect that the new procedure should offer

substantial gains over both GMM and system GMM methods, while still having the advantage of

easy computation.

The new procedure begins by combining (2) with the implied forward looking regression equa-

tion

(3)  =  + +1 + ∗ with 
∗
 =  − (+1 − −1)

and where the ‘future’ variable is on the right hand side, as opposed to the original ‘backward

looking’ equation (2). Importantly in both the backward and the forward looking equations, the

regressors are uncorrelated with the corresponding regression errors. That is, E−1 = 0 in (2)

and

(4) E+1
∗
 = E+1 − E [+1 (+1 − −1)] = 2 − 2 = 0

in (3), under the following conditions: (i) E = 0 for all  (a condition that is not actually

required in our subsequent development because the  are eliminated - see equation (6) below);

(ii)  is white noise over ; and (iii) ||  1. The proof of (4) is given in Appendix A. If  = 1,

then the last equality of (4) is not true, but this restriction is removed in the final transformation (see

(7) below). The orthogonality (4) is a critical element in the development of the new estimation

procedure involving systematic differencing.

Importantly, the orthogonality (4) still holds if we replace +1 with any   , i.e., E∗ = 0

for any   . The implication is that the original backward looking regressor −1 is uncorrelated

with the forward looking regression errors ∗ as long as  − 1  . That is, under the conditions

that E = 0,  is white-noise over , and ||  1, we have

(5) E−1
∗
 = −E [−1 (+1 − −1)] + E−1 = 0 for any   + 1

Again the condition that ||  1 is not required in the final transformation step shown below in (7).
Results (4) and (5) can be used to eliminate the fixed effects. By simply subtracting (3) from

(2), we get the new regression equation

(6)  −  =  (−1 − +1) + ( − ∗) 

rather than decreases as  increases (see, Alvarez and Arellano, 2003; Hayakawa, 2008) in contrast to the prediction

of asymptotic theory.
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where the regressor −1− +1 is uncorrelated with the error − ∗ as long as   − 1 for all
−1   ≤ 1. Note that we now allow for the unit root case  = 1 and this relaxation is justified
in Lemma 1 below. Thus, for model (2), if  is white-noise over , then the key orthogonality

condition

(7) E (−1 − +1) ( − ∗) = 0 for all   − 1 and − 1   ≤ 1

holds for model (6), thereby validating the use of pooled least squares regression techniques.

We call the data transformation involved in setting up the regression equation (6) “X-differencing”.

Observe that the dependent variable  −  is  =  −  differenced whereas the regressor

−1 − +1 is  =  −  − 2 differenced. So, the regression equation is structured with vari-
able differencing: the differencing varies in a systematic and critical way between the dependent

variable and the regressor. Further, we want to allow for the differencing rate  itself to change,

so  is a variable. Hence, the terminology X-differencing. Fig. 1 shows how X-differencing

combines observations (using cross rather than parallel combinations) to eliminate fixed effects in

comparison with other methods.

First differencing Long differencing X-Differencing 

Xt

Xt−1

Xt−2

Xt
Xt−1

Xt−2

Xt

Xt−1

Xt−2

Xt−5

Xt−4

Xt−3

X 1

X 2

X 3

Xt−1

Xt−2
Xt−3

X 3
X 2

X 1

X - differencing combines
short and long differencing


orthogonality

This is not possible with
other differencing methods

The simple X-differencing transformation that leads to (6) eliminates the nuisance parameters

 just like ordinary differencing, but it has the additional advantage that the regression equation

satisfies a fundamental orthogonality condition: there is no correlation between the regressor and

the error in (6). As a result, X-differencing is very different from existing differencing methods
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that have been used in the literature. In one way it is fundamentally simpler – because of the

appealing orthogonality property satisfied by (6). In another way it is more complete – because the

differencing rate  is variable, so that it is possible to think of (6) as a system of equations over

   − 1 each equation of which carries useful information about the autoregressive coefficient


It is interesting to compare (6) with other differencing transformations that have been used in

the literature. First, it is different from long differencing (Hahn, Hausman and Kuersteiner, 2007),

which transforms equation (2) to  − 2 = (−1 − 1) + ( − 2), whereas our method

(when  = 1) yields  − 1 = (−1 − 2) + ( − ∗1) so the positions of 1 and 2 are

switched, the equation error is different and our approach allows  to vary. Second, X-differencing

(when  =  − 3) is also distinguished from simple first differencing, which gives the equation
 − −1 = (−1 − −2) + ( − −1). In our model, we replace −1 on the left hand side

with −3 the equation error is different, and again we allow for higher order differences. Also

X-differencing is quite different from forward orthogonal deviations (Arellano and Bover, 1995).

While forward orthogonal deviations preserve serial orthogonality in the transformed errors, X-

differencing maintains orthogonality between the transformed regressors and the corresponding

errors.

Third, when  = − 3, the transformed equation (6) in our model can be written as

(8) ∆ +∆−1 +∆−2 = ∆−1 + ( − ∗−3)

where ∆ =  − −1. This equation can usefully be compared with the AR(1) bias-correction

transformation model

(9) 2∆ +∆−1 = ∆−1 + error

that was used in Phillips and Han (2008) and Han and Phillips (2010a). In the new X-differencing

approach, the present method replaces the term 2∆ in model (9) with∆+∆−2. This “tem-

poral balancing” around the lagged difference ∆−1 is a subtle but important breakthrough that

leads to the variable X-differencing generalization of (9) and, as we shall see, leads to considerable

efficiency gains and further allows for convenient generalization from AR(1) to AR() models.

Importantly, any  values such that   − 1 satisfy (7) under the stated regularity, so that the
new regression equation (6) is valid across all these values. To make full use of all this information,

we propose to stack the regression equations (6) for all possible  values. But we exclude  = −2
because in this case the corresponding regressor in (6) is zeroed out. Thus, we propose to use
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equation (6) for  = 1 2     − 3. The resulting stacked and pooled least squares estimator has
the following simple form

̂ =

P

=1

P

=4

P−3
=1(−1 − +1)( − )P

=1

P

=4

P−3
=1(−1 − +1)2

and is the panel fully aggregated estimator (PFAE) of  in the panel AR(1) model (2). In the time

series case where  = 1 ̂ reduces to the FAE estimator introduced in HPS (2011).

In view of (7), there is, in fact, exact uncorrelatedness between the regressor and error in (6),

which turns out to be important in producing good location properties of the PFAE estimator. As

shown in the simulations reported later (see Table 1), the estimator ̂ has virtually no bias for

0 ≤  ≤ 1. In the limit, consistency holds provided the total number of observations tends to

infinity—irrespective of the  ratio – indicating that the estimator will be useful in short and

long panels, as well as narrow and wide panels, making it appealing in both microeconometric

and macroeconometric data sets. This result, together with the asymptotic distribution theory and

associated tools for inference, will be developed in the following sections in the context of the

general AR() panel model.

3 The Panel AR() Model with Fixed Effects

This section extends the above ideas on X-differencing and fully aggregated estimation to the

general case of a dynamic panel AR() model. Our primary concern is the estimation of the

common autoregressive parameters { :  = 1     } in the following panel model with fixed
effects and autoregressive errors

 =  +   () =   = 1      ;  = 1     (10)

 () = 1− 1− · · ·− 
(11)

where  is, for each , a martingale difference sequence (mds) under the natural filtration with

E = 0, and E2 = 2 . As in the AR(1) case we have the equivalent specification (at least in the

stationary and unit root cases, c.f. the discussion following (2) above)

(12)  =  + 1−1 + · · ·+ − +   = (1− 1 − · · ·− )

We maintain the assumption that  has at most one unit root. When  is  (1), the long run

AR coefficient is  =
P

=1  = 1 and we write  () = (1− ) ∗ () where the roots of
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∗ () = 0 are outside the unit circle. In this event,  = 0 in (12) and there is no drift in

the process. Initial conditions for  may be set in the infinite past in the stationary case. In

the unit root case, we can write ∆ =
1

∗() := ∗ and set the initial conditions for the

stationary AR( − 1) process ∗ in the infinite past. Since our estimation procedure relies only
on X-differenced data, it is not necessary to be explicit about initial conditions for  In fact,

our results will hold for distant and infinitely distant initializations (where 0 can be 

¡√


¢
for some  which may tend to infinity with  ) as well as  (1) initializations (see Phillips and

Magdalinos, 2009, for discussion of these initial conditions).

Following the same motivation as in the AR(1) case, to construct the X-differenced equation

system we rewrite (12) in forward looking format as

 =  + 1+1 + · · ·+ + + ∗

where ∗ =  −
P

=1 (+ − −). Then, by subtracting this equation from the original

backward looking equation (12), we construct the X-differenced equation system

(13)  −  = 1(−1 − +1) + · · ·+ (− − +) + ( − ∗)

just as in the AR(1) case. The system may also be written as

 −  = 1(−1 − +1) + · · ·+ (− − +) + ( − ∗)

and is free of fixed effects.

Observe that the variables appearing in (13) involve = −−2 differences for  = 0  
The regressors in (13) are all uncorrelated with the regression error in the equation, as shown in

Lemma 1 below. Importantly, this orthogonality condition holds for the full system of equations

given in (13)—that is for all −  ≥ + 1.

Lemma 1 E(− − +)( − ∗) = 0 for all  ≤ − − 1, for all  = 1     .

In stacking the system (13) for estimation purposes, we use all possible  values up to  = −
−1. To put the estimator in a concise form, let e = (−1 −2     −)0−(+1 +2     +)0,e =  − , e =  − ∗ and ρ = (1     )

0 Then, (13) can be expressed as

(14) e = ρ0 e + e
The PFAE for ρ is simply the least squares estimator based on the stacked (over ) and pooled

(over  and ) system (14), viz.,

(15) ρ̂ =

µ
P
=1

P
=+2

−−1P
=1

e
e 0¶−1 P

=1

P
=+2

−−1P
=1

ee
10



The degrees of freedom condition  ≥  + 3 is required for the existence of ̂, so that one more

time series observation is needed than for other estimators such as LSDV and GMM. Note that a

single ( ) such that − 2 ≤  ≤ −−1 leads to regressor singularity in 14), making it appear
as if  ≥ 2 + 2 is required. But the regressor matrix stacked over all possible  and  has full
column rank as long as  ≥ + 3. For example, for  = 2 and  = + 3 = 5, we have the three

equations

4 − 1 = 1(3 − 2) + 2(2 − 3) + (4 − ∗1)

5 − 1 = 1(4 − 2) + 2(3 − 3) + (5 − ∗1)

5 − 2 = 1(4 − 3) + 2(3 − 4) + (5 − ∗2)

for which the regressors and the errors are uncorrelated. The two regressors of each of these equa-

tions are linearly dependent, but they jointly identify 1 and 2 when stacked. (We can verify this

for stationary  and integrated  separately.) In general, the denominator of (15) is nonsingular

as long as  ≥ + 3 and ( − − 2) ≥ .

The double summation in (15) for each  indicates that the computational burden increases at

an ( 2) rate, as is the case for the conventional GMM estimators. But we can use the identity

(32) in the Appendix to reduce computation to an ( ) rate of increase.

The PFAE may be conveniently constructed in an alternative manner as follows. For a given

lag , let ρ̂() be the X-differencing estimator based on the equation

 − −2− =
X

=1

(− − −2−+) + ( − ∗−2−)

Here,  = 1 is the minimum lag allowed in PFA estimation (to avoid perfect collinearity), and

 =  − 2− 1 is the maximum lag. Let eZ be the regressor matrix for this lag (for all  and for all

possible ) and let ey be the corresponding regressand vector. When we regress ey on eZ, we get

the lag- estimator ρ̂() = (eZ0eZ)
−1eZ0ey. Then the PFAE is

(16) ρ̂ =

Ã
−2−1X
=1

eZ0eZ

!−1 −2−1X
=1

eZ0ey =
Ã

−2−1X
=1

eZ0eZ

!−1 −2−1X
=1

eZ0eZρ̂()

which is a weighted average of all lag- estimators, where the weights are assigned according to

the magnitude of the lag- signal matrix eZ0eZ. Note that all single lag- estimators are themselves

individually consistent as the sample size increases. The effect of aggregating  is fully discussed

in HPS (2011) in the time series context, where it is shown that there is a trade off between uniform
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asymptotic Gaussianity and efficiency/rate of convergence. When panel data are available, on the

other hand, asymptotic normality is driven by the power of cross section variation and so it is

unnecessary to partially aggregate the lags unless  is small and all possible lags are employed.

The orthogonality condition in Lemma 1 holds if  is white noise for each . However, the

development of an asymptotic theory for ρ̂ requires stronger regularity conditions that validate

laws of large numbers (LLNs), central limit theorems (CLTs) and functional CLTs as  and  pass

to infinity. Our theory includes both fixed  and fixed  cases. For these developments, we assume

the following.

Condition A (i)  = 
◦
 with inf   0 and sup   ∞, where ◦ is  across  with

E[(◦)
4+] ≤ for all  and some ∞ and   0; (ii) ◦ is a stationary and ergodic martin-

gale difference sequence (mds) over  for all  such thatE(◦|◦−1 ◦−2   ) = 0E(◦|◦+1 ◦+2   ) =
0 and with unit conditional variances

E(◦2 |◦−1 ◦−2   ) = E(◦2 |◦+1 ◦+2   ) = 1  ;

(iii) −1
P

=1 
2
 and 

−1P

=1 
4
 converge to finite limits as →∞.

Remarks.

1. We allow cross-section heterogeneity in (i) by considering a scaled version  = 
◦
 of an

 random sequence (◦) for each . This assumption is not crucial but it simplifies the

analysis considerably. Generalization to non-identically distributed (across ) innovations is

possible but involves further technicalities, including some explicit conditions for third and

fourth moments and the Lindeberg condition.

2. Condition (ii) is a bidirectional  condition and corresponds to a conventional white

noise assumption. This condition is weaker than requiring independence in ◦ over , but is

stronger than a unidirectional condition.

3. Higher order serial dependence (over ) may be allowed as long as Condition A(ii) is satis-

fied. If  is fixed and  is large, no conditions on the serial dependence of  are required

other than E = 0, E2 = 2 and E = 0 for all  and  6= .

4. Condition A(iii) seems quite weak, although it is not implied by Condition A(i). When A(iii)

holds, the average moments converge to finite positive limits in view of Condition A(i).

12



When  is fixed and  → ∞, we require the following regularity for the standardized error se-
quence  so we may establish standard asymptotics for the PFAE.

Condition B For any given  , (i) E(◦
◦0
 ) is nonsingular, where

◦ =
P

=2+2

−2−1P
=1

ee2
and e and e are defined in (14); (ii) −1P

=1(
◦


◦0
 − E◦◦0 )→ 0.

Remark. In developing a CLT for the numerator of a centred form of (15), only Condition A is

required. Condition B (i) is relevant for establishing the standard normal limit given in Theorem 2

below. Condition B (ii) is useful for the estimation of the variance-covariance matrix of the limit

distribution. When  is independent and possibly heterogeneous across , a sufficient condition

for B (ii) is given in Phillips and Solo (1992, Theorem 2.3).

When  →∞, the temporal dependence structure matters and affects the limit theory and rates
of convergence. In the general AR() model with a unit root, there is an asymptotic singularity in

the sample moment matrix because of the stronger signal in the data in the unit root direction,

just as in the time series case (Park and Phillips, 1988). Singularities are treated by rotating the

regressor space and reparameterization as detailed in Appendix A.

4 Asymptotic Theory

This section develops an asymptotic theory for the PFAE ρ̂ Technical derivations and a general

theory are given in Appendix A. To make the results of the paper more accessible, only the main

findings that are useful for empirical research are reported here. We start with the following nota-

tion

(17)  =
1



P
=2+2

−2−1P
=1

e
e 0 and  =

1



P
=2+2

−2−1P
=1

ee
so that ρ̂ = ρ+ (

P

=1  )
−1P

=1  .

Because E = 0 for all  by Lemma 1, we can expect the panel estimator ρ̂ to be consistent

and asymptotically normal under regularity conditions that ensure suitable behavior for the sample

components (
P

=1  
P

=1  ) of ρ̂. In particular, if  is stationary, then consistency and

asymptotic normality will hold, provided the total number of observations in the regression is

large, i.e. if  = ( − 2 − 1) → ∞ So, no condition on the behavior of the ratio 
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is required in the limit theory. If  is persistent (so that the long run AR coefficient  :=P

=1  is unity) and  is finite, then large- asymptotics are again standard because any special

behavior in the components (e.g. nonstandard convergence rates and limit behavior associated with

nonstationarity) occurs only when  → ∞ Next, if  is persistent and  → ∞, the estimator
ρ̂ is consistent and still asymptotically normal when  → ∞, again irrespective of the  ratio.
In this case, the corresponding estimate of the long run AR coefficient  (which, because of

persistence, is  = 1) has a faster convergence rate(
12 ) stemming from the stronger signal

in the nonstationary component of the data, thereby producing a singularity in the joint asymptotic

normal distribution of ρ̂ with one component (in the direction ̂ =
P

=1 ̂) converging faster to

its normal distribution than the other components. When  is fixed and  → ∞ in the persistent

case, then the limit distribution of ρ̂ is again singular normal (when   1) but there is a faster rate

of convergence in the direction ̂ and the limit distribution is nonstandard in that direction. The

latter result is related to the limit theory of the time series FAE estimator given in HPS (2011) for

the special case where  = 1

Theorem 5 in Appendix A provides a complete statement for interested readers of this limit

theory, covering the general panel AR() case in a uniform way for large  and  as well as both

fixed  and fixed  cases. The remainder of this section focuses on practical aspects of this limit

theory and the usability of the PFAE in applied works.

For inference and practical implementation, Theorem 2 below presents a feasible version of

the main part of Theorem 5 in Appendix A that holds uniformly for all ρ values including both

stationary and unit root cases. For convenience, we use the model (1) formulation in which  =

 + , where  is an AR() process as defined in (10).

Theorem 2 Suppose  is AR() as defined in (10). Under Condition A,

(18) 

µ
P
=1



¶
(ρ̂− ρ)⇒ (0 )

for any  such that  (
P

=1 
0
 )

0
 = , where  and  are defined in (17). The

convergence (18) holds as  →∞ if  :=
P

=1   1, and as →∞ in all cases (that is, for
any  , either finite or increasing to infinity, no matter how fast). The limit distribution of ρ̂ when

 is fixed,  → ∞ and  = 1 is partly normal and partly nonstandard. It is given in Theorem

5(d) in Appendix A.

Remarks.
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1. Note that cross section heterogeneity is permitted in Theorem 2 under Condition A. The ma-

trices
P

=1  and
P

=1 
0
 in the theorem are designed to be heteroskedasticity robust

so that (18) provides a central limit theorem suitable for implementation upon estimation ofP

=1 
0
 as discussed below. The asymptotic form of the standardization matrix  in

(18) is given in (49) in Appendix A and shows explicitly the convergence rates in terms of

 and  as well as the transformation matrix involved in arranging directions of faster and

slower convergence when there is a unit root in the system.

2. For statistical testing, it is necessary to replace  by a feasible statistic. In view of (17) and

the consistency of ρ̂, we can use the residuals

(19) b = X
=2+2

−2−1X
=1

e(e − e 0ρ̂)
in place of  . The asymptotic covariance matrix estimate [

P
  ]

−1P
 bb0 [P  ]

−1

may then be used in inference. Simulations show that this choice works well when  is

large. If  is not so large, inferences based on this method still show reasonable performance

and may be improved by modification of the limit distribution of the associated (scalar) test

statistics to a Student  distribution with  − 1 degrees of freedom as proposed in Hansen
(2007) if the random variables are  across .

3. For practical work, it may be useful to provide estimates of the remaining (non dynamic)

parameters in the model (10). Consistent estimation of the autoregressive coefficients in (10)

enables estimation of the fixed effects, the variance of the fixed effects and that of the random

innovations in a standard way. For example, the transformed fixed effects  := (1− )

can be estimated by the individual sample mean, ̂ of the residuals ̂ := −
P

=1 ̂−1,

and the random idiosyncratic innovations  can be estimated by the quantity ̂ − ̂. The

average variances of  and  can then be estimated by the sample variances of ̂ (across )

and ̂−̂ (across  and  after the degrees of freedom correction), respectively. Asymptotics

for these additional estimates follow in a standard way from the usual limit theory for sample

moments and the consistency of the fitted autoregressive coefficients.

We now provide some further discussion of efficiency. At present there is no general theory of

asymptotic efficiency for panel data models that applies for multi-index asymptotics and possible

nonstationarity. The usual Hájek-Le Cam representation theory (Hájek, 1972; Le Cam, 1972) holds

for locally asymptotically normal (LAN) families and regular estimators in the context of single
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index and
√
 asymptotics. Panel LAN asymptotics were developed for the stationary Gaussian

AR(1) case by Hahn and Kuersteiner (2002) allowing for fixed effects under certain rate conditions

on  and  passing to infinity. But their result does not apply when there is a unit root in the system.

Any such further extension of existing optimality theory would require that  → ∞ because for

fixed  (and in particular  = 1) the likelihood does not belong to the LAN family but is of the

locally asymptotically Brownian functional family (Phillips, 1989; Jeganathan, 1995), for which

there is no present theory of optimal estimation or asymptotic efficiency. Moreover, it is now

known from the results of HPS (2011) that improvements in both bias and variance over the MLE

and bias correctedMLE are possible in local neighborhoods of unity in the time series case ( = 1).

For the purpose of the present study, we undertake a more limited investigation of efficiency

and consider the simple panel AR(1) model (1) with Gaussian errors. Normality is not needed

for the limit theory but only for the discussion of optimality in the stationary case (c.f. Hahn

and Kuersteiner, 2002). For this model, the following result holds and sheds light on the relative

efficiency properties of the PFAE procedure, including both the stationary and unit root cases, in

relation to the MLE.

Theorem 3 Suppose that  =  − −1 is   (0 2) for some  ∈ (−1 1]. Then
(20) ( )12 (̂− )⇒ (0 1− 2) as  →∞ if ||  1
(21) 12 (̂− 1)⇒ (0 9) as   →∞ if  = 1

Remarks.

1. Asymptotics for the stationary case (20) hold as  → ∞ regardless of the cross sectional

dimension . We further note that asymptotic normality does not require large  . However,

the form of the asymptotic variance given in (20) does require  → ∞. In this case, LAN
asymptotics apply as  → ∞ and the variance attains the Cramér Rao bound, which is the

same as in the stationary time series ( = 1) case. So, when ||  1, the PFAE is asymptot-
ically efficient as  → ∞. This result corresponds to the finding in Hahn and Kuersteiner
(2002, theorem 3) that when ||  1 the bias corrected MLE attains the (semiparametric)

efficiency bound for the estimation of the common autoregressive coefficient in the presence

of fixed effects under the rate condition 0  lim→∞ 

∞

2. Hahn and Kuersteiner (2002, theorem 4) show that when  = 1 and   → ∞ the (bias

corrected) LSDV estimator b is asymptotically distributed as
(22) 12

µ
̂ − 1 +

3

 + 1

¶
⇒ 

µ
0
51

5

¶
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Thus, the PFAE estimator has smaller asymptotic variance than the bias-corrected LSDV

estimator and the PFAE requires no bias correction. Observe that the LSDV estimator is

the Gaussian MLE corrected for its asymptotic bias. So, the improvement of the PFAE over

the bias corrected LSDV estimator at  = 1 is analogous to the improvement of the FAE

estimator over the MLE in the time series unit root case shown in HPS (2011). In that case,

correcting for the bias by re-centering the MLE estimator about its mean does not reduce

variation, whereas HPS (2011) show that the FAE estimator reduces both the asymptotic

bias and the variance of the MLE not only at  = 1 but also in the vicinity of unity, while

having the same limit theory in the stationary case. The limit result (21) reveals that the

improvement of the FAE over the (levels) MLE at unity in the time series case carries over

to the panel case where →∞

3. The improvement of the PFAE over the bias corrected LSDV estimator might be considered

counter-intuitive because differencing is usually regarded as inferior in terms of efficiency

to levels estimation and the use of a within-group transformation to eliminate individual ef-

fects (unless GLS or maximum likelihood is applied to the differenced data). However, the

considerable advantage of the PFAE technique is that it removes individual effects by sys-

tematic X-differencing and, in addition, because long differences are included in the stacked

system estimation, any strong signal information in the data is retained by virtue of the full

aggregation that is built into the estimator. The result is improved estimation in terms of both

bias and efficiency over regression-based demeaning of the levels data and bias-correction

in ML estimation.

4. Similarly, for the AR() panel model, when  is stationary, the PFAE is approximately

equivalent to the bias-corrected LSDV estimator. In this case bias rapidly disappears as the

total sample size increases. When  has a unit root, the PFAE has substantially smaller bias

and an efficiency gain compared with the LSDV estimator.

5. When  = 1 there is a simple relationship between the PFAE and the bias corrected MLE or

LSDV estimator. In particular, as shown in Appendix D, when  = 1 and
√



→ 0 we have

√
 (̂− 1) = √

µ
̂ − 1 +

3



¶
(23)

+
√

3
P

 
−1
³P

=3 −1
´2
− 2P

P

=3 
2
−1P



P

=3 ̆
2
−1

+ (1)
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where ̆−1 := −1 − −12
P

=3 −1. According to (23), ̂ may be interpreted as a

modified version of the bias corrected form of ̂ The modification is important be-

cause the second term of (23) contributes to the limit distribution and leads to a reduc-

tion in the limiting variance of the LSDV estimator. In particular, it is the (negative) cor-

relation of the second term with the first term of (23) that reduces the asymptotic vari-

ance of LSDV, Avar
©√


¡
̂ − 1 + 3



¢ª
= 515, to the asymptotic variance of PFAE,

Avar
©√


¡
̂ − 1

¢ª
= 9. In fact, this negative correlation makes it possible to lower the

asymptotic variance further, as shown in Appendix D at least for  = 1.

6. For the panel AR(1) model when  = 1, using sequential limits as →∞ followed by  →
∞, Kruiniger (2008) showed that the first difference Gaussian quasi-MLE (called FDMLE;
see also Hsiao et al., 2002) has the asymptotic distribution 12 (̂ − 1) ⇒ (0 8)

The limit distribution of the FDMLE for ||  1 is ( )12
¡
̂ − 

¢ ⇒ (0 1 − 2)

comparable to (20). But when  = 1 the variance of the limit distribution of the FDMLE

is smaller than that of the PFAE This reduction in variance is explained by the fact that

the FDMLE is a restricted maximum likelihood estimator. The FDMLE is computed using

a quasi-likelihood that is defined only for   1 + 2
−1 (see Kruiniger, 2008). So  is

restricted by the upper bound of this region at which point the quasi-likelihood becomes

undefined. We use the term “quasi-likelihood” in describing the FDMLE because it is not

the true likelihood. In fact, no data generating mechanism is given in Kruiniger (2008) for

the case   1 and the quasi likelihood is constructed over that region simply by taking

an analytic extension to the region  ∈ [1 1 + 2
−1) of the Gaussian likelihood based on

the density of the differenced data over the stationary region ||  1 The consequential

restriction in domain, and hence in estimation, plays a key role in the variance reduction

of the FDMLE. This reduction is borne out in simulations. For example, simulations with

 = 200,  = 50 and  = 1 show the variance of FDMLE to be approximately 87%

of the variance of PFAE, which corresponds well with the limit theory variance ratio of

89 ' 889%. Also, in view of the singularity in the quasi likelihood at the upper limit of the
domain of definition, numerical maximization of the log-likelihood frequently encounters

convergence difficulties in the computation of the FDMLE. Numerical optimization can fail

if  ' 1 and  is not large. For example, in simulations with  = 10,  = 50 and  =

1, we found that a total 32 out of 1000 iterations failed to converge to a local optimizer.

These restricted domain and convergence issues associated with the FDMLE procedure are

discussed more fully in separate work (Han and Phillips, 2010b).
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7. Asymptotics for the FDMLE procedure are developed in Kruiniger (2008) only for the panel

AR(1) model and computation is much more difficult in the case of the panel AR(p) model.

These limitations make it desirable to have a simple unrestricted estimator like PFAE with

good finite sample and asymptotic properties that can be easily implemented in general panel

AR(p) models.

8. In the unit root case with  = 1, the limit distribution (21) holds for both   →∞, but no
condition is required on the  ratio. For  = 1 we know from the results in HPS (2011)

that the (time series) MLE based on levels is not efficient and that remains true even when

we bias correct the MLE. In fact, as shown in HPS (2011), the FAE is superior to the MLE

in the whole vicinity of unity when  = 1 So, we can at least conclude that the PFAE is

superior to the MLE for  = 1We expect but do not prove that this conclusion holds for all

fixed .

The limit theory for the (restricted domain) FDMLE estimator at  = 1 indicates that there

may be scope for improving estimation efficiency at  = 1 and possibly in the immediate neigh-

borhood of unity. This issue is complex and, as indicated earlier, there is currently no general

optimal estimation theory that can be applied to study this problem. In Appendix D we prove that

a small modification to the PFAE procedure can indeed reduce variance for the case  = 1. The

modification is of some independent interest because it makes use of the relationship (23) between

PFAE and the bias-corrected LSDV estimator of Hahn and Kuersteiner (2002). In particular, in the

simple panel AR(1) model (1), the modified estimator is obtained by taking the following linear

combination for some scalar weight 

(24) ̂+ = ̂+ (1− )(̂ +
3

) = ̂− (1− )(̂− ̂ − 3


)

so that the centred and scaled estimator has the form

(25) 12 (̂+ − 1) = 12 (̂ − 1 + 3

) + 12(̂− ̂ − 3


)

The PFAE corresponds to  = 1. In this case, the (negative) correlation of the second term with

the first term of (25) reduces the asymptotic variance of 12 (̂ − 1 + 3 ), which is 515,
down to the asymptotic variance of 12 (̂−1), which is 9, as discussed in Remark 5 above. The
variance can be lowered further by choosing an optimal . According to the calculations shown

in Appendix D,  = 58 gives 12 (̂+ − 1) ⇒ (0 8325), which is the minimal variance

attainable by adjusting  in the relationship (25).
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The modified estimator ̂+ can also be understood as a GMM estimator based on the two

moment conditions E1() = 0 and E2() → 0 at  = 1, where 1() identifies b and 2()
identifies ̂ +

3

, i.e.,

1() =
1

 32

P
=4

−3P
=1

(−1 − +1)
h
( − )− (−1 − +1)

i


2() =
1

 22

P
=3

̆−1
£
̆ −

¡
− 3



¢
̆−1

¤


with ̆−1 = −1 − −12
P

=3 −1, ̆ =  − −12
P

=3 , and 2 =  − 2. Note that the
first observations are ignored in 2() for algebraic simplicity and their effect is asymptotically

negligible when  →∞. In view of the identity (see HPS, 2011)

1

2

P
=4

−3P
=1

(−1 − +1)
2 =

P
=3

̆2−1

any weighted GMM estimator can be expressed in the form ̂ + (1 − )(̂ +
3

) for some ,

thereby leading back to the original formulation (24).

The modified PFAE ̂+ with  = 58 attains an efficiency level of 88325 = 096096 (i.e.,

96% efficiency) relative to the restricted FDMLE. However, this argument cannot be used for

general  values because ̂ +
3

does not correct the bias if ||  1 unless  → 0. This is

evident from the fact that

√
 (̂ +

3

− ) =

√
 (̂ − ) +

√


 + 1
(2 +

3


− ̂)

where ̂ is the bias corrected estimator proposed by Hahn and Kuersteiner (2002, p. 1645) for

the stationary case, i.e., ̂ =
+1


̂ +
1

such that ( )12(̂ − ) ⇒ (0 1 − 2) when

||  1 and lim ∈ (0∞). Of course, when  → 0 we also have
√
 (̂ +

3

− ) =√

 (̂ − ) +  (1)  so in this event the bias is small because  →∞ so fast.

To close this section, we now discuss some remaining practical issues involved in modeling and

the use of X-differencing. First, practical applications often call for data determination of the lag

length in the autoregression. Consistent panel information criteria may be constructed or a general-

to-specific modeling algorithm can be used for this purpose. One such possibility is considered in

HPS (2010). See also Lee (2010b).

Next, the moment conditions used in (7) require that ∆ is stationary over  So when the

innovations are temporally heteroskedastic or there are nonstationary initial conditions, the PFAE

may be inconsistent. For example, for the panel AR(1) with  = 4, from (32) in the appendix we
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find that

plim
→∞

̂ = − (12)(1− )[22 − (1− 2)21]

plim−1
P

=1

P

=3 ̆
2
−1



where ̆−1 = −1 − −12
P

=3 −1 as before. Thus, if  is moderate (' 1
2
) and temporal

heteroskedasticity is so severe that 22 − (1 − 2)21 is huge, then the PFAE may be more biased

than the LSDV estimator.

Finally, extension to models with explanatory variables is straight forward if they appear as in

 =  + 0 +  with  =
P

=1 − + . For this model the persistence parameters

 can be identified by X-differencing for given , while the slope parameter  satisfies the usual

orthogonality conditions if E[] = 0 for relevant  and . A two step procedure can then be

used, effectively generalizing Bhargava et al.’s (1982) feasible GLS procedure to the panel AR()

if  is strictly exogenous. On the other hand, it is unclear if and how we can derive moment

conditions for the dynamic model  =  + 0 +
P

=1 − + . This important topic is

left for future research.

5 Simulations

This section reports simulations which shed light on the finite sample properties of our procedures

in relation to existing methods of dynamic panel estimation. In particular, we compare the PFAE

procedure with existing estimators such as Arellano and Bond’s (1991) difference GMM estimator

and Blundell and Bond’s (1998) system GMM estimator for a panel AR(2) model. (The FDMLE

method is not included because of computational difficulties with this procedure and the fact that

it is a restricted estimator, as discussed earlier.) We then consider panels with nonstationary initial

conditions to examine the effect of departures from stationarity.

I. Comparison of bias and efficiency: AR(1). We first compare the properties of the PFAE

with the LSDV estimator (which is inconsistent), Hahn and Kuersteiner’s bias-corrected LSDV

estimator (HK), the one-step first difference GMM (GMM1/DIF), and the two-step system GMM

(GMM2/SYS), for the panel AR(1) model. The model is  =  + ,  = −1 + ,

where  is  standard normal variables and  is also normal with E() arbitrarily set to 2.

When generating the data, the processes are initialized at  = −100 such that −100 := 0, and

then observations for  ≤ 0 are discarded. The normal variates are generated using the rnormal
function of Stata. The difference GMM and the system GMM are estimated by the ‘xtabond’ and
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the ‘xtdpdsys’ commands of Stata respectively, and the PFAE is obtained by direct calculation

using formula (16). We consider  = 100 and  = 4 10 20, where  = 4 is the smallest time

dimension that allows for the X-differencing estimation, while the other estimators (LSDV, HK,

GMM estimators) are also calculable for  = 3.

Table 1 reports the simulated means of the estimators from 1,000 replications. The LSDV

estimator is obviously biased downward, as per Nickell (1981). The (small sample) biases of the

first difference and system GMM estimators depend on the distribution of . On the other hand,

PFAE shows very little bias for all parameter values and is considerably superior to HK.

Table 1 also presents simulated variances of the estimators. When  is small ( = 4 and

 = 10), PFAE is less efficient than the bias-corrected LSDV estimator (HK), but when  is larger

( = 20) and  is large ( = 07, 09 and 1 in our simulation), PFAE is as efficient or more

efficient than HK. The inefficiency of PFAE relative to HK for  = 4 is due to the smaller degrees

of freedom of PFAE, but it is also notable that the MSE is considerably smaller for PFAE for all

 and for all  including  = 4. With larger  values, PFAE attains the asymptotic variance

( )−1(1− 2), as does the HK estimator. For  = 20, we notice that PFAE appears less efficient

than LSDV at  = 1, which looks contrary to the asymptotic findings that 12 (̂ − 3 ) ⇒
(0 515) and 12 (̂− 1)⇒ (0 9) with ̂ and ̂ respectively denoting the LSDV and

PFAE estimators. This outcome occurs because  = 20 is not large enough for the asymptotics

to be accurate enough for the distinction to manifest. For  = 1, the asymptotic variance of

̂ is 9( − 2)2, which is approximately 0277̇ × 10−3 with  = 100 and  = 20. This

theoretical value is close to the simulated variance 0273 × 10−3. As  increases further, so that
 2( − 2)2 is close to 1 and the asymptotics for the PFAE is sufficiently accurate, we expect the
higher asymptotic efficiency of PFAE relative to LSDV to become evident in simulations. Table 2

reveals that this expected improvement occurs for  ≥ 80 for all values of .
The performance of the GMM estimators differs as () changes. Comparing PFAE and

GMM, PFAE performs uniformly better than the GMM estimators in our simulations except for

 = 1 with  = 10. It is however worth noting that the GMM estimators are based on moment

conditions different from those used by PFAE and LSDV, and that the performance of the GMM

estimators also depends on the initial cross sectional variance of the idiosyncratic errors.

It would also be worth comparing the performance of the PFAE and the indirect inference (II)

procedure (Gouriéroux et al., 2010). Some comparisons in the time series case were undertaken in

Han, Phillips and Sul (2011) - both estimators have negligible bias but II has smaller variance in the

unit root case. For the panel model, interested readers are referred to Gouriéroux et al.’s Table 2,
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though caution is needed in this comparison because the sizes of  do not exactly match those used

here and the generated samples are different. Looking at these results in the panel case, it appears

that both II and PFAE have negligible bias and II has smaller variance. A full comparison between

the two procedures is not yet possible because the limit theory for panel II is not yet available in

unit root and near unit root cases. This limit theory has only recently been obtained for the time

series model (Phillips, 2011) and the panel extension is left for a subsequent contribution.

II. Comparison of bias and efficiency: AR(2). We next consider an AR(2) dynamic panel

model (i.e.,  = +,  = 1−1+ 2−2+ ). Except for  being AR(2), all other set-

tings are the same as in the previous simulation. We set 2 = −02, and 1 = 02 05 07 09 11
and 12. The panels are stationary when 1  12, and are integrated when 1 = 12.

Table 3 reports the simulated means and variances of the estimates of 1. Hahn and Kuer-

steiner’s (2002) estimator is evaluated by applying their Theorem 2 to the AR(1) representation

of AR(2) rather than their AR(1) correction formula as bias correction based on the misspecified

model can exacerbate the bias (Lee, 2010a). The LSDV estimator is again biased downward, and

the PFAE exhibits very low finite sample bias. The GMM estimator performance depends on the

variance of . Again, LSDV, HK and PFAE are free from the effects of the , while the two GMM

estimators are not. The PFAE performs well in all considered cases. As remarked in the discussion

of the AR(1) simulations, it is noteworthy that the accuracy of the GMM estimators depends on

the variance of the initial idiosyncratic errors as well.

III. Inference. We next investigate the properties of the estimated variance −1 b
−1
 of the

PFAE, where

 =
P
=1

P
=+2

−−1P
=1

e
e 0 and b =

P
=1

b b 0
 

with e defined right after Lemma 1 and b found in (19).
Because all the statistics are free from individual effects, we can eliminate  from the data

generation process. We focus on the panel AR(1) model  = −1 + , where  ∼ (0 2)

with 2 = 1. We test (i)0 :  = 0 and (ii)0 :  = 1. We present test sizes for the null hypothesis

that the  parameter is the same as the true parameter used in the data generation. Gauss was used

for the simulations. We use the −1 critical values in testing, as recommended by Hansen (2007).

Table 4 reports the empirical sizes from a simulation of 5,000 replications. Except for a slight

over-rejection in small samples with high , size performance is reasonably good. The simulated
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powers for the null hypotheses 0 :  = 0 (left) and 0 :  = 1 (right) are presented in Table 5.

This part of the simulation is intended to be illustrative as its main purpose is to exhibit general

performance characteristics of inference with the PFAE procedure. Thorough comparisons with

other estimators would require a more systematic simulation study.

IV. Departures from stationarity. Finally, we examine the performance of the PFAE when the

stationarity assumption is violated. As the example of an AR(1) with  = 4 shows at the end of

the previous section, the bias of the PFAE can be made arbitrarily large by correspondingly large

heterogeneity in the error variances. Various other departures from stationarity are possible and

in this section we consider the case of nonstationary initial conditions, leaving other departures to

separate research. Specifically, the data are generated by  =  + ,  = −1 +  with

 ∼  (0 2) as in part I above, but this time we set 0 ≡ 0 (instead of −100 ≡ 0). We
deliberately use this model to make the individual means invariant over time.

Table 6 reports simulation results for LSDV, HK, difference GMM, system GMM, and PFAE.

The results are similar to part I, and for this specific DGP, nonstationarity of  does not introduce

serious bias to PFAE, but we still observe slightly more bias for moderate  values compared with

part I. If the mean of  changes over  or if heteroskedasticity is wilder, then the X-difference

estimators may be more biased than GMM estimators which do not depend on the stationarity of

 (or∆).

6 Conclusion

The estimation method introduced in this paper for linear dynamic panel models uses a new differ-

encing procedure called X-differencing to eliminate fixed effects and a simple technique of stacked

and pooled least squares on the full system of X-differenced equations. The method is therefore

straightforward to implement in practical work. It is also free from bias for all parameter values

and avoids weak instrumentation problems in unit root and near unit root cases. The asymptotic

theory shows gains in efficiency in the unit root case over bias-corrected maximum likelihood and

equivalent efficiency in the stationary case but the newmethod has no need for bias correction. The

asymptotics also apply irrespective of the  ratio as   → ∞. These advantages make the
new estimation procedure attractive for empirical research, especially in cases of data persistence

and dispersed individual effects where other methods can perform poorly.

The findings of the present paper point the way to further research. First, there is a need for
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a theory of optimal estimation in panel models which allows for roots in the vicinity of unity

and dual index asymptotics. While there is, as yet, no optimal estimation theory in time series

autoregression that includes the unit root case, the process of cross section averaging in panel

estimation leads to important simplifications in the limit theory that make such an optimality theory

feasible. In particular, the limit theory belongs to an asymptotically normal (as distinct from a

nonstandard distribution) family when  → ∞ But the limit distribution can also be degenerate

with a singularity in the covariance structure and a change in the convergence rate when there is

an autoregressive unit root. These features of the limit theory and their impact on optimality in

estimation deserve detailed study. As indicated earlier, there is also scope for further work on

model selection in dynamic panels, including an extensive numerical study of sequential testing

rules and a further analysis of the asymptotic behavior of various information criteria.

Second, consistent estimation of panel autoregressions using X-differencing and PFAE meth-

ods is useful in the estimation of more general panel models with additional regressors. For exam-

ple, in parametric models with exogenous regressors and AR() errors such as  = +
0+,

with  =
P

=1 − + , we can consistently estimate ρ = (1     )
0 using PFAE and

residuals based on a preliminary consistent estimate of  Then, a parametric feasible GLS esti-

mate can be conducted as a natural extension of Bhargava, Franzini and Narendranathan’s (1982)

treatment of the AR(1). Such stepwise estimation of  and ρ may be iterated until convergence,

combining moment conditions for  based on assumed exogeneity of  and the moment condi-

tions implied by Lemma 1 using  − 0 for given .

Finally, as noted above, the consistency of X-difference estimators relies on the stationarity of

 (or∆ if  is integrated) over . As a result, when the variance of the innovations varies over

time or there are nonstationary initial conditions, the X-difference estimators may not be consistent.

While important, these issues introduce new complications that have not been addressed properly

under the fixed effects environment. Full exploration of them is left for future research.

Appendix A: Technical Results and Proofs

Proof of (4). Because ∗ =  −  − 1+1, we have

E+1
∗
 = E+1 − E+1 − 1E

2
+1

Replacing the first +1 on the right hand side with  + 1 + +1, we get

E+1
∗
 = E + 1E

2
 − E+1 − 1E

2
+1
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Because E is the same for all  and E2 = E
2
+1, we have E+1

∗
 = 0.

Proof of (7). It is simpler to work with  =  − , where  = 1−1 + . We shall show

that  := E(−1 − +1)( − ∗) = 0. For + 1  , we have

 = E(−1 − +1) − E(−1 − +1)( − 1+1)

= −E(−1 − +1)( − 1+1)

= −E−1 + 1E−1+1 +E+1 − 1E
2
+1

= −1E−2 + 1E−1+1 + 1E
2
 − 1E

2
+1

where the last equality is derived by expanding −1 = 1−2 + −1 and +1 = 1 + +1.

When |1|  1,  is stationary, so  is obviously zero. If 1 = 1, then E = E2 for  ≤ ,

so when  ≤ − 2, we have

 = −1E2 + 1E
2
+1 + 1E

2
 − 1E

2
+1 = 0

as claimed.

We prove Lemma 1 using  =  − . Note that  =
P

=1 − +  where  is white

noise (0 2 ). We also have 
∗
 =  −

P

=1 + . We first establish the following general

lemma.

Lemma 4 Let  be a panel AR() process such that∆ is stationary AR(−) for some non-
negative integer ≤ , where∆ := 1−. Then for all  and  such that   , E∗−∆

 = 0.

Proof. First consider the case where  is covariance stationary AR(), i.e.,  = 0. Let  =

E−2 . Let () = 1− 1− · · ·− 
. We have

E
∗
 = E

Ã
 −

P
=1

+

!
= 2

Ã
− −

P
=1

−−

!
= 0

by the Yule-Walker equations when    as claimed. Now for general  ≤ , we have () =

(1−)∗(), where ∗() = 1− ∗1− · · ·− ∗−
− and the roots of ∗() = 0 are outside

the unit circle. First note that ∗ = (−1), so using (1 − −1)− = (−1)(1 − )

and ∆ := 1− , we have

∗− = ∗(−1)(1− −1)− = (−1)∗(−1)∆ =: ̃
∗
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That is, ∗(−1)̃ = (−1)̃∗, where ̃ = ∆. Furthermore, ̃ is stationary AR( −)

by assumption, and by the result for the stationary case, we have E(−1)̃∗̃ = 0 for all   .

The result follows by writing ̃∗ = ∗− and ̃ = ∆.

Lemma 1 is now straightforward.

Proof of Lemma 1. Because  −  =  −  for all  and , we shall prove that E(− −
+)( − ∗) = 0 for all   − . Because E(− − +) = 0 for all  ≤ − − 1 and
1 ≤  ≤ , it suffices to show that E(− − +)

∗
 = 0 for such  and . If  is stationary

AR(), then this holds because of Lemma 4 with  = 0. If  is (1) and ∆ is stationary

AR(− 1), we have E∗∆ = 0 for all  ≥ + 2 by Lemma 4. But

− − + = − − + =
−P

=++1

∆ −
+P

=−+1
∆

where  ≥ ++1 implies  ≥ +2 (because  ≥ 1) and  ≥ −+1 implies  ≥ −+1 ≥ +2

(because  ≤  and  ≥ + + 1). In both cases E∗∆ = 0 and the result follows.

Next we prove Theorem 2.

We first introduce some useful notation and transformations that facilitate analysis of the unit

root case.

Let  = 1


P

=2+2

P−2−1
=1

e
e 0 and  = 1



P

=2+2

P−2−1
=1

ee, where e

and e are defined in (14). Define the  ×  transformation matrix  and its inverse −1 as

follows

(26)  =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
 −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...
...
...

...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦


Note that  0 = (1 2 − 1      − −1)0 for any  = (1     )
0, and −1ρ = (

P

=1 P

=2      )
0 for any ρ = (1     )

0. These transformation matrices are needed for the unit

root case. Also let

(27)  =

⎧⎨⎩ 12 if  ∼ (0)

diag(  12      12) if  ∼ (1) and ∆ ∼ (0)
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For a uniform development of the asymptotic theory, we derive the limit distribution of the

standardized and centered quantity 12
−1(ρ̂− ρ) in what follows. Note that

(28) 12
−1(ρ̂− ρ) = −1  

where

(29)  =
1



X
=1

−1
  0

−1
 and  =

1√


X
=1

−1
  0 

Let  = −1
P

=1
−1
  0

0


−1
 .

Theorem 5 If  is stationary AR() or if  ∼ (1) and ∆−1 is stationary AR( − 1), then
under Conditions A and B(i), the following results hold:

(a) If →∞ and  is fixed,

12
−1(ρ̂− ρ)⇒ (0 −1 

−1
 )

where  := lim→∞ E = plim→∞ and  := lim→∞ E = plim→∞ .

(b) If   →∞ jointly

12
−1(ρ̂− ρ)⇒ (0 −1−1)

where  = lim→∞ = lim→∞ E , and  = lim→∞ = lim→∞ E .

(c) If  →∞ and  ≥ 1 is fixed, and if  is stationary AR()

12−1
  0(ρ̂− ρ)⇒

¡
0 2(

0Γ )−1
¢
 Γ = −2 E(−1

0
−1)

where−1 = (−1     −)0, and 
2
 =

P

=1 
4
 (
P

=1 
2
 )
2.

(d) If  →∞ and  ≥ 1 is fixed, and if  ∼ (1) and∆−1 is stationary AR(− 1)

12
−1(ρ̂− ρ)⇒

∙√
(0ρ)

P

=1 
2
P

=1 
2


  0

¸0


with

 =

Z 1

0

()
2 −

∙Z 1

0

()

¸2


 =

Z 1

0

()()−
Z 1

0

()[1−()]

where (·) are independent standard Brownian motions,  ∼ (0 2Ω
−1) Ω is the

variance-covariance matrix of (∆−1    ∆−+1)0, and(·) and  are independent.
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The proof of (a) is straightforward and is given first. Let E( ) := lim→∞ −1
P

=1 

 .

Proof of Theorem 5 (a). We consider the numerator and denominator of (28) separately.

(i) Denominator: Note that E ◦ := E
2
 is identical for all . Also E

◦
 is finite due to the

uniformly finite fourth moment assumption for . So

(30)
1



X
=1

E =

Ã
1



X
=1

2

!
E ◦1 → E(2 )E

◦
1 := 

 

where E(2 ) := lim→∞ −1
P

=1 
2
 and 

−1
  0


−1
 =  . The uniform boundedness of

E4 implies that E[ ( )
2] is bounded uniformly over all  for all  and , where  ( ) is

the ( ) element of  , so

var

"
1



X
=1

 ( )

#
≤ 1

2

X
=1

E[ ( )
2] = (−1)

Thus the denominator converges to the right hand side of (30) in mean and therefore in probability.

The equivalence of  and plim→∞ is also implied straightforwardly.

(ii) Numerator: We have E = 0 by Lemma 1. Condition A implies the convergence of

−1
P

=1 E
0
 . The Lindeberg condition holds since 

−2
  is  and 2 is bounded un-

der the uniform finite fourth moment condition. Thus −12
P

=1  ⇒ (0 
 ), where 


 :=

lim→∞ −1
P

=1 E
0
 and  = −1

  0


−1
 . The result for  follows immediately.

That  = plim→∞ is implied by Condition B(ii).

The remaining parts of Theorem 5 involve  → ∞, and we proceed by approximating the
components of ρ̂− ρ by simpler terms. Let −1 = (−1     −)0,  = (0    −1)0,

and  = (1      )0. Let1 =  − −1110  where 1 is a  -vector with unit elements. Let

 and  be defined by (26) and (27), respectively. Let Π = diag(1 2     ). Also let


()

 =
1



X
=+2

−−1X
=1

(− − +)(− − +)   = 0 1     

so ρ̂ = (
P

=1Ψ

 )

−1P

=1Ψ

 , where

(31) Ψ
 =

⎡⎢⎢⎣

(11)

 · · · 
(1)



...
...


(1)

 · · · 
()



⎤⎥⎥⎦ and Ψ
 =

⎡⎢⎢⎣

(10)



...


(0)



⎤⎥⎥⎦ 
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(Thus we have  = Ψ
 and  = Ψ

 − Ψ
 ρ.) Let  =  − for notational brevity.

We first approximate () as shown in the following result:


()

 =
+



P
=++1

−− − 1



P
=++1

−
P

=++1

− +
()

1 (32)

=
+



P
=1

−− − 1



P
=1

−
P
=1

− +
()

1 +
()

2 +
()

3 

where


()

1 =
1

2

P
=++1

(− − −)
2 − 1

2

"
P

=++1

(− − −)

#2
(33)

− 1



−−P
=1

P
=++1+

(− − −−)(− − −−)  +   + 1


()

1 =−
1

2

P
=++1

(− − −)
2 − 1

2

"
P

=++1

(− − −)

#2
+
1



+−−1P
=1

P
=++1−

(− − −+)(− − −+)  +  ≥ + 1


()

2 =−
+



+P
=1

−− − 1



+P
=1

−
+P
=1

−(34)


()

3 =
1



P
=1

−
+P
=1

− +
+P
=1

−
1



P
=1

−(35)

Proof of (32). Let  ≤ . Let  =  − . We derive the first line of (32) for given  and . Let

  = ( − )(− − +) omitting the  subscript. We have


(+)

 =
P

=+2

−−1P
=1

 −+ =
−P

=+2−

−+−1P
=1

 + =
−P

=+2−

−+2+−1P
=++1

 −

=
++−−1P
=++1

−P
=+−2−+1

 − =
++−−1P
=++1

−P
=+−2−+1

 −

The second and third identities above are obtained by letting 0 =  −  and 0 =  +  + 

respectively, and then removing the dashes. The first identity of the second line is obtained by

rearranging terms, and the last identity is obtained by swapping  and  and then noting  − =

 −. The right hand side on the first line and the right hand side term on the second line together

yield

2
(+)

 =
−P

=+2−

−+2+−1P
=++1

 − +
++−−1P
=++1

−P
=+−2−+1

 −
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We have

(+ 1)− (2 + ) = (+ 2− )− ( +  + 1)

= ( − )− ( +  +  − − 1)
= 1

2
[(+ − 2 −  + 1)− (− + 2 +  − 1)]

Hence, for 2 +   + 1, we have

2
(+)

 =
−P

=++1

−P
=++1

 − −
−P

=++1

 − − 2
−2−P
=1

−P
=++1+

 −−;

and for 2 +  ≥ + 1,

2
(+)

 =
−P

=++1

−P
=++1

 − +
−P

=++1

 − + 2
2+−−1P

=1

−P
=++1−

 +−

Note that  −− =  −− and 

+− =  +−. Recover  =  +  and let  =  + .

Transforming by 0 = +  and 0 = +  then removing the dashes from 0 and 0, we get

2
()

 =
P

=+1

P
=+1

 −− −
P

=+1

 −− − 2
−P
=1

P
=+1+

 −−−   + 1

and

2
()

 =
P

=+1

P
=+1

 −− +
P

=+1

 −− + 2
−−1P
=1

P
=+1−

 −−+  ≥ + 1

Because  =  − , we have

 −− = (− − −)(− − −)

= −− + −− − −− − −−

 −− = (− − −)(− − −) = −(− − −)
2

 −−− = (− − −−)(− − −−)

Thus when  + 1,

2
()

 = 2
P

=+1

−− −
µ

P
=+1

−

¶2
−
µ

P
=+1

−

¶2
+

P
=+1

(− − −)
2 − 2

−P
=1

P
=+1+

(− − −−)(− − −−)

Result (32) is obtained by subtracting and adding 2(
P

=+1 −)(
P

=+1 −) and then divid-

ing through by 2 in this case. The identity holds for    as well because () = 
()

 . The

31



case with  ≥  + 1 is similarly handled. Finally, the second line of (32) is derived by means of

the identity
P

=++1  =
P

=1  −
P+

=1 .

All the () terms in (32) turn out to be negligible compared with the other terms when

considering either time series or panel asymptotics with large  . More precisely, the denominator

 and numerator  in (29) above may be approximated as shown in the following lemma,

where the approximation holds both for stationary and integrated .

Lemma 6 Under Condition A, we have

(36)  =
1



X
=1

−1
  0 0

1
−1
 +  

and

(37)  =
1√


X
=1

−1
  0(ζ − Eζ) +  

where ζ =  0
1 + −1 0

Πρ, and  and  are defined in (29), for some 

 and 




such that

(38) lim
→∞

sup


Ekk = 0 and lim
→∞

sup


E
h
 

0


i
= 0

as given in (41) and (42) below.

Proof. Let

(39) 
 =

⎡⎢⎢⎣

(11)

 · · · 
(1)



...
...


(1)

 · · · 
()



⎤⎥⎥⎦ and 
 =

⎡⎢⎢⎣

(10)



...


(0)



⎤⎥⎥⎦ 
where () are defined in (32).

(i) Denominator: For (36), the second line of (32) implies

(40)  = Ψ
 =  0

1 − −1(10 + 1
0)¯ 0

 +
3P

=1


 

where  = (1     )0 and ¯ stands for the Hadamard (element-wise) product. Because 10 ¯
 0

 = Π 0
 and 10 ¯ 0

 =  0
Π with Π = diag(), we have

(41)  = −
1



P
=1

−1
  0(Π 0

 + 0
Π)

−1
 +

3P
=1

1



P
=1

−1
  0


−1
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The expectation of the absolute value of the first term is(−1), which can be obtained by writing

−1
  0Π 0


−1
 as−1

  0Π 0−1 ·−1
  0 0


−1
 and noting that −1

P

=1
−1
  0 0


−1


has a uniformly bounded first moment. We can also show that Ek−2 0


0


−1
 k → 0 as

 →∞ for all  by Lemma 9 in Appendix B. Thus (36) and the first part of (38) follow.

(ii) Numerator: For (37) and the second part of (38), we use (31) and the second line of (32) again,

giving

Ψ
 =  0

1 − −1 ¯ 0
 +

3X
=1


 

where  = (1      )0. This last expression and (40) imply that

 := Ψ
 −Ψ

 ρ =  0
1 − −1 ¯ 0

 + −1[(10 + 1
0)¯ 0

]ρ

+

3X
=1

(
 −

ρ)

Since 10 ¯ 0
 =  0

Π, we have ζ =  0
1 + −1(10 ¯ 0

)ρ. Using  ¯ 0
 =

Π 0
 and 1

0
 ¯ 0

 = Π 0
, it follows that

(42)  = −
1

12

X
=1

−1
  0Π 0

 +

3X
=1

1√


X
=1

−1
  0(∗ − E∗ )

where ∗ = 
 −

ρ. (Note that subtracting means is valid because E = 0.) Lemma

10 shows that the variance-covariance matrix of the last term on the right hand side is (1), and

the first term is −−1 · −1
  0Π−10 · −12

P

=1
−1
  0 0

, where the second moment of

−2 −1
  0 0

 is bounded. The result follows.

With these results in hand, the proof of Theorem 5(c) for the stationary case with large  and

small  is now straightforward.

Proof of Theorem 5 (c). In this case, note that  is fixed,  →∞,  is stationary (over ), and
 =  12. Under Condition A, we have −1 0

1 = −1 0
+ (1)→ 

2
Γ for each 

where Γ = −2 E(−1 0
−1) is independent of  in view of Condition A(i). From this result and

(36), we have

plim
→∞

 =

µ
1



P
=1

2

¶
 0Γ
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(see Phillips and Solo, 1992, Theorem 3.16). Also −12 0
1 = −12 0

 + (1) ⇒
(0 4Γ), which together with (37) implies that

 ⇒ 

µ
0

∙
1



P
=1

4

¸
 0Γ

¶


The result follows immediately.

In the unit root case with large  , we use the standardization matrix = diag( 
12      12)

and coordinate transformation

(43)  0−1 = (−1−∆−1    −∆−+1)
0

The denominator can be handled using (36). For the numerator, we have

(44)  =
1√


X
=1

( − E ) +   where E[kk2] = (1)

and  = (1  2       )
0 with

1 =
∗(1)−1



P
=1

−1 − ∗(1)−1

 2

P
=1

−1
P
=1

 +
∗(1)−1

 2

P
=1

2−1(45)

 =
1√


P
=1

∆−+1  = 2     (46)

due to Lemma 11. The large  asymptotics (for small  or large ) are obtained by evaluating

−12
P

=1  because E1 → 0 as  →∞.

Proof of Theorem 5 (d). Note that 0 := 0 without loss of generality because the estimator is

expressed in terms of differences. Otherwise we could simply replace  with  − 0.

(i) Denominator: The first diagonal element of−1
  0 0

1
−1
 is

1

 2

X
=1

∙
−1 − 1



P
=1

−1

¸2
⇒ 2

∗(1)2

Z 1

0

̃()
2 ̃() :=()−

Z 1

0

()

where the () are independent standard Brownian motions. (See Phillips, 1987, Theorem 3.1,

or use the BN decomposition in (51) below.) The other elements of the first row (and the first

column) are− 32P

=1 −1∆− for  = 1     −1, which are(
−12) and thus converge

to zero as  →∞. The remaining elements of the−1
  0 0

1
−1
 matrix correspond to the

stationary series {−∆−}=1−1 and this matrix converges in probability to 2Ω, where Ω is
the variance-covariance matrix of −1 (∆−1    ∆−+1)0. We therefore have

(47) −1
  0 0

1
−1
 ⇒ 2diag

©
(0ρ)−2 Ω

ª
  =

Z 1

0

̃()
2
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for each , where the coefficient (0ρ)−2 appears in the limit because of Lemma 7 below.

(ii) Numerator: Due to (45) and Lemma 7, we have

1 ⇒
2

∗(1)

∙Z 1

0

()()−(1)

Z 1

0

() +

Z 1

0

()
2

¸
:=

2

∗(1)


which is also the weak limit of the first element of −1
  0ζ . From (44) and (46), the vector

of the second to last elements of −1
  0ζ , denoted by 2 (a notation used only in this proof),

is

2 = −12∆̈ 0
 +(

−12)⇒ 22 2 ∼ (0Ω)

where ∆̈ denotes the first  − 1 columns of ∆, Ω = E∆̈−1∆̈ 0
−1, and ∆̈−1 denotes

the first − 1 elements of∆−1. Thus, 
−1
  0ζ ⇒ [2 (

0ρ)−1 2
0
2]
0.

Finally, to see the relationship between the limits of 1 and 2 , we note that the sam-

ple random function corresponding to () is −12
P[]

=1  and the th element of 2 is

−−12P

=1∆−. The joint Gaussianity of (1  
0
2 )

0 is straightforward, and the covari-

ance between 1 and 2 is zero under the bi-directional martingale difference assumption. So

 and 2 are independent.

Combining these results with (47) and (37), and noting that E = 0, E2 = 0, we get the

stated result.

Next we prove the panel limit theory where  → ∞. Here the LLN and CLT are established
using variation across .

Proof of Theorem 5 (b). LetE(2 ) := lim→∞ −1
P

=1 
2
 as before andE(

4
 ) := lim→∞ −1

P

=1 
4
 .

(i) Stationary case: We have =  12. For the denominator, we have Ē2 = 2(
−1), where

̄ = −1
P

=1 , thus

1



X
=1

 0
1 =

1



X
=1

 0
 +(

−1)→ E(
2
 )Γ

For the numerator, by the martingale CLT we have

1√


X
=1

(ζ − Eζ) =
1√


X
=1

 0
 + (1)⇒ 

¡
0E(4 )Γ

¢


The result follows straightforwardly as   →∞.
(ii) Integrated case: We work with the rotated variables. For the denominator, let ∗ ( ) be the
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( ) element of ∗ := −1
P

=1
−1
  0 0

1
−1
 , which is the leading term of  in

(36). Then

∗ (1 1) =
1

 2

P
=1

P
=1

2−1 −
1

 3

P
=1

∙
P
=1

−1

¸2
→

E(2 )

6∗(1)2


because lim→∞ E[∗ (1 1)] = ∗(1)−2E(2 )6 and its variance is(
−1) by Lemma 8 below.

So ∗ (1 1) → ∗(1)−26. This is also the probability limit of the (1 1) element of  by

Lemma 6.

The remaining elements in the first row (and the first column) of the denominator matrix are

 (1 ) =
1

 32

X
=1

X
=1

−1∆−+1  = 2     

whose first moment is (−12) by Lemma 8(iii) and second moment is (−1−1) by Lemma

8(vii). So (1 )→ 0 for all  = 2     , which is lim→∞ E [ (1 )]. Finally, for  ≥ 2,
 ≥ 2,

 ( ) =
1



X
=1

X
=1

∆−+1∆−+1 → E(
2
 )|−|

which is lim→∞E ( ), by evaluating the mean and the variance again. So  →

lim→∞E , where the limit is taken as   →∞.
For the numerator, we use (44), (45) and (46). Lemma 12 shows that the variance of the first el-

ement of  converges, and its limit is the same as the variance of the corresponding weak limit

obtained in Theorem 5(d). The variance of the remaining terms of  and the covariances are

also straightforwardly shown to converge to the limit variance and covariance of the corresponding

weak limits in Theorem 5(d). Convergence of the variance and the boundedness of 2 imply the

Lindeberg condition

(48)
1



P
=1

E
h
(0 )

21{(0 )2  }
i
→ 0 ∀   0  = −1

  0 

for all × 1 vectors , which ensures the CLT for  .
These arguments justify joint limits as   → ∞ as discussed in Phillips and Moon

(1999) general treatment of panel asymptotics.

Proof of Theorem 2. Theorem 5(a)–(c) imply that

12
−1(ρ̂− ρ)⇒ 

¡
0 plim−1

−1


¢
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where

 =
1



P
=1

−1
  0

−1
   =

1



P
=1

−1
  0

0


−1
 

and the probability limits are taken as ( − 2− 1) → ∞ when  ∼ (0), or as  → ∞ (and

for any  sequence) when  ∼ (1). Thus,

12
−1(ρ̂− ρ) = −12−1

  0(ρ̂− ρ)⇒ (0 plim )

where  :=
P

=1  . For any  such that 
0
 =  , i.e., such that

−1
−1
  0

−1
 0

 =  where  =
P
=1


0
 

we have

−12
−1
  0(ρ̂− ρ)⇒ (0 )

(Here we used the Lyapunov condition A(i) and the high level condition B(ii). See Phillips and

Solo, 1992, for the convergence of  .) The result follows by letting

(49)  := −12
−1
  0

Proof of Theorem 3. The first result is immediate from Corollary 4(i) of HPS (2011). The second

result follows from the direct evaluation of the mean of the denominator and the variance of the

expression in the numerator of Corollary 4(ii) of HPS (2011).

Appendix B: Supplementary Lemmas

This section gathers together some technical lemmas. Since −1  is , the  are uniformly

bounded, and the quantities −1
P

1 
2
 and 

−1P

1 
4
 are convergent,the heteroskedasticity may

be ignored in the calculations given here. Hence, instead of introducing new notation for the

standardized quantities −1 , 
−1
 , 

−2
  , we simply let

(50) 2 := 1 ∀

so that the component random variables are  across . We also maintain Conditions A and B

throughout, and assume that 0 := 0 without loss of generality if  ∼ (1); otherwise we could
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simply replace all the  in the proofs with  − 0. This translation is justified by that fact that

the PFAE is expressed in terms of differences.

We frequently use the following BN decomposition (Phillips and Solo, 1992, Lemma 2.1;

Phillips and Moon, 1999, Lemma 2): Let () =
P∞

0 
 . Then

() = (1)− (1− )̈()

where ̈() =
P∞

0 ̈
 , ̈ =

P∞
+1 . In the AR() case, () = ()−1, where () :=

1− 1− · · ·− 
, so

P∞
1 || ∞ for any  ≥ 1, thusP∞

0 |̈| ∞ for any  ≥ 1 and
|(1)| ∞ (Phillips and Solo, 1992). Therefore,

(51)  =

⎧⎨⎩(1)−1 + ̈−1 − ̈ if  ∼ (0)

∗(1)−1
P

=1  + ̈0 − ̈ if  ∼ (1)

where ∗() = ()(1− ), and

(52)
P
=1

−1 = ∗(1)−1
−1P
=1

( − ) +  ̈0 −
P
=1

̈−1 if  ∼ (1)

Note that ̈ for the stationary case has a different meaning than the same notation for the (1)

case. This duplicated usage of one notation will not cause any confusion because these terms do

not appear together.

For ∗(1), the following is true.

Lemma 7 If 10ρ = 1, 
∗(1) = 0ρ, where ∗() = ()(1− ) and  = (1     )0.

Proof. When 10ρ = 1, we have () = (1 − )∗(). So 0() = −∗() + (1 − )∗0(),

implying that ∗(1) = −0(1) =P

=1  = 0ρ because () = 1−P

=1 
 .

Some results for the unit root case are provided next. These are useful in analyzing terms when

 ∼ (1).

Lemma 8 Under (50), if 0 = 0 and  ∼ (1), then

(i) −2
P

=1 E
2
−1 → (12)∗(1)−2;

(ii) −3E[(
P

=1 −1)
2]→ (13)∗(1)−2;

(iii) E(
P

=1 −1∆−) = ( ) for all ;
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(iv) −1E2 → ∗(1)−2;

(v) E4 = ( 2);

(vi) E[(
P

=1 
2
−1)

2] = ( 4);

(vii) E[(
P

=1 −1∆−)2] = ( 2) for all .

Proof. (i) From (51), we have

1

 2

P
=1

E2−1 =
∗(1)−2

 2

P
=1

(− 1)2 +(−1)→ 1

2
∗(1)−2

(ii) From (52), we have

1

 3
E

"µ
P
=1

−1

¶2#
=

∗(1)−2

 3

−1P
=1

( − )2 +(−1)→ 1

3
∗(1)−2

(iii) We have −1 =
P−1

=1∆, so

E(−1∆−) =
−1X
=1

E(∆∆−) =
−1X
=1

|−−| ≤
∞X
=0

|| ∞

where  = E∆∆−. So −1
P

=1 E−1∆− ≤ −1
P

=1

P∞
0 || =

P∞
0 ||  ∞

for all  .

(iv) and (v): By (52),  = ∗(1)−1
P

1  + ̈0 − ̈ . So

−1E2 =
∗(1)−2


E

"µ
P
=1



¶2#
+ (1) = ∗(1)−2 + (1)→ ∗(1)−2

and

4 ≤ 8∗(1)−4
µ

P
=1



¶4
+ 8(̈0 − ̈ )

4

implying that −2E(4) = (1).

(vi) We haveµ
P
=1

2−1

¶2
=

X
=1

4−1 + 2
X
=2

−1X
=1

2−1
2
−1

And E4−1 ≤ 2 for some uniformly finite constant  . Thus the expectation of the above

displayed equation is ( 3)+( 4). (For the second term, use the Cauchy-Schwarz inequality.)
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(vii) We haveµ
P
=1

−1∆−

¶2
=

P
=1

2−1(∆−)
2 + 2

X


−1−1∆−∆−

But E[2−1(∆−)2] ≤  for some finite and the result follows. (For the second term, use

the Cauchy-Schwarz inequality.)

Now we show that the remainder terms 
 in the denominator are negligible under large 

asymptotics (whether  is large or small).

Lemma 9 Under (50), lim→∞Ek−1
  0


−1
 k = 0 for  = 1 2 3, where  and  are

defined in (26) and (27) and 
 are defined in (39).

Proof. We will show that E|() | = (1) for  = 1 2 and E|()3 | = ( 12) at most for all

  = 1     , where () are defined in (33)–(35).

(i)  = 1: Let the three components of ()1 be denoted by 
()

1 , 
()

1 and 
()

1 , so 
()

1 =


()

1 +
()

1 +
()

1 as written in (33). For 
()

1 ,  ≤ , we have

X
=++1

(− − −) =
X

=++1

−−1X
=0

∆−− =
−−1X
=0

(−− − −)

so

0 ≤ 
()

1 =
1

2

"
−−1X
=0

(−− − −)

#2
≤  − 

2

−−1X
=0

(−− − −)
2

Taking expectations and averaging across  yields

0 ≤ E()1 ≤
 − 

2

−−1X
=0

E
h
−1(−− − −)

2
i
= (1)

at most by Lemma 8(iv). For ()1 and 
()

1 , consider

(53)  :=
1



X
=++1


()

  
()

 := (− − −+)(− − −+)

(The  notation is used only in this part of the proof.) Because of the inequality

1



P
=1

E|| ≤ 1



P
=1

(E2
 E

2
 )
12 ≤

∙
1



P
=1

E2
 ·
1



P
=1

E 2


¸12
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we have³
E||

´2
≤ 1



P
=1

E
h
(− − −−)

2
i
· 1


P
=1

E
h
(− − −−)

2
i
= (1)

Because this bound holds for any , we have E|()1 | = (1) and E|()1 | = (1).

(ii)  = 2: This case is clear because  runs from 1 to  + .

(iii)  = 3: We first show that E|−1P

=1 −| = ( 12) for given  and , which is true

because

E

¯̄̄̄
1



P
=1

−

¯̄̄̄
≤ 1



P
=1

(E2−)
12(E2)

12 ≤
∙
1



P
=1

E2−

¸12
(E2)

12 = ( 12)

where we used the fact that −1
P

=1 E
2
− is (1) if  ∼ (0) and ( ) if  ∼ (1) by

Lemma 8(i). The result follows because −1
P

=1
−1
  0E[

3 ]
−1
 = −1

  0( 12)−1
 =

(−12), where −1
 = (−12).

We derive similar results for the numerator. Here, the remainder terms disappear in 2.

Lemma 10 lim→∞ E[k−1
  0(

 −
ρ)k2] = 0 ∀.

Proof. For  = 1 2, we will get E[(() − E() )
2] ≤ E

()


2 = (1) because then

E[−1
  0(

 − 
ρ)(


 − 

ρ)
0−1

 ] = (−2
 ) = (−1). For  = 3, we will

establish a sharper boundary for the rotated and rescaled remainder−1
  [

3 −
3ρ].

(i)  = 1: Again note that ()1 = 
()

1 + 
()

1 + 
()

1 as in the proof of Lemma 9. For


()

1 , we have

(54) E()1
2 ≤ ( − )3

4

−−1X
=0

E
h
−2(−− − −)

4
i
= (1)

by Lemma 8(v). For ()1 , we have

E
()

1
2 =

1

4 2

P
=1

E
£
(− − −)

2
¤
+

1

4 2

P


E
£
(− − −)

2(− − −)
2
¤


which is (1) for given  and  (small) because − − − is a finite sum of stationary terms

for given  and  irrespective of the existence of the unit root, so its fourth moments are uniformly

(over ) bounded. ()1 is similarly handled.

(ii)  = 2: This case is straightforward because  +  is fixed and small.
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(iii)  = 3: We have


3 = ̄1

0
 ¯ + (̄1

0
 ¯)

0 and 
3 = ̄ ¯ ̇ + ̈̄

where  is the ×  matrix whose ( ) element is
P+

=1 −, ̇ is the × 1 vector whose th
element is

P

=1 , ̈ is the ×1 vector whose th element is
P

=1 − , and¯ is the Hadamard
product. Because ̇() + ̈() = 1− + 2− + · · ·+  =

P+

=1 − = ( ), where ̇()

is the th element of ̇, ̈() is the th element of ̈ and ( ) is the ( ) element of , we

have  = ̇1
0 + 1̈0. So


3 −

3ρ = ̄ ¯ ̇ − (̄1
0
 ¯)ρ+ ̈̄ − (1̄ 0

 ¯0
)ρ

= ̄ ¯ ̇ − (̄1
0
 ¯ ̇1

0
)ρ− (̄1

0
 ¯ 1̈0)ρ+ ̈̄

− (1̄ 0
 ¯ 1̇0)ρ− (1̄ 0

 ¯ ̈1
0
)ρ

= (̄ ¯ ̇)(1− 10ρ)− ̄̈
0
ρ+ ̈(̄ − ̄ 0

ρ)− 1(̄ ¯ ̇)
0ρ

where we use the relation 0 ¯ 0 = ( ¯ )( ¯ )0 for column vectors , ,  and . Because

̄ − ̄ 0
ρ = ̄, ̈ = −100 and  01 = 1, where 1 is the first column of , we have

−1
  0(

3 −
3ρ) = −1

  0(̄ ¯ ̇)(1− 10ρ)−−1
  0̄̈

0
ρ(55)

+−1
 0̄ −−1

 1(̄ ¯ ̇)
0ρ

If  ∼ (0), then all the terms in (55) are easy to handle: the variances disappear as  → ∞
because the variance of ̄ and ̄ disappear at an (−1) rate. Now let  ∼ (1). The first term

of (55) is null because 10ρ = 1. For the second term of (55), we have

−1
  0̄̈

0
ρ = −1

  0̄
0
0

−1ρ

where −1
  0̄ = (

−1P
 −1−−12

P
∆−1    −−12

P
∆−+1)0. So the (1 )

element of−1
  0̄

0
0 is 

−2P
 −11− and satisfies

(56) E

∙
1

 2

P
=1

(−11− − E−11−)
¸2
≤ 1

 4
E

"µ
P
=1

−11−

¶2#
= (−1)

where the last order can be obtained using (52). The ( ) elements of −1
  0̄

0
0 for   1

are easily handled because they involve only differences (which are stationary) and initial values.

The variance of the third term on the right hand side of (55) is (−2). The last term of (55)

contains only one nonzero element, which is the first element equal to −1(̄¯ ̇)
0ρ. Its variance

is (−1) as shown in (56).
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Next we approximate−1
  0ζ when  ∼ (1). The first element of−1

  0ζ is 
−1P

=1 −1−
−2(

P

1 −1)(
P

1 ) +
P

=1 
−2P

=1 −1− . Of these terms, the − terms in the

last term can be replaced by −1 in the sense that

P
=1

1

 2

P
=1

−1− =
1

 2

P
=1

2−1
P

=1

 + (1)

where the last (1) term is negligible in the 2 sense, and all the −1 terms can be replaced with

the leading term of (51), i.e., with ∗(1)−1
P−1

=1 . Also, the vector of the second to last elements

of −1
  0ζ is approximated by −−12[∆−1    ∆−+1]0 because the remaining terms are

negligible in the 2 sense as shown later. Thus, we have the following result:

Lemma 11 Let  ∼ (1). Then−1
  0ζ =  +  with  = (1  

0
2 )

0, where

1 =
1

∗(1)

∙
1



P
=1

−1 − 1

 2

µ
P
=1

−1

¶µ
P
=1



¶
+
1

 2

P
=1

2−1

¸


2 = −
1√


P
=1

h
∆−1    ∆−+1

i0


 =
P

1 , and lim→∞E 
0
 = 0.

Proof. Let

̃1 =
1



P
=1

−1 − 1

 2

µ
P
=1

−1

¶µ
P
=1



¶
+

P
=1

1

 2

P
=1

2−1

and ̃ = (̃1  
0
2 )

0. We first show that −1
  0ζ = ̃ + ̃ , where Ẽ ̃

0
 = (1). Let

̃1 be the first element of ̃ and 2 the remaining elements, so that ̃ = (̃1  
0
2 )

0. Then

̃1 =
P

=1

1

 2

P
=1

−1(− − −1)

Because − − −1 = −
P−1

=1∆−, we have

̃1 =
P

=1

−1P
=1

∙
1

 2

P
=1

−1∆−

¸
 :=

P
=1

−1P
=1

 ()

(This  () notation is used only in this proof.) But

E
£
 ()

2
¤
=
1

 4

P
=1

E
h
2−1(∆−)

2
i
+
2

 4

P
=2

−1P
=1

E
h
−1−1∆−∆−

i


Using the BN decomposition (51), we can approximate −1 by ∗(1)−1
P−1

=1  and ∆ by

∗(1). Then the first term on the right hand side of the last expression is (−2) and the second
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term is also (−2). Because ̃1 is a finite sum of  (), we have shown that Ẽ
2

1 = (1).

Next, we have

2 = − 1

 32

∙
P
=1

∆̈−1

¸
P
=1

 +
1

 32

P
=1

∆̈−1
0
−1Πρ

where ∆̈−1 is the first  − 1 elements of ∆−1. Because ∆−1 is stationary, the variance

of the first term of 2 is (−1) and the second term also has an (−1) variance-covariance

matrix, which can be shown using (51). The covariance also disappears due to Hölder’s inequality.

So far, we have approximated −1
  0ζ with ̃ (in the 2 sense). Now we show that  −

̃ → 0 in 2. This part can be done using (51) and Lemma 7. More precisely, because
P

1  =

∗(1) by Lemma 7, we have

1 := ̃1 − 1 =
1



P
=1

(̈−2 − ̈−1) − 1

 2

P
=1

(̈0 − ̈−1) ·
P
=1



+
1

 2

P
=1

∙
∗(1)−1 +

−1P
=1



¸
(̈0 − ̈−1)

The second moments of the first and second terms are (−1), and for the last term, we again

apply (51) and show that its second moment is (−1).

Lemma 12 If  ∼ (1), under (50), E1 → 0 and E21 → (14)∗(1)−2.

Proof. Let  =
P

1 , ̄ = −1
P

1 −1, and ̄ = −1
P

1 . Then

1 =
1

∗(1)

∙
1



P
=1

−1 − ̄̄ +
1

 2

P
=1

2−1

¸
(a notation used only in this proof). Using

P

=1 −1 =
P−1

=1 ( − ), we have

E1 →
1

∗(1)

∙
0− 1

2
+
1

2

¸
= 0

For the second moment, we have

E
h
∗(1)221

i
=
1

 2

P
=1

E2−1
2
 +Ē

2
 ̄
2
 +

1

 4
E

"µ
P
=1

2−1

¶2#

− 2


E

∙
̄̄

P
=1

−1

¸
+
2

 3
E

∙
P
=1

−1
P
=1

2−1

¸
− 2

 2
E

∙
̄̄

P
=1

2−1

¸
= 1 +2 + 3 + 4 +5 +6
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First, 1 → 12 because E2−1 = − 1. For 2, we have ̄ = −1
P−1

=1 ( − ), soµ
P
=1

−1

¶2
=

P
=1

( − )22 + 2
P
=2

−1P
=1

( − )( − )µ
P
=1



¶2
=

P
=1

2 + 2
P
=2

−1P
=1



Thus,

2 →
Z 1

0

Z 

0

h
(1− )2 + (1− )2

i
  + 4

Z 1

0

Z 

0

(1− )(1− )  =
5

6


For the rest, note that

P
=1

−1 =
P
=2

−1P
=1

(57)

P
=1

−1 ·
P
=1

 =
P
=1

( − )2 +
P
=2

−1P
=1

(2 − − )(58)

P
=1

2−1 =
P
=1

( − )2 + 2
P
=2

−1P
=1

( − )(59)

where (57) is obvious, (58) uses
P

=1 −1 =
P

=1( − ), and (59) is obtained by rearranging
the terms after expanding 2−1 to

P−1
=1 

2
 + 2

P−1
=2

P−1
=1 . Now, for 3, from (59), we

have

3 → 2

Z 1

0

Z 

0

(1− )(1− )  + 4

Z 1

0

Z 

0

(1− )2  =
1

4
+
1

3
=
7

12


Using (57) and (58), we have

4 = − 2
 3

P
=2

−1P
=1

(2 − − )→−2
Z 1

0

Z 

0

(2−  − )  = −1

From (57) and (59), we have

5 =
4

 3

P
=2

−1P
=1

( − ) =
4

 3

P
=2

(− 1)( − )→ 4

Z 1

0

(1− ) =
2

3


Finally, from (58) and (59), we have

6 →−4
Z 1

0

Z 

0

(1− )(1− )  − 4
Z 1

0

Z 

0

(2−  − )(1− )  = −4
3


So E[∗(1)221 ] =
1
2
+ 5

6
+ 7

12
− 1 + 2

3
− 4

3
= 1

4
, which implies the result.
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Appendix C: Unit Root Asymptotics for a Modified PFAE

Proof of (23). Theorem 3 of HPS (2011) gives a representation of the FAE estimator in terms of

the pooled OLS estimator. This relationship in the panel context gives the following relationship

between the PFAE estimator ̂ and the LSDV estimator ̂:

̂ = ̂ +

P
 

−1
2

P

=3 
2
−1P



P

=3 ̆
2
−1

+

P


n
12 − −12 (1 + 2)

P

=3 −1
o

P


P

=3 ̆
2
−1



where ̆−1 = −1 − −12
P

=3 −1, 2 =  − 2, and where

̂ −  =

P


P

=3 ̆−1̆P


P

=3 ̆
2
−1



with ̆ :=  − −12
P

=3 . It follows that when  = 1 and
√



→ 0

√
 (̂− 1)

=
√
 (̂ − 1) +

√


2

P


P

=3 
2
−1P



P

=3 ̆
2
−1

+

√

P



n
12 − −12 (1 + 2)

P

=3 −1
o

P


P

=3 ̆
2
−1

=
√


Ã
̂ − 1 +

1



P


P

=3 
2
−1P



P

=3 ̆
2
−1

!
+

µ√




¶

=
√


⎛⎝̂ − 1 +
1



3
P



P

=3 ̆
2
−1 +

³P


P

=3 
2
−1 − 3

P


P

=3 ̆
2
−1
´

P


P

=3 ̆
2
−1

⎞⎠+  (1)

=
√


µ
̂ − 1 +

3



¶
+
√


P


P

=3 
2
−1 − 3

P


P

=3 ̆
2
−1P



P

=3 ̆
2
−1

+  (1)

=
√
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giving the stated relationship between the two estimators ̂ and ̂

We now proceed to derive asymptotics for the modified PFAE given by (24) as   → ∞
when  = 1. Note that we can set 0 := 0 without loss of generality when  = 1. Let b =

−1−2
P

=1

P

=3 ̆
2
−1 where ̆−1 := −1−−12

P

=3 −1. The first identity of (25) implies

that

(60) 12 (̂+ − 1) = 12 (̂ − 1 + 3

) + 12(̂− ̂ − 3


) = b+  b

46



where

b = b−1 · 1
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¸
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(For the expression for b, see HPS, 2011, Theorem 3.)
It is straightforward to show that b → 26. Next, Hahn and Kuersteiner (2002) show that

E b = 0 and the asymptotic variance of b b is 514180 So the asymptotic variance of b is 515.
For the variance of b, we note that
b b =

1

12

X
=1

"
1

2

X
=3

2−1 −
3



X
=3

̆2−1

#
+(

−12)

=
2

12

X
=1
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where () are  standard Wiener processes. Note that E = 0 and we need to calculate the

variance of , E
2
  First,

E2 = 4E

∙Z 1
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For the first term of (61), we have
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by direct calculation, where the second identity holds because E[()−()]()
3 = 0. For

the second term of (61), after long and tedious algebra, we have
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For the third term of (61) we note that
R 1
0
() ∼ (0 13), so that

E

∙Z 1

0

()

¸4
=
1

9
E
h
(0 1)4

i
=
1

9
× 3 = 1

3


Thus, the asymptotic variance of b b is 4 times

4× 7

12
− 12× 13

30
+ 9× 1

3
=
24

180


implying that the asymptotic variance of b is 24/5.

To recapitulate, what we have obtained so far is Avar( b) = 515, and Avar( b) = 245. We
also have Avar

¡
12 (̂ − 1)

¢
= 9 by Theorem 3, and

12 (̂ − 1) = b+ b

Thus,

Avar
¡
12 (̂ − 1)

¢
= Avar( b) + Avar( b) + 2Acov( b b)

or 9 = 515 + 245 + 2Acov( b b), implying that Acov( b b) = −3.
It therefore follows from (60) that

Avar
³
12 (̂+ − 1)

´
= Avar( b)− 2Acov( b b) + 2Avar( b)
=
51

5
− 6 + 24

5
2

This asymptotic variance is minimized at  = 58, where the minimum variance attained is 515−
6× 58 + (245)× (58)2 = 33340 = 8325.
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Table 1: Simulation for panel AR(1), 1000 replications,  = 100
 = (1− ) + −1 + ,  ∼ (2 2),  ∼  (0 1)

Bias

 = 1  = 3

  LSDV HK GMM1 GMM2 GMM1 GMM2 PFAE
DIF SYS DIF SYS

4 -0.3333 -0.1111 -0.0051 0.0101 -0.0048 0.0573 -0.0008
0.0 10 -0.1105 -0.0116 -0.0128 0.0022 -0.0152 0.0487 0.0008

20 -0.0533 -0.0035 -0.0121 0.0012 -0.0127 0.0577 -0.0007
4 -0.4539 -0.1719 -0.0137 0.0037 -0.0216 0.0595 0.0006

0.3 10 -0.1504 -0.0226 -0.0210 -0.0006 -0.0273 0.0407 -0.0004
20 -0.0709 -0.0062 -0.0179 -0.0064 -0.0195 0.0402 -0.0011
4 -0.5371 -0.2161 -0.0221 -0.0059 -0.0522 0.0395 0.0013

0.5 10 -0.1818 -0.0353 -0.0279 -0.0037 -0.0412 0.0309 -0.0012
20 -0.0840 -0.0095 -0.0230 -0.0122 -0.0267 0.0230 -0.0013
4 -0.6223 -0.2631 -0.0371 -0.0169 -0.1296 0.0034 0.0011

0.7 10 -0.2206 -0.0562 -0.0374 -0.0099 -0.0677 0.0145 -0.0019
20 -0.1003 -0.0161 -0.0296 -0.0202 -0.0399 0.0007 -0.0012
4 -0.7095 -0.3126 -0.1023 -0.0325 -0.2763 -0.0295 -0.0001

0.9 10 -0.2715 -0.0905 -0.0691 -0.0215 -0.1265 -0.0170 -0.0026
20 -0.1271 -0.0338 -0.0444 -0.0323 -0.0707 -0.0321 -0.0009
4 -0.7539 -0.3386 -0.8929 -0.0151 -0.8906 -0.0154 -0.0014

1.0 10 -0.3027 -0.1141 -0.4283 -0.0123 -0.4273 -0.0122 -0.0028
20 -0.1507 -0.0533 -0.2199 -0.0327 -0.2202 -0.0318 -0.0014

* HK = LSDV× ( − 1) + 1( − 1)
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(Table 1 continued)

Variance× 103
 = 1  = 3

  LSDV HK GMM1 GMM2 GMM1 GMM2 PFAE
DIF SYS DIF SYS

4 3.269 5.812 16.016 10.258 33.820 22.485 10.536
0.0 10 1.159 1.431 2.278 2.103 2.500 3.430 1.503

20 0.497 0.550 0.722 0.827 0.768 1.494 0.557
4 3.984 7.083 26.429 12.681 74.392 23.779 13.710

0.3 10 1.213 1.498 2.825 2.364 3.401 3.267 1.593
20 0.492 0.545 0.769 0.867 0.857 1.242 0.551
4 4.450 7.912 37.652 13.884 124.390 22.584 15.919

0.5 10 1.174 1.450 3.124 2.485 4.300 3.250 1.545
20 0.460 0.510 0.752 0.885 0.900 1.123 0.512
4 4.875 8.666 56.160 15.235 209.942 21.632 18.156

0.7 10 1.084 1.338 3.410 2.414 5.934 3.270 1.442
20 0.401 0.445 0.705 0.763 0.977 0.984 0.439
4 5.239 9.314 174.002 19.408 405.666 22.419 20.425

0.9 10 0.973 1.201 4.940 2.261 10.11 2.712 1.367
20 0.315 0.350 0.797 0.691 1.345 0.882 0.345
4 5.377 9.560 635.802 14.933 649.873 18.269 21.542

1.0 10 0.921 1.138 30.54 0.769 30.37 0.760 1.369
20 0.252 0.279 4.177 0.681 4.214 0.682 0.273

Table 2: 103×Variance of LSDV and PFAE for AR(1) with  = 1, 10,000 replications
 = −1 + ,  ∼  (0 1)

 = 50  = 100  = 200

 LSDV PFAE LSDV PFAE LSDV PFAE
20 0.4910 0.5526 0.2448 0.2769 0.1231 0.1392
40 0.1246 0.1252 0.0638 0.0643 0.0310 0.0319
80 0.0328 0.0305 0.0159 0.0153 0.0078 0.0073
160 0.0080 0.0074 0.0040 0.0036 0.0020 0.0018

Note: The LSDV estimator is unbiased for 1− 3 . The slight disparity between Tables 1 and 2
for  = 100 and  = 20 is ascribed to the fact that Stata is used for one table and Gauss for the

other, the generated samples are different, and the replication numbers are different.
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Table 3: Simulation for ̂1 from AR(2), 1000 replications,  = 100
 = (1− 1 − 2) + 1−1 + 2−2 + , 2 = −02

 ∼ (2 2),  ∼  (0 1)

Bias

 = 1  = 3

1  LSDV HK GMM1 GMM2 GMM1 GMM2 PFAE
DIF SYS DIF SYS

5 -0.3929 -0.1994 -0.0358 0.0082 -0.0676 0.1559 -0.0015
0.2 10 -0.1135 -0.0255 -0.0199 0.0033 -0.0241 0.0976 0.0000

20 -0.0476 -0.0056 -0.0126 -0.0002 -0.0133 0.0825 -0.0007
5 -0.4552 -0.2452 -0.0407 -0.0067 -0.0969 0.0865 -0.0012

0.5 10 -0.1252 -0.0369 -0.0238 -0.0020 -0.0316 0.0601 -0.0010
20 -0.0500 -0.0080 -0.0147 -0.0081 -0.0161 0.0428 -0.0009
5 -0.5102 -0.2843 -0.0446 -0.0149 -0.1251 0.0411 -0.0012

0.7 10 -0.1404 -0.0515 -0.0275 -0.0057 -0.0413 0.0380 -0.0015
20 -0.0531 -0.0110 -0.0171 -0.0125 -0.0199 0.0193 -0.0010
5 -0.5813 -0.3340 -0.0531 -0.0201 -0.1637 0.0025 -0.0006

0.9 10 -0.1704 -0.0800 -0.0348 -0.0105 -0.0626 0.0136 -0.0017
20 -0.0599 -0.0178 -0.0211 -0.0172 -0.0280 -0.0020 -0.0011
5 -0.6764 -0.3997 -0.1172 -0.0252 -0.2525 -0.0237 0.0002

1.1 10 -0.2362 -0.1407 -0.0676 -0.0188 -0.1166 -0.0162 -0.0021
20 -0.0853 -0.0425 -0.0355 -0.0250 -0.0533 -0.0271 -0.0012
5 -0.7371 -0.4414 -0.8647 -0.0139 -0.8791 -0.0137 -0.0002

1.2 10 -0.2990 -0.1978 -0.4500 -0.0075 -0.4494 -0.0075 -0.0023
20 -0.1341 -0.0896 -0.2215 -0.0233 -0.2217 -0.0226 -0.0016
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(Table 3 continued)

Variance× 103
 = 1  = 3

1  LSDV HK GMM1 GMM2 GMM1 GMM2 PFAE
DIF SYS DIF SYS

5 4.435 6.960 22.874 10.249 50.301 27.440 8.726
0.2 10 1.481 1.489 2.537 2.095 2.897 4.858 1.444

20 0.546 0.540 0.707 0.751 0.738 1.504 0.517
5 4.856 7.516 28.359 9.722 73.099 19.188 8.645

0.5 10 1.576 1.519 2.675 2.149 3.314 3.319 1.401
20 0.562 0.545 0.712 0.758 0.762 1.024 0.516
5 5.059 7.742 34.362 9.411 98.816 15.715 8.158

0.7 10 1.648 1.554 2.854 2.195 3.980 2.909 1.362
20 0.576 0.551 0.716 0.712 0.793 0.863 0.517
5 5.161 7.878 46.882 9.156 134.727 13.798 7.753

0.9 10 1.729 1.613 3.223 2.208 5.551 2.751 1.341
20 0.600 0.567 0.735 0.711 0.879 0.818 0.521
5 5.149 8.026 112.019 10.432 189.902 13.019 7.873

1.1 10 1.777 1.648 5.189 2.260 9.172 2.583 1.396
20 0.650 0.611 0.922 0.779 1.256 0.880 0.542
5 5.135 7.968 418.209 8.470 406.491 8.496 8.053

1.2 10 1.713 1.585 32.59 1.818 32.43 1.827 1.479
20 0.672 0.632 4.488 0.914 4.530 0.906 0.569

Table 4: Simulated sizes for AR(1), 5000 replications

, 0 :  = truth vs 1 :  6= truth
  0.0 0.3 0.5 0.7 0.9 1.0
25 10 0.0658 0.0652 0.0656 0.0672 0.0754 0.0770
25 20 0.0592 0.0628 0.0640 0.0650 0.0666 0.0726
25 40 0.0534 0.0534 0.0552 0.0572 0.0606 0.0710
50 10 0.0582 0.0590 0.0642 0.0638 0.0652 0.0630
50 20 0.0454 0.0468 0.0496 0.0530 0.0566 0.0628
50 40 0.0530 0.0504 0.0522 0.0540 0.0576 0.0618
100 10 0.0538 0.0520 0.0534 0.0512 0.0540 0.0522
100 20 0.0506 0.0532 0.0546 0.0534 0.0514 0.0614
100 40 0.0486 0.0510 0.0502 0.0558 0.0562 0.0610
200 10 0.0480 0.0498 0.0550 0.0558 0.0530 0.0556
200 20 0.0482 0.0502 0.0464 0.0504 0.0518 0.0522
200 40 0.0470 0.0498 0.0508 0.0466 0.0512 0.0514
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Table 5: Simulated power for0 :  = 0 1 for AR(1) model, 5000 replications

, 0 :  = 0 vs1 :  6= 0 , 0 :  = 1 vs1 :  6= 1
  0.000 0.025 0.050 0.075 0.925 0.950 0.975 1.000
25 10 0.0658 0.0742 0.1126 0.1768 0.2234 0.1440 0.0968 0.0770
25 20 0.0592 0.0874 0.1814 0.3380 0.6018 0.3340 0.1456 0.0726
25 40 0.0534 0.1214 0.3308 0.6156 0.9898 0.8466 0.3726 0.0710
50 10 0.0582 0.0790 0.1560 0.2748 0.3274 0.1794 0.0892 0.0630
50 20 0.0454 0.1134 0.3046 0.5822 0.8866 0.5760 0.2076 0.0628
50 40 0.0530 0.1796 0.5562 0.8888 1.0000 0.9916 0.5972 0.0618
100 10 0.0538 0.1006 0.2490 0.4826 0.5594 0.2964 0.1204 0.0522
100 20 0.0506 0.1838 0.5400 0.8734 0.9948 0.8598 0.3478 0.0614
100 40 0.0486 0.3320 0.8642 0.9932 1.0000 1.0000 0.8886 0.0610
200 10 0.0480 0.1478 0.4510 0.7910 0.8384 0.4952 0.1688 0.0556
200 20 0.0482 0.3108 0.8306 0.9916 1.0000 0.9936 0.5866 0.0522
200 40 0.0470 0.5724 0.9866 1.0000 1.0000 1.0000 0.9964 0.0514
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Table 6: Simulation for nonstationary initial conditions, 1000 replications,  = 100
 =  + ,  = −1 + , 0 ≡ 0,  ∼ (2 2),  ∼  (0 1)

Bias

 = 1  = 3

  LSDV HK GMM1 GMM2 GMM1 GMM2 PFAE
DIF SYS DIF SYS

4 -0.3343 -0.1124 -0.0098 0.0078 -0.0161 0.0488 -0.0026
0.0 10 -0.1118 -0.0132 -0.0124 0.0024 -0.0138 0.0510 -0.0008

20 -0.0525 -0.0027 -0.0117 0.0016 -0.0125 0.0574 0.0001
4 -0.4668 -0.1891 -0.0180 0.0013 -0.0370 0.0483 -0.0146

0.3 10 -0.1536 -0.0262 -0.0206 -0.0006 -0.0248 0.0429 -0.0053
20 -0.0704 -0.0057 -0.0173 -0.0059 -0.0191 0.0401 -0.0018
4 -0.5730 -0.2640 -0.0289 -0.0086 -0.0690 0.0206 -0.0495

0.5 10 -0.1900 -0.0445 -0.0291 -0.0045 -0.0371 0.0317 -0.0187
20 -0.0847 -0.0102 -0.0223 -0.0117 -0.0255 0.0226 -0.0077
4 -0.6808 -0.3411 -0.0636 -0.0083 -0.1703 -0.0122 -0.0919

0.7 10 -0.2418 -0.0798 -0.0465 -0.0115 -0.0601 0.0125 -0.0462
20 -0.1047 -0.0208 -0.0298 -0.0191 -0.0350 0.0011 -0.0210
4 -0.7496 -0.3661 -0.5086 -0.0013 -0.6422 -0.0102 -0.0712

0.9 10 -0.3057 -0.1286 -0.1553 -0.0170 -0.1798 -0.0123 -0.0596
20 -0.1447 -0.0523 -0.0639 -0.0359 -0.0706 -0.0293 -0.0395
4 -0.7509 -0.3345 -0.8673 0.0006 -0.8833 -0.0031 0.0012

1.0 10 -0.3026 -0.1140 -0.4405 -0.0131 -0.4376 -0.0133 -0.0019
20 -0.1508 -0.0535 -0.2235 -0.0452 -0.2227 -0.0441 -0.0005

* HK = LSDV× ( − 1) + 1( − 1)
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(Table 6 continued)

Variance× 103
 = 1  = 3

  LSDV HK GMM1 GMM2 GMM1 GMM2 PFAE
DIF SYS DIF SYS

4 3.216 5.718 14.163 9.564 29.605 20.622 9.941
0.0 10 1.127 1.403 2.052 1.925 2.295 3.317 1.480

20 0.524 0.581 0.730 0.832 0.772 1.642 0.586
4 4.017 7.141 24.831 12.427 63.064 22.796 12.381

0.3 10 1.225 1.513 2.671 2.252 3.181 3.193 1.596
20 0.527 0.584 0.818 0.939 0.895 1.400 0.590
4 4.501 8.001 42.910 12.484 106.775 20.574 13.748

0.5 10 1.216 1.502 3.171 2.424 4.018 3.132 1.543
20 0.488 0.541 0.831 0.932 0.941 1.245 0.537
4 4.871 8.659 125.308 9.721 231.386 16.084 15.377

0.7 10 1.155 1.436 4.117 2.253 5.398 2.889 1.423
20 0.417 0.462 0.826 0.854 0.963 1.005 0.442
4 5.152 9.159 628.131 5.326 796.382 7.974 18.129

0.9 10 1.038 1.281 11.234 1.447 13.137 1.672 1.335
20 0.319 0.354 1.246 0.938 1.357 0.900 0.317
4 5.240 9.316 677.739 3.828 811.331 4.656 20.125

1.0 10 0.926 1.143 28.754 0.737 28.130 0.766 1.336
20 0.239 0.265 4.142 0.739 3.989 0.771 0.268
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