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Abstract

We analyze a problem commonly encountered in technology and information industries where upgrading

causes short and uncertain product life spans and random and non-stationary demands during different

stages of the product life cycle. One example is the publishing industry, especially the publishing of technical

reference materials. We formulate the problem as a dynamic programming (DP) model and propose several

simple, yet effective, heuristic inventory control policies. We also derive the upper and lower bounds of the

optimal cost function. We compare these heuristic methods using two sets of systematically generated test

problems, and a third problem set based on the real data from Jeppesen Sanderson, Inc., a major aviation

information provider. Numerical results show that all the heuristics are effective and locate near optimal

solutions, with the best of those generating the solutions within 0.15% of optima, on average. Our heuristics

are also robust against different parameter settings and require only a small fraction of computational efforts

for the optimal solutions. We incorporated many of the ideas in this paper into a decision support system

for inventory management that we implemented at Jeppesen and generated actual annual cost reductions of

over $800,000.



1 Introduction

The ever increasing pace of technological innovation has added a new level of complexity to the task of

managing inventory. The typical inventory management problem involves balancing the cost of holding

inventory with such considerations as customer service level and ordering cost. Standard stochastic inventory

models usually assume the planning horizon is either fixed and finite or infinite, and the uncertainty is caused

by that of customer demand or leadtime.

But when the product itself is frequently upgraded, as is the case, for example, with computer software,

the uncertainty about the product’s life-cycle length has an impact on inventory decisions. Consider, for

example, the problem faced by publishers of reference books about the Visual Basic programming language.

Between 1996 and and 1998 Microsoft released three generations of the language in rapid succession. While

Visual Basic 4 (VB4) barely lasted one year, the current version of the language, Visual Basic 6 (VB6), has

not changed in over three years. When VB6 came out, reference books written about VB5 quickly lost a

large portion of their value–an example of obsolescence due to upgrading.

Our work was inspired by a real problem faced by a company called Jeppesen Sanderson, Inc. (Jeppesen).

A Boeing subsidiary since April 2000, Jeppesen is the largest provider of aviation information products in the

world. Jeppesen manufactures flight simulators, aircraft maintenance manuals, training videos, and flight

manuals that are used by over 80% of pilots worldwide. These manuals are composed of aviation charts that

cover the entire world (see Figure 1), and Jeppesen manufactures, distributes, and maintains inventory of

over 160,000 individual charts used in over 2,000 different flight manuals. Virtually all of the world’s airlines

(United, American, Delta, British Airways, Lufthansa, and many others) depend on the accuracy and the

timely delivery of Jeppesen charts for the safety of millions of passengers who fly every day.

Jeppesen flight manuals contain different types of aviation charts of various sizes and colors. Aviation

charts are maps that include information specific to pilots, such as detailed pictures of runways, approach

and landing routes, radio frequencies, and global positioning system (GPS) coordinates. The nature of much

of this aviation information is such that it changes, or in Jeppesen’s terminology, it revises, quite often, and

these revisions are generally unpredictable. For example a chart for the Dallas International Airport revised

for seventeen consecutive periods one year, while charts for similar large airports sometimes (admittedly,

not very often) remain unchanged for as long as a year. To keep its manuals current, Jeppesen re-issues

charts immediately following their revision, and ships new versions of these charts to all its customers who

subscribe to manuals that contain these charts. Jeppesen sends out between 5 million and 35 million charts

to over 200,000 customers every week.

Demand for charts depends on the demand for manuals that contain them. Every day Jeppesen ships

out over 900 new flight manuals, most assembled to order from individual charts. When an order comes in

and one or more of the charts needed to assemble the manual is not available, these charts are immediately

printed in-house or ordered from an outside vendor. There is typically a high fixed cost associated with such

orders, the so-called plating cost, or the cost to assemble a plate for offset printing and setup the printing

press for a new run. Plating cost includes the cost of labor for mounting negatives onto a plate and setting

up a plate on a printing press, the cost of a plate itself, the cost of film for negatives, and the cost of scrap

for fine-tuning a press run. So in summary, optimal stock levels for Jeppesen charts depend on:

1



 

Figure 1: The majority of Jeppesen charts are 5 1
2 × 81

2 black and white sheets, such as the one on the right

in the figure. These charts are printed in-house and are relatively inexpensive. Some charts, however, are

large and multi colored, and are often outsourced. They are relatively more expensive to produce.

1. The demand for new manuals.

2. The specific chart’s revision history.

3. The fixed plating cost and the variable printing cost that will have to be incurred if the chart is

re-ordered.

Additional issues that are not pertinent to Jeppesen but that we expect to be pertinent in general include

inventory holding cost and customer service level. The models we develop in this paper are applicable

to inventory management situations likely to occur in the information and technology industries, where

managers often face random planning horizons, stochastic and non-stationary demands, fixed ordering costs,

and linear production and inventory holding costs. In the remainder of this section we review the relevant

literature, and summarize our contributions and major results. In Section 2 we define the problem, and

present the dynamic programming formulation. In Section 3 we describe three computationally efficient

heuristic solution methods. We discuss bounds in Section 4, present computational results in Section 5, and

conclude the paper in Section 6.

1.1 Background Literature

When Jeppesen issues a chart, it is not known in advance what information will change and when, so a

chart’s lifetime is usually not known in advance. This situation resembles that of obsolete and perishable

inventory. The first to study the obsolete inventory problem were Barankin and Denny (1965). Pierskalla

(1969) shows that obsolescence has a significant impact on the optimal policy. Nahmias (1977) derives an
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analytical expression for expected outdating, and two approximations, for problems where both demands

and lifetimes are stochastic and the ordering cost is linear (this is in contrast to the Jeppesen problem, where

the ordering cost is fixed). Rosenfeld (1989) further examines the problem where inventory has salvage value.

Finkin (1989) suggest ways to manage obsolete inventory in practice.

The notion of perishability is slightly different from that of obsolescence and applies to products that

deteriorate over time. This time may or may not be known in advance. Perishable inventory problems tent

to occur in the food and the health-care industries. An example that is sited often in the literature is a blood

bank’s inventory problem (see Elston (1970), Jennings (1973), and Prastacos (1980)), where perishability

has a major impact on the optimal inventory policies. Nahmias and Periscalla (1973) studied the perishable

inventory model where product life-span is known to be two periods, and Fries (1975) and Nahmias (1975)

extended the model to the case of three or more periods. These models, just as Nahmias (1977), assume

linear ordering cost. Nahmias (1978) considers fixed ordering cost in conjunction with deterministic life-

span. We are unaware of any analytical models or applications combining uncertain life spans, non-statinary

stochastic demands and fixed ordering costs–the situation Jeppesen faces.

1.2 Contributions and Major Results

A setting where a product becomes obsolete, not as a result of natural degradation (as is the case in the food

industry) but as a result of some external event, such as an upgrade, is one that is becoming increasingly

common in industries where technology plays an important role. Inventory management in situations where

frequent upgrades cause uncertain product life spans and non-stationary demand has not been extensively

analyzed in the operations management literature.

In this paper we consider a variation of an inventory problem with obsolescence, where products are

subject to upgrades, and hence have uncertain life spans and non-stationary demand. Our work was inspired

by a problem faced by Jeppesen. Since aviation information is constantly evolving, Jeppesen is faced with

the problem of deciding on stock levels for aviation charts that may revise in the future.

We formulate the obsolete inventory problem with non-stationary demand as a dynamic programming

model, and propose three simple, yet effective, heuristic methods. The first heuristic, the FE policy, is based

on the relaxation of the service constraint and reduces the problem to a single-period, newsvendor-type

problem. The second heuristic, the OUTP policy, uses a modified Wagner-Whitin algorithm to solve the

deterministic version of the problem and then adds safety stock to the average demand to determine the

order-up-to quantity. The third heuristic, the hybrid policy, is a combination of the first two heuristics. We

also derive the upper and lower bounds of the optimal cost function.

We evaluate the performance of the heuristics by comparing their solutions with the optimal solutions

for a large number of test problems under various system configurations. Numerical results show that all the

heuristics locate near optimal solutions, with the best heuristic, the hybrid heuristic, generating the solutions

within 0.15% of optima, on average. Our heuristics are also robust against different system configurations

and require only a small fraction of computational efforts for the optimal solutions. In addition, we report

the test results of the heuristic methods using slightly modified real data sets from Jeppesen. The best

heuristic finds solutions that are only 0.17% worse than the optima, on average.
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We incorporated many of the ideas in this paper into a decision support system for inventory management

that we implemented at Jeppesen and that generated actual annual cost reductions of over $800,000 (see

Katok, Lathrop, Tarantino, and Xu (2001)). For more details on how Jeppesen successfully uses Operations

Research see Katok, Tarantino, and Tiedeman (2001).

2 Problem Definition and Formulation

2.1 Problem Definition

We model the problem as a periodic-review inventory system with a random duration R, where random

variable R is understood as the lifetime of the product. Random lifetime R can assume values kt, t =

1, 2, . . . , b, where k is a given integer representing the length of the upgrading cycle, t denotes the cycle index

with an upper bound b. In other words, the end of the product life can only occur at the end of the kt-th

period, t = 1, . . . , b. In the case of Jeppesen, 99% of the time the charts we consider are revised on an 8

week cycle basis, each 8-week cycle consisting of four two-week periods, and last no more than 6 cycles, so

k = 8, b = 6, and a chart can be revised 8, 16, . . . , 48 weeks after issuance. If the product lifetime does not

have the cyclic structure, then we set k = 1 and the product can end its life at the end of any period.

We denote demand in period n by Dn, where Dn, n = 1, 2, . . . , kb, are independent random variables

with density and cumulative distribution functions fn(x) and Fn(x), respectively. Note that by assuming the

demand in a period follows its individual distribution, we reflect the non-stationary demand pattern during

the various stages of the product life cycle.

Let A be the fixed cost incurred whenever an order is placed. Let c be the unit variable production cost.

Let c(y) be the procurement cost if quantity y is ordered. Then,

c(y) =

{
A + cy y > 0,

0 y = 0.
(2.1)

We assume that orders can be filled instantaneously. We also assume that if shortage occurs at the end of

product life R, one must place an order to satisfy the shortage. The unit inventory holding cost is h per

period.

We do not assume a variable shortage cost. However, we assume that the system must maintain a required

service level, α, defined as the proportion of periods in which all demand is met (also known as the Type

1 Service). Finding the optimal policy subject to service level constraints for periodic review system with

positive setup cost is considered computationally complex, even for the problem with stationary demands

and an infinite product lifetime. Different approaches for finding approximate (s, S) and (R,Q) policies

satisfying the service constraint are available in the literature (Schneider (1978), Tijms and Groenevelt

(1984), Yano (1985)). As pointed out by Schneider (1978), the computational efforts for determining the

reorder point satisfying the service constraint, for the system with stationary demand and infinite product

lifetime, is so prohibitively expensive that one often prefers to use (2.2) (given below) instead of more

accurate approximations. For simplicity in this paper we determine the reorder point of period n by finding
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the smallest integer sα
n satisfying

Fn(sα
n) = P (Dn ≤ sα

n) ≥ α. (2.2)

We assume that one must reorder if the stock on hand at the beginning of a period is less than sα
n. We note

that this is a conservative estimate of the reorder point that ensures the desired service level α.

2.2 Dynamic Programming Formulation

We formulate the problem as a finite-period dynamic programming (DP) problem. The stage of the DP

model, denoted by n, is defined as the “age” of the product lifetime, that is, the number of periods since

the product lifetime began. We say that the process is in period n, n = kt + i, t = 0, 1, . . . , b − 1, and

i = 1, . . . , k, if the age of the product lifetime is n. The state of the system in a period, denoted by x, is the

starting inventory in that period.

Our objective is to find the optimal ordering policy that minimizes the expected total cost incurred during

the lifetime of the product. Let Vn(x) be the minimum expected total costs of the system from period (age) n

to the end of its life, given that the initial inventory at the beginning of period n is x. Thus V1(0) represents

the minimum expected total cost incurred during the lifetime of the product.

We call a period interior if the product cannot become obsolete at the end of that period. An interior

period has a time index n = kt + i, i = 1, 2, . . . , k − 1, t = 0, 1, 2, . . . , b− 1. We call a period boundary if the

product may end its life at the end of that period. In other words, a boundary period is the last period in a

cycle and hence has a time index k(t + 1), t = 0, 1, . . . , b− 1. In the case of Jeppesen, boundary periods are

8, 16, 24, and so on, and interior periods are 1,2,. . . ,7, 9,. . . ,15, 17,. . . ,23, and so on.

Denote the remaining life of the product, with age kt, by

Rkt = R− kt|R > kt, t = 0, 1, . . . , b− 1.

Then the conditional probability that the product lifetime, with age kt, has a remaining life of t
′

cycles, is

given by

P (Rkt = kt′) = P (R = k(t + t′)|R > kt), t = 0, 1, . . . , b− 1, t′ = 1, . . . , b− t. (2.3)

By (2.3), the product with age n = kt + i has the remaining life:

The remaining life of the product with age kt + i = Rkt − i. (2.4)

It further implies,

the ending period of the product life, given age kt + i = kt + Rkt. (2.5)

For example, suppose cycle length k = 8. If age n = kt + i = 8 · 1 + 2 = 10 and R8 = 16, then by (2.4) the

remaining life of the product with age 10 is R8− 2 = 16− 2 = 14 periods. By (2.5), the product ends its life

at the end of period 8 + 16 = 24.

Next, we derive the optimality equations for interior and boundary periods. The DP recursion corre-

sponding to an interior period is

Vkt+i(x) = min
y≥x,y≥sα

kt+i

{c(y − x) + hE[y −Dkt+i]+ + EVkt+i+1(y −Dkt+i)}, (2.6)

i = 1, 2, . . . , k − 1, t = 0, 1, . . . , b− 1.
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where [a]+ = max{a, 0}. Here, c(y−x) + hE[y−Dkt+i]+ are the procurement and holding costs incurred in

the interior period kt + i if we order up to quantity y, and EVkt+i+1(y −Dkt+i) is the expected costs from

period kt + i + 1 onward, assuming we act optimally in the future. The problem in period kt + i, then, is

to choose y that minimizes the sum of the present and future expected costs. The constraints on the order

quantity y in (2.6) mean that we cannot scrap stock on-hand, and when it falls below the reorder point, we

must place an order.

The DP recursion corresponding to a boundary period (the last period of a cycle) is

Vk(t+1)(x) = min
y≥x,y≥sα

k(t+1)

{c(y − x) + hE[y −Dk(t+1)]+ + P (Rkt > k)EVk(t+1)+1(y −Dk(t+1))

+P (Rkt = k)(AP (Dk(t+1) > y) + cE[Dk(t+1) − y]+}, t = 0, 1, . . . , b− 1,(2.7)

where the distribution function of Rkt is defined by (2.3). The above optimality equation is understood

as follows: As in (2.6), c(y − x) + hE[y − Dk(t+1)]+ is the procurement plus holding costs incurred in the

boundary period k(t+1), given that stock on hand before ordering is x and after ordering is y. Future costs

depend on whether the product becomes obsolete at the end of the period. With probability P (Rkt > k),

the product with age kt survives at least another cycle, and the process evolves to the next interior period

k(t + 1) + 1 with the minimum expected cost EVk(t+1)+1(y − Dk(t+1)). With probability P (Rkt = k), the

product ends its life at the end of the (t + 1)st cycle, in which case the system incurs reorder cost A with

probability P (Dk(t+1) > y) and production cost cE[Dk(t+1)− y]+. Note that when t = b− 1 in (2.7), Vkb(x)

gives the boundary condition of the DP recursion, with P (Rk(b−1) = k) = 1.

Theoretically, one can solve (2.6) and (2.7) using a standard DP computational technique such as value

iteration. However, such an approach becomes impractical for large-scale problems. For example, a typical

Jeppesen chart lasts up to 5 or 6 cycles, with each cycle consisting of 8-weeks, and each period consisting

of two weeks (because charts are always handled on either odd or even weeks) meaning that the planning

horizon is 20 or 24 periods long. The bi-weekly demand Di can usually be approximated by a normal

random variable Di ∼ N(µi, σ
2
i ), where mean demand µi can take a value between 1 and 1000, resulting in

a DP problem with an extremely large state space. In addition, because of the positive setup cost, Vn(x)

is not convex and may have multiple local minima. To overcome computational complexity and facilitate

implementation, we develop several simple heuristic methods in the following section.

3 Heuristic Ordering Policies

In this section we propose three heuristic ordering policies. We focus on the class of (sn, Sn) policies,

and propose several methods to approximate the optimal order-up-to-levels S∗n, with reorder points s∗n
approximated by (2.2).

The three heuristic ordering policies developed in this section can be briefly described as follows.

1. The Front-End (FE) Policy: This heuristic policy determines the order-up-to quantity based on the

relaxation that reorders are only required in the front (the current period) and at the end of the

product life. This heuristic method is the simplest among the three, as it only requires a solution to a

single-period, newsvendor-type problem.
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2. The Order-Up-To-Period (OUTP) Policy: This policy first uses a modified Wagner-Whitin algorithm

to determine the optimal order-up-to-period, based on the simplifying assumption that demand in

each period is deterministic and equals its mean, then adds safety stock to the mean demand from the

current period to the order-up-to-period.

3. The Hybrid Policy: This policy can be considered as a combination of the above two heuristics. It

first obtains, via the modified Wagner-Whitin algorithm, the optimal order-up-to-period using mean

demands, then determines the order-up-to quantity using the Front (the current period)-End (the

order-up-to-period) heuristic.

3.1 The Front-End Ordering Policy

We first describe an ordering policy whose order-up-to quantity in a given period, say n, n = 1, . . . , kb, is

based on the relaxation that reorders are only required in the front (the beginning of the current period n),

if the stock on hand is less than the reorder point, and at the end of the product life, if there is a stock out.

We expect the heuristic method performs well when the product’s life is short and inventory holding cost h

is small.

We need the following notation. Let D(m,n) denote the demand from period m to period n. Then the

remaining demand from period kt + i until the end of the product life, kt + Rkt, can be expressed by

D(kt+i,kt+Rkt) :=
kt+Rkt∑

n=kt+i

Dn, t = 0, 1, . . . , b− 1, i = 1 . . . , k.

Let f (kt+i,kt+Rkt) and F (kt+i,kt+Rkt) be the density and distribution functions of D(kt+i,kt+Rkt), respec-

tively. Then, for t = 0, 1, . . . , b− 1, i = 1 . . . , k,

F (kt+i,kt+Rkt)(y) =
b−t∑

t′=1

F (kt+i,k(t+t′))(y)P (Rkt = kt′),

and

f (kt+i,kt+Rkt)(y) =
b−t∑

t′=1

f (kt+i,k(t+t′))(y)P (Rkt = kt′).

Suppose in period kt + i, we follow the (sα
kt+i, S̄

1
kt+i) policy where sα

kt+i is the reorder point and S̄1
kt+i is

the order-up-to quantity. Quantity S̄1
kt+i is determined by assuming that in the subsequent periods of kt + i

one defers orders, even if the stock on hand is less than the reorder point, until the end of the product life,

at which time one must place an order if there is a stock out. As such, S̄1
kt+i is obtained by solving the

following single-period model:

S̄1
kt+i = argminy≥sα

kt+i
{L1

kt+i(y)}, t = 0, 1, ...b− 1, i = 1, 2, . . . , k,

where

L1
kt+i(y) = A + cy + hE

kt+Rkt∑

n=kt+i

[y −D(kt+i,n)]+

+AP (D(kt+i,kt+Rkt) > y) + cE[D(kt+i,kt+Rkt) − y]+. (3.8)
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where D(i,i) = Di. Unfortunately, L1
kt+i(y) is generally not a convex function, even for some commonly used

demand distributions such as normal and binomial. Indeed, L1
kt+i(y) often admits several local maximums

and local minimums. To find the global minimum of L1
kt+i(y), we take the first derivative of L1

kt+i(y) and

obtain

d

dy
L1

kt+i(y) = c−Af (kt+i,kt+Rkt)(y) + hE

kt+Rkt∑

n=kt+i

F (kt+i,n)(y)− c(1− F (kt+i,kt+Rkt)(y))

= cF (kt+i,kt+Rkt)(y)−Af (kt+i,kt+Rkt)(y) + hE

kt+Rkt∑

n=kt+i

F (kt+i,n)(y). (3.9)

Setting the above derivative to zero yields

f (kt+i,kt+Rkt)(y)
F (kt+i,kt+Rkt)(y)

=
cF (kt+i,kt+Rkt)(y) + hE

∑kt+Rkt

n=kt+i F (kt+i,n)(y)
AF (kt+i,kt+Rkt)(y)

. (3.10)

Then one must evaluate L1
kt+i(y) for all y that are the solutions of (3.10) and choose S̄1

kt+i ≥ sα
kt+i that

minimizes L1
kt+i(y).

Remark 3.1 The reversed hazard rate of a random variable Y with density f and distribution F is defined

as (see Shaked and Shanthikumar (1994))

r̃(y) =
d

dy
logF (y) =

f(y)
F (y)

.

Hence, the left-hand side of (3.10),

r̃kt+i(y) =
f (kt+i,kt+Rkt)(y)
F (kt+i,kt+Rkt)(y)

,

is the reversed hazard rate of D(kt+i,kt+Rkt), the total demand from period kt + i to the end of the product

life. The intuitive interpretation of r̃kt+i(y) is as follows. Given that the total remaining demand is less

than y, then for small ε > 0, ε · r̃kt+i(y) is the approximate probability that the remaining demand is at

least y − ε. On the other hand, the numerator of the right-hand side (RHS) of (3.10) is understood as the

expected unit overage cost, including the expected unit production cost cF (kt+i,kt+Rkt)(y), and the expected

unit holding cost from now to the end of the product life, hE
∑kt+Rkt

n=kt+i F (kt+i,n)(y). The denominator of the

RHS of (3.10) is the expected underage cost because an additional production run must be made to make

up the shortage. Thus, (3.10) states that the reverse hazard rate at S̄1
kt+i, should balance the ratio between

the overage cost and underage cost. This result resembles the solution of the newsvendor model.

In summary, we have the following heuristic ordering policy.

The Front-End (FE) Ordering Policy. Let x be the starting inventory in period kt + i, t = 0, . . . , b− 1,

i = 1, 2, . . . , k. Then if x ≥ sα
kt+i, do not order; otherwise order up to S̄1

kt+i, where

S̄1
kt+i = argminy≥sα

kt+i
{L1

kt+i(y), y is a solution of (3.10)}, t = 0, 1, ...b− 1, i = 1, 2, . . . , k, (3.11)

and L1
kt+i(y) is defined in (3.8).
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Example 3.2 Let k = 8, c = 1, h = 0 and A = 50. Note that with h = 0, (3.10) reduces to

f (kt+i,kt+Rkt)(y)
F (kt+i,kt+Rkt)(y)

=
c

A
. (3.12)

Let R follow a uniform distribution with P (R = 8t) = 1/3, t = 1, 2, 3. That is, the maximal life of the

product is three cycles, with each cycle lasting 8 periods. Also let Dn be iid normal random variables with

mean 5 and standard deviation 1. Suppose the required service level is α = 0.9. Let us compute s0.9
n , S̄1

1 ,

S̄1
9 and S̄1

17 under the FE policy. Since Dn ∼ N(5, 1) for all n, we need to select the smallest integer s0.9
n

such that be s0.9
n − 5 ≥ 1.28, or, s0.9

n = 7, n = 1, 2, . . . , kb. To compute S̄1
1 , we condition on the product life,

which is equally likely to be 8, 16 and 24 periods, and get from (3.12)

f (1,R)(y)
F (1,R)(y)

=
1
3 (f (1,8)(y) + f (1,16)(y) + f (1,24)(y))

1
3 (F (1,8)(y) + F (1,16)(y) + F (1,24)(y))

= 0.02.

The above equation admits the solutions 46, 73, 86, 115 and 124, of those 73 and 115 correspond to the local

maximums of L1
1(y) and 46, 86 and 124 correspond to the local minimums of L1

1(y). Thus

S̄1
1 = argminy≥7{L1

1(46), L1
1(86), L1

1(124)} = 86.

Now consider S̄1
9 . Conditioning on R8, which is equally likely to be 8 and 16, we get from (3.12),

f (9,8+R8)(y)
F (9,8+R8)(y)

=
1
2 (f (9,16)(y) + f (9,24)(y))
1
2 (F (9,16)(y) + F (9,24)(y))

= 0.02.

The above equation admits the solutions 35, 45, 73, and 86, where 35 and 73 correspond to the local

maximums of L1
9(y) and 45 and 86 correspond to the local minimums of L1

9(y). Thus

S̄1
9 = argminy≥7{L1

9(45), L1
9(86)} = 86.

Note that the mean remaining demand is 1
240+ 1

280 = 60. The probability that S̄1
9 = 86 is sufficient to meet

remaining demand is
1
2
P (D(9,16) ≤ 86) +

1
2
P (D(9,24) ≤ 86) ≈ 1

2
· 1 +

1
2
(0.933) = 0.967.

Finally,
f (17,16+R16)(y)
F (17,16+R16)(y)

=
f (17,24)(y)
F (17,24)(y)

= 0.02

has a unique minimum at y = 46, so S̄1
17 = 46. Since the demand in the last cycle is D(17,24) ∼ N(40, 8), the

probability that S̄1
17 = 46 is sufficient to meet D(17,24) is

P (D(17,24) ≤ 46) ≈ 0.983.

Next assume a positive holding cost h = 0.2, with all other parameters the same as before. For simplicity

we only compute S̄1
9 . Equation (3.10) becomes

1
2 (f (9,16)(y) + f (9,24)(y))
1
2 (F (9,16)(y) + F (9,24)(y))

=
[ 12F (9,16)(y) + 1

2F (9,24)(y)] + 0.2[ 12
∑16

n=9 F (9,n)(y) + 1
2

∑24
n=9 F (9,n)(y)]

50[ 12F (9,16)(y) + 1
2F (9,24)(y)]

,

The above expression is solved at S̄1
9 = 42, which can satisfy demand for the current cycle with probability

0.76. In contrast, for h = 0, the FE heuristic orders S̄1
9 = 86 units, which can satisfy the maximal remaining

demand with probability 0.967.
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3.2 The Order-Up-To-Period (OUTP) Policy

This heuristic method consists of two steps. In the first step we determine the order-up-to period under

the simplifying assumption that demand in period n is deterministic and equals its mean µn = E[Dn],

n = 1, 2, . . . , kb. In the second step we determine the order-up-to quantity which equals the mean demand

until the next order plus safety stock. To determine safety stock, we take into account the relative magnitudes

of A and c + h. The intuition here is that if A is low relative to c + h, we should accept a higher probability

of stock out before the end of the order-up-to period than if A is high relative to c+h. The OUTP heuristic

is suitable when demand follows a normal distribution.

If the average demand in period n = kt + i is µn = E(Dn), n = 1, 2, . . . , kb, (2.6) and (2.7) become

Vkt+i(x) = min
y≥µkt+i,y≥x

{c(y − x) + h(y − µkt+i) + Vkt+i+1(y − µkt+i)}, (3.13)

i = 1, 2, . . . , k − 1, t = 0, 1, . . . , b− 1.

Vk(t+1)(x) = min
y≥µk(t+1),y≥x

{c(y − x) + h(y − µk(t+1)) + P (Rkt > k)Vk(t+1)+1(y − µk(t+1))}, (3.14)

t = 0, 1, . . . , b− 1.

Observe that under this simplifying assumption our model becomes a variant of Wagner-Whitin dynamic

lot sizing problem with a random lifetime that may end at the end of a boundary period k(t + 1), t =

0, 1, . . . , b− 1. It is well-known that the standard Wagner-Whitin algorithm has the properties that it places

an order only when starting inventory is zero and, when ordering, its order size must cover demand for an

integer number of periods. It turns out that our simplified problem has the properties that resemble that of

the Wanger-Whitin dynamic lot sizing problem, as stated in the following proposition.

Proposition 3.3 Let demand in period n be deterministic µn = E(Dn), n = 1, 2, . . . , kb.

1. One does not place an order in a period, given that the product has not become obsolete, if stock on

hand is sufficient to meet demand in that period.

2. When ordering one brings stocks to such a level that they exactly satisfy demand for an integer number

of periods.

Proof.

1. Suppose πD = {SD
n , n = 1, 2, . . . , kb} is an optimal ordering policy, where SD

n is stock on hand after

ordering in period n, provided that the product has not become obsolete by n. Suppose that initial

stock x in period n = kt + i is sufficient to meet the demand for the period, that is x ≥ µn, but

policy πD prescribes SD
n > x ≥ µn. Consider another policy π̄D = {S̄D

n , n = 1, 2, . . . , kb} that is the

same as πD except that it would not place an order in period n, but would order the stock up to level

(SD
n − x) + SD

n+1 in the next period n + 1 = kt + i + 1, if the product were still alive by then. If

the product became obsolete in period n + 1 (n = k(t + 1) for some t), then policy π̄D would save a

10



combined ordering, production and holding cost A + (c + h)(SD
n −x). If the product were not obsolete

in period n + 1 and policy πD does not place an order in period n + 1, then policy π̄D would save a

holding cost h(SD
n −x). If the product were not obsolete in period n+1 and policy πD places an order

in period n + 1, then policy π̄D would realize a saving of A + h(SD
n − x).

2. Let πD be defined as in the above. Suppose that in period n policy πD orders enough to satisfy demand

before period m > n, but not enough to satisfy demand in period m; i.e.,

SD
n =

m−1∑

j=n

µj + δ,

where 0 ≤ δ < µm. Note that by Proposition 3.3 (1), policy πD would not place an order until period

m. Consider another policy π̄D that is the same as πD, except that it would order up to quantity

SD
n − δ in periods n and up to quantity SD

m + δ in period m, if the product were still alive by them.

If the product lifetime ended between periods n and m, say in period `, n < ` < m, policy π̄D would

save production and holding costs cδ + h(`− n)δ. Otherwise in period m one must order. In this case

policy π̄D would save holding cost h(m− n)δ. Hence δ = 0 in an optimal policy.

The above results imply that if the demand in each period is deterministic, then an order is placed

only when inventory on hand is zero and the order quantity must cover the demand for an integer number

of periods. Thus, at the beginning of period kt + i, we seek to find the optimal order-up-to period lkt+i,

lkt+i ≥ kt + i, such that

SD
kt+i =

lkt+i∑

n=kt+i

µn.

To determine lkt+i, define function L2
kt+i(l) as the total ordering, production and holding costs from period

kt + i to period l or kt + Rkt (recall this is the end of the product life), whichever occurs first. Then,

L2
kt+i(l) = A + c

l∑

n=kt+i

µn + hE[
min{kt+Rkt,l}∑

n=kt+i

(n− kt− i)µn], kt + i ≤ l ≤ kb. (3.15)

We can obtain lkt+i by solving the optimality equation:

Vkt+i(0) = min
kt+i≤l≤kb

{L2
kt+i(l) + P (kt + Rkt > l)Vkt+i+l(0)}, (3.16)

with the boundary condition:

Vkb(0) = L2
kb(1) = A + cµkb. (3.17)

Expression (3.15) can be easily evaluated by conditioning on Rkt whose distribution function is given by

(2.3). The cost function (3.16) can be calculated recursively starting from the boundary equation (3.17).

Remark 3.4 If the holding cost h = 0, then following the proof similar to that of Proposition 3.3, one can

show that an order is placed only at the beginning of a cycle, i.e., in periods n = kt+1, t = 0, 1, ...b−1, and

when inventory on hand is zero. In addition, the order quantity must cover demand for an integral number

of cycles.
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Next we compute the safety stock to be added to SD
kt+i. Let demand in period n be normally distributed

with mean µn and standard deviation σn. Thus, the total demand between periods kt+i and lkt+i is normally

distributed with mean demand
∑lkt+i

n=kt+i µn and standard deviation
√∑lkt+i

n=kt+i σ2
n. The order-up-to quantity

is determined by adding safety stock to the mean demand:

S̄2
kt+i = SD

kt+i + safety stock =
lkt+i∑

n=kt+i

µn + z1−c/A

√√√√
lkt+i∑

n=kt+i

σ2
n, (3.18)

where z1− c+h
A

is (1 − c+h
A ) × 100 percentile of the standard normal distribution, that is, for Z ∼ N(0, 1),

z1− c+h
A

is chosen so that

P (Z ≤ z1− c+h
A

) = 1− c + h

A
. (3.19)

The result is that the value of the safety stock is determined by the ratio of overage cost c + h and underage

cost A.

The OUTP policy is summarized as follows.

The Order-Up-To-Period (OUTP) Policy:

Step 1 For each kt + i, t = 0, 1, . . . , b− 1, i = 1, 2, . . . , k, determine lkt+i from (3.15)-(3.17);

Step 2 If inventory on hand in period kt + i is greater than or equal to sα
kt+i, do not order; otherwise order

up to S̄2
kt+i, where S̄2

kt+i is given by (3.18) and z1− c+h
A

satisfies (3.19).

Example 3.5 As in Example 3.2, let R be uniformly distributed with P (R = 8t) = 1/3, t = 1, 2, 3. Suppose

demand is stationary, with period demand distributed as Di ∼ N(5, 1). Let A = 50, c = 1 and h = 0.

Since h = 0, by Remark 3.4, we need to determine the order-up-to cycles l8t+1, t = 0, 1, 2. Equation

(3.15), now understood as the total expected cost from cycle t to cycle l , becomes

L2
kt+1(l) = A + c

kl∑

n=kt+1

µn, t = 0, 1, . . . , l = 1, . . . , b− t. (3.20)

Also, (3.16) becomes

Vkt+1(0) = min
l≤b−t+1

{L2
kt+1(l) + P (kt + Rkt > kl)Vkl+1(0)}. (3.21)

For simplicity denote Vkt+1 =: Vkt+1(0). First we compute the distribution of the product remaining life:

P (R > 8) = 2/3, P (R8 > 8) = P (R > 16|R > 8) = 1/2, P (R16 = 8) = 1.

Then, by (3.20) amd (3.21), we have

V2·8+1 = V17 = 50 + 40 = 90,

V8+1 = V9 = min{50 + 40 +
1
2
V17, 50 + 80}

= min{90 + 45, 130} = 130,

V1 = min{50 + 40 +
2
3
V9, 50 + 80 +

1
3
V17, 50 + 120}

= min{176.66, 160, 170} = 160

12



Hence, the optimal order-up-to periods are

l1 = 16, l9 = 24, l17 = 24,

with mean demands during the order cycles being 80, 80, and 40, respectively.

Next we determine the order-up-to quantity S̄2
8t+1, using (3.18). With A = 50 and c + h = 1, z1−c/A =

z0.98 = 2.06. Using the OUTP heuristic method, the order-up-to quantity in period 1 is

S̄2
1 = µi · l1 + z1− c+h

A
· σi

√
l1 = 80 + 2.06(

√
16) ≈ 88.

The probability that S̄2
1 = 88 is sufficient to cover demand for the next two cycles is

1
2
P (D(1,8) ≤ 88) +

1
2
P (D(1,16) ≤ 88) =

1
2

+
1
2
0.98 = 0.99.

Similarly, we can compute S̄2
9 = 88 and S̄2

17 = 47. Recall that under the FE policy, with the same parameters,

S̄1
1 = 86, S̄1

9 = 86 and S̄1
17 = 46, all are lower than their counterparts under the OUTP policy. Indeed, the

OUTP policy tends to hold a large amount of safety stock, especially for high demand variability and high

values of 1− c+h
A .

3.3 The Hybrid Policy

This policy is a combination of the OUTP policy and the FE policy. It attempts to take the advantages,

while readdress the shortcomings, of those two policies.

The hybrid policy consists of two steps. The first step is the same as the first step in the OUTP policy,

which determines the order-up-to period lkt+i, i = 1, . . . , k, t = 0, . . . , b − 1. The second step is similar to

the FE policy, which determines the order-up-to quantity S̄3
kt+i, by minimizing the cost from period kt + i

to min{kt + Rkt, lkt+i}, under the relaxation that in the subsequent periods of kt + i we are allowed to defer

orders, even if stock on hand is below the reorder point sα
kt+i, until period min{kt + Rkt, lkt+i}, at which

time one must place an order to fill shortages, if any.

More specifically, quantity S̄3
kt+i under the hybrid policy is determined by

S̄3
kt+i = argminy≥sα

kt+i
{L3

kt+i(y)}, kt + i = 1, 2, . . . , kb, (3.22)

where

L3
kt+i(y) = A + cy + hE

min{kt+Rkt,lkt+i}∑

n=kt+i

[y −D(kt+i,n)]+

+AP (
min{kt+Rkt,lkt+i}∑

n=kt+i

Dn > y) + cE[
min{kt+Rkt,lkt+i}∑

n=kt+i

Dn − y]+ (3.23)

where lkt+i is computed using (3.15)-(3.17). Thus we need to find the solutions of d
dy L3

kt+i(y) = 0, or

equivalently,

f (kt+i,min{kt+Rkt,lkt+i})(y)
F (kt+i,min{kt+Rkt,lkt+i})(y)

=
cF (kt+i,min{kt+Rkt,lkt+i})(y) + hE

∑min{kt+Rkt,lkt+i}
n=kt+i F (kt+i,n)(y)

AF (kt+i,min{kt+Rkt,lkt+i})(y)
(3.24)
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The reader may wish to compare the similarities between (3.24) and (3.10)(also see Remark 3.6). As before,

the above equation may have several solutions. We will choose the one that minimizes L3
kt+i(y), for y ≥ sα

kt+i.

This gives us the third heuristic method.

The Hybrid Policy

Step 1 For each kt + i, t = 0, 1, . . . , b− 1, i = 1, 2, . . . , k, determine lkt+i from (3.15)-(3.17);

Step 2 If the stock on hand in period kt + i is greater than or equal to sα
kt+i, do not order; otherwise order

up to S̄3
kt+i, where S̄3

kt+i is a solution of (3.24) and satisfies (3.22) and L3
kt+i(y) is given by (3.23).

Remark 3.6 Compared with the FE policy, the hybrid policy takes a “myopic” viewpoint: It attempts to

minimize the cost from the current period, kt + i, to the end of either the order-up-to-period or the product

life, min{kt + Rkt, lkt+i}, and ignore the cost incurred thereafter, under the relaxation that shortages can

be filled at the end of period min{kt + Rkt, lkt+i}. In contrast, the FE policy aims at minimizing the cost

from the current period kt + i to the end of product life kt + Rkt, under the relaxation that shortages can

be filled at the end of the product life. If the product life is long and demand variability is low, we expect

that the hybrid policy outperforms the FE policy. Computationally, the FE policy is more attractive since

it does not require to solve the dynamic recursions (3.15)–(3.16).

Example 3.7 Let us again use the data given in Example 3.2. Let h = 0. We wish to compute S̄3
1 , S̄3

9 and

S̄3
17, using the hybrid policy. Consider S̄3

1 first. From Example 3.5, l1 = 16. To evaluate

f (1,min{R,l1})(y)
F (1,min{R,l1})(y)

=
f (1,min{R,16})(y)
F (1,min{R,16})(y)

= 0.02,

conditioning on R, which equally likely takes on values 8, 16 and 24, we get
1
3 [f (1,8)(y) + 2f (1,16)(y)]
1
3 [F (1,8)(y) + 2F (1,16)(y)]

= 0.02,

We obtain the solutions 46,72 and 86. Of those, 46 and 86 correspond to the local minima of L3
1(y). Thus

S̄3
1 = argminy≥7{L3

1(46), L3
1(86)} = 86. To compute S̄3

9 , we note from Example 3.5 that l9 = 24. Then,

(3.24) becomes

f (9,min{8+R8,16})(y)
F (9,min{8+R8,16})(y)

=
1
2 [f (9,16)(y) + f (9,24)(y)]
1
2 [F (9,16)(y) + F (9,24)(y)]

= 0.02,

but this is the same expression that determines S̄1
9 under the FE policy. Therefore S̄3

9 = S̄1
9=86. Similarly,

one can show that S̄3
17 = S̄1

17 = 46. Thus, for this particular example, the order-up-to quantities under the

FE and hybrid policies are identical, both are lower than that with the OUTP policy.

4 Bounds

In this section we derive several upper and lower bounds for the optimal value function Vkt+i(x), t =

0, 1, . . . , b− 1, i = 1, 2, . . . , k, given by (2.6)–(2.7).
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4.1 Lower Bound

We provide an easily assessable, crude lower bound for Vkt+i(x), t = 0, 1, . . . , b − 1, i = 1, 2, . . . , k, based

on the FE heuristic. Recall that the FE policy is based on the relaxation that, for the subsequent periods

of kt + i we are allowed to defer orders until the end of the product life, at which time one must place an

order to fill shortages, if any. It is clear that the minimal cost under this relaxation, denoted by V L1
kt+i(x), is

a lower bound of Vkt+i(x). Therefore,

Vkt+i(x) ≥ V L1
kt+i(x) = min

y≥x
{L1

kt+i(y)} − cx, (4.25)

where L1
kt+i(y) is given by (3.8).

Example 4.1 We work with the data given by Example 3.2, assuming h = 0. Let us compute the lower

bound of V1(0). From Example 3.2, S̄1
1 = 86. Hence

V1(0) ≥ 50 + 86 + 50P (D(1,R) > 86) + E[D(1,R) − 86]+

= 136 +
50
3

3∑
t=1

P (D(1,8t) > 86) +
1
3

3∑
t=1

E[D(1,8t) − 86]+

= 136 +
50
3

(P (D(1,8) > 86) + P (D(1,16) > 86) + P (D(1,24) > 86)) +

+
1
3
(E[D(1,8) − 86]+ + E[D(1,16) − 86]+ + E[D(1,24) − 86]+)

= 136 +
50
3

(0 + 0.067 + 1.000) +
1
3
(0 + 0.117 + 34.000)

= 165.15.

4.2 Upper Bounds

First note that the cost function under any of the heuristic ordering policies discussed in Section 3 provides

an upper bound for Vkt+i(x), because no policy can do better than the optimal policy. The computation

of those bounds, however, is not simple. Here we aim at finding some upper bounds of Vkt+i(x) that can

be evaluated easily. The bounds developed in this section is based on the assumption that demand in each

period is normally distributed.

The first upper bound is the cost associated with a greedy-like ordering policy (the G-policy, in short).

The G-policy, for each given period kt + i, sets the order-up-to quantity, say S̄G
kt+i, that is almost certain to

meet the entire remaining demand, and orders up to S̄G
kt+i as long as inventory on hand is less than that.

The order-up-to quantity in period kt + i under the G-policy is given by

S̄G
kt+i =

kb∑

n=kt+i

µn + zG

√√√√
kb∑

n=kt+i

σ2
n, (4.26)

where zG is chosen such that

P (Z ≤ zG) ≈ 1.
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Thus, for each given period kt + i, the G-policy only places a single order during the entire remaining

life of the product. The cost under the policy, denoted by V U1
kt+i(x), x < S̄G

kt+i, can be easily computed:

Vkt+i(x) ≤ V U1
kt+i(x) = A + c(S̄G

kt+i − x) + hE

kt+Rkt∑

n=kt+i

[S̄G
kt+i −D(kt+i,n)]+. (4.27)

Although the G-policy is a legitimate ordering policy, we do not expect it to be competitive against the

three heuristic policies derived in Section 3. Indeed, this policy only facilitates the computation of the closed

form upper bounds of Vkt+i(x).

Example 4.2 We compute the upper bound of V1(0) and S̄G
1 , using the data given by Example 3.2. Let

h = 0. If we select zG = 3, (4.26) gives us

S̄G
1 = 5(24) + 3

√
24 ≈ 135

The probability that the demand during the entire product life is met by S̄G
1 is

P (D(1,R) ≤ 135) =
1
3
[P (D(1,8) ≤ 135) + P (D(1,16) ≤ 135) + P (D(1,24) ≤ 135)]

≈ 1
3
[1 + 1 + 0.9987] = 0.99957

Hence,

V1(0) ≤ V U1
1 (0) = 50 + 135 = 185.

The upper bound obtained by the G-policy is simple but very crude. Our next upper bound is based

on a policy that is a combination of the OUTP policy and the G-policy (call it the OUTP-G policy). The

bound is computed as follows.

An Upper Bound Based on the OUTP-G Policy

Step 1 For a given period, say period l0kt+i + 1 := kt + i, use (3.15)-(3.16) to determine its order-up-to period

l1kt+i := lkt+i. Given l1kt+i+1, again use (3.15)-(3.16) to compute its order-up-to period l2kt+i := ll1kt+i+1.

Repeat the process for m steps such that lmkt+i = kb. Those order-up-to periods ljkt+i, j = 0, 1, . . . , m

partition the maximal remaining product life kb− kt− i into m non-overlapping subintervals:

[l0kt+i + 1, l1kt+i], [l
1
kt+i + 1, l2kt+i], . . . , [l

m−1
kt+i + 1, kb].

Step 2 Apply the G-policy in each subinterval and compute its cost. Let S̄
Gj

kt+i be the order-up-to quantity

for subinterval j, j = 1, 2, . . . , m. Then

S̄
Gj

kt+i =
ljkt+i∑

n=lj−1
kt+i+1

µn + zG

√√√√√√
ljkt+i∑

n=lj−1
kt+i+1

σ2
n, j = 1, 2, . . . , m.

The expected cost in the jth subinterval under the OUTP-G policy, given the product is still alive at

the beginning of the subinterval and initial inventory is x, is
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gj
kt+i(x) :=





A + c[S̄Gj

kt+i − x] + hE
∑ljkt+i

n=lj−1
kt+i+1

[S̄Gj

kt+i −D(lj−1
kt+i+1,n)]+, x < S̄

Gj

kt+i

hE
∑ljkt+i

n=lj−1
kt+i+1

[x−D(lj−1
kt+i+1,n)]+ x ≥ S̄

Gj

kt+i

j = 1, 2, . . . , m.

Step 3 Compute the weighted sum of the costs in those m subintervals, where the weight of a subinterval is

the probability that the product is still alive at the beginning of that subinterval:

V U2
kt+i(x) = g1

kt+i(x) +
m∑

j=2

Egj
kt+i(S̄

Gj

kt+i −D(lj−1
kt+i+1,ljkt+i))P (kt + Rkt > lj−1

kt+i + 1). (4.28)

In general we expect that V U2
kt+i(x) is a tighter upper bound than V U1

kt+i(x), as illustrated by the following

example.

Example 4.3 We again use the data given by Example 3.2, assuming h = 0. We compute the upper bound

of V1(0) using the OUTP-G policy.

From Example 3.5, l11 = 16 and l21 = 24. Thus we can partition the maximal product life to two

non-overlapping intervals [1, 16] and [17, 24]. Selecting zG = 3, we obtain the order-up-to levels in those

subintervals as

S̄G1
1 = 5 · 16 + 3

√
16 = 92

and

S̄G2
1 = 5 · 8 + 3

√
8 ≈ 49.

Using (4.28), we obtain

V1(0) ≤ V U2
1 (0) = g1

1(0) + P (R > 16)(g2
1(0)− cE[S̄G1

1 −D(1,16)])

= 50 + 92 +
1
3
[50 + 49− (92− 80)] = 171

This upper bound substantially improves the first upper bound (= 185) developed in Example 4.2. The

bound seems tight, judging from the lower bound (= 165.15) given in Example 4.1.

5 Computational Results

We test our heuristic methods using three separate problem sets. The first is a set of small test problems where

we vary setup costs, demand distributions, holding costs, and product lifetime distributions systematically.

The second is a set of large problems where the demand distribution has a larger mean and higher variance.

The third is a set of problems based on the actual inventory problem for ordering Jeppesen Enroute and

Area charts. We have to scale down the mean demand of the actual problems to be able to compute the

optimal solutions, but except for demand distributions, we preserve all other problem characteristics.
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5.1 Test Problems with Low Mean Demand

To create the first problem set we systematically varied parameters that can have an impact on performance:

1. The ordering cost A, the production cost c, and holding cost h,

2. the distribution of unit demand,

3. the length of each cycle and the number of cycles,

4. the probability distribution of the product lifetime, which we call the lifetime pattern.

We set c = 1 and vary A = 50, 250, 2000. We let the holding costs h = 0.00 and h = 0.03. We assume

that demand is stationary, Dn = D for all n and choose three distributions for D: Normal with the mean of

5 and the standard deviation of 1, Uniform between 1 and 9, and Triangular with parameters 1 (minimum),

3 (mode) and 11 (maximum). We restrict demand to be integers, so all three distributions have the mean

of 5. The normal distribution has the standard deviation of 1, the uniform distribution has the standard

deviation of 2.58, and the triangular distribution is skewed and has the standard deviation of 2.52.

We let the maximum lifetime of the product be kb = 24 periods, and vary the number and the length of

cycles. We use problems with 4 cycles and 6 periods per cycle, 8 cycles and 3 periods per cycle, and 24 cycles

and 1 period per cycle. We let the product lifetime R be a Poisson random variable. For the problems with

4 and 8 cycles we use the Poisson distribution with λ = 2, λ = 4, and λ = 10 (see Figure 2a and Figure 2b).

For the problems with 24 cycles we use the Poisson distribution with λ = 10 and λ = 20 (see Figure 2c).
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(a) Lifetime pattern for problems with 4 cycles. (b) Lifetime pattern for problems with 8 cycles. 
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(c) Lifetime pattern for problems with 24 cycles. 

Figure 2: Distributions for the Product Lifetime R
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In total the first problem set contains 144 test problems (3 ordering cost levels, 2 holding cost levels, 3

demand distributions, and 3 cycle lengths–with 4 and 8 cycle problems having three lifetime patterns and

24-cycle problems having 2 lifetime patterns).

To compare the three heuristics we first solved the 144 problems to optimality using a dynamic pro-

gramming solver called General Purpose Dynamic Programming GPDP (see (Kennedy 1986)). The data

for GPDP is stored in text files, with one line (record) for each state/stage/action/next stage combination.

Each data file for a single test problem contains over 3 million records, and takes up more than 3 gigabytes of

disk space. We generated all GPDP data files using Microsoft Excel 2000 and Visual Basic for Applications

(VBA). Each test problem took about 20 minutes to generate and 10 minutes to solve to optimality with

GPDP on a 700 MHz IBM ThinkPad 20a with 512 MB of memory.
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 (a) Percentage error of the four heuristics, grouped by 

setup cost A.  For A = 50 the percentage error for the 
OUTP heuristic is 1.32%, for FE 0.81% and for Hybrid 
0.25%.  For A = 250 the percentage error for the OUTP 
heuristic is 0.72%, for FE 0.69% and for Hybrid 0.12%. 
For A = 2000 the percentage error for the OUTP 
heuristic is 0.62%, for FE 0.20% and for Hybrid 0.03%. 

(b)  Percentage error of the four heuristics, grouped by 
holding cost h.  For h = 0 the percentage error for 
the OUTP heuristic is 0.90%, for FE 0.38% and 
for Hybrid 0.14%.  For h = 0.03 the percentage 
error for the OUTP heuristic is 0.88%, for FE 
0.76% and for Hybrid 0.14%. 
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(c)  Percentage error of the four heuristics, grouped by demand distribution.  For Normal the percentage error for 

the OUTP heuristic is 0.68%, for FE 0.28% and for Hybrid 0.14%.  For Triangular the percentage error for the 
OUTP heuristic is 0.86%, for FE 0.21% and for Hybrid 0.16%.  For Uniform the percentage error for the OUTP 
heuristic is 1.11%, for FE 1.11% and for Hybrid 0.10%.   

 

Figure 3: Percentage Error of the Heuristics
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To evaluate heuristics’ performance we also solved each problem with the three heuristic methods and

used GPDP to compute the cost of each policy. We implemented the FE policy in Microsoft Excel 2000 and

VBA. For the other two heuristics, we first used GPDP to evaluate equations (3.15)-(3.17), based on the

mean demand of 5. We then used these results to compute the policies using Excel. For each problem we

compute the relative difference between the cost of the optimal policy and the cost of the heuristic policy,

as follows:

Percentage Error =
Cost of Heuristic Policy - Cost of Optimal Policy

Cost of Optimal Policy
.

Figure 3 shows the average percentage error grouped in various ways. Figure 3a groups the test problems

by different setup cost levels. In Figure 3b we compare the performance of the heuristics with two levels of

holding costs, h = 0.03 and h = 0.00. The holding cost level of 0 is meant to represent short-term problems,

where each period corresponds to one or two weeks (for example), and the higher holding cost level of 0.03

is meant to represent medium-range problems, where each period corresponds to one month, and the annual

holding cost rate is about 36%. Finally, in Figure 3c, we compare the performance with different demand

distributions.

In addition, we compare the performance by both the number of cycles and product lifetime patterns.

This comparison is shown in Figure 4.

We also computed the bounds of V1(0) for this problem set. On average the lower bound computed using

(4.25) is 4.07% below the optimum, and the upper bound based on the OUTP-G policy is 1.48 % above

optimum.

In summary, we gained the following insights from the first test problem set:

• Figure 3a shows that the magnitude of setup costs has an impact on the performance under all three

heuristics, and all do better when setup costs are higher.

• Figure 3b indicates that the performance of the OUTP and hybrid policies are fairly robust against

holding costs, while the presence of holding costs has an adverse impact on the performance of the FE

policy.

• Figure 3c suggests that the FE and OUTP heuristics perform slightly worse against the uniform

demand, which has the largest demand variability among the three demand distributions. The hybrid

heuristic performs equally well against all three demand distributions.

• Figure 4 shows that all three heuristics perform slightly worse when R is more likely to assume large

values (i.e, the performance of each heuristic deteriorates when the Poisson parameter λ increases).

• The lower bound is 4.07% below the optimum, and the upper bound is 1.48% above the optimum.

• Overall, the hybrid heuristic performs by far better than the other two heuristics, both in terms of the

percentage error measures and robustness against different parameter settings. The hybrid heuristic is

followed by the FE heuristic, and then the OUTP heuristic.

20



0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

λ=2 λ=4 λ=10

Revision Pattern

P
er

ce
nt

ag
e 

E
rr

or
Hybrid

FE

OUTP

 

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

λ=2 λ=4 λ=10

Revision Pattern

P
er

ce
nt

ag
e 

E
rr

or

Hybrid

FE

OUTP

 
(a) 4-cycle problems: Percentage error for λ = 2 for OUTP 

0.54%, for FE 0.40% and for Hybrid 0.09%.  For λ = 4 
OUTP 0.70%, for FE 0.64% and for Hybrid 0.17%.  For λ = 
10 OUTP 1.48%, for FE 0.96% and for Hybrid 0.11%. 

(b)  8-cycle problems: Percentage error for λ = 2 OUTP 0.43%, for FE 
0.43% and for Hybrid 0.13%.  For λ = 4 for OUTP 0.46%, for FE 
0.45% and for Hybrid 0.11%.  For λ = 10 OUTP 1.04%, for FE 
0.84% and for Hybrid 0.15%. 

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

λ=10 λ=20
Revision Pattern

P
er

ce
nt

ag
e 

E
rr

or

Hybrid

FE

OUTP

 
(c)  24-cycle problems: Percentage error for λ = 10 for OUTP 0.84%, for FE 0.19% and for Hybrid 0.05%.  For λ = 20 for OUTP 1.63%, 

for FE 0.61% and for Hybrid 0.15%.   
 

Figure 4: Percentage error grouped by the number of cycles and lifetime patterns

5.2 Test Problems with High demand

All problems in the first test set have a mean period demand of 5, and the number of distinct demand levels

is limited to at most 11 (in the triangular distribution case). We also wish to assess the performance of

the heuristics using the problems with a higher number of demand values. Toward this end, we created

additional 24 problems where demand per period is normally distributed with mean of 10 and standard

deviation of 3.

As in the previous problem set, we vary setup costs at A = 50, 250, 2000, the numbers of cycles at

t = 4, 8, 24, three lifetime patterns for the 4 and 8 cycle problems and two lifetime patterns for the 24-cycle

problems. All the 24 problems have h = 0.03 per period.

The larger number of demand values (20 instead of 11) makes these problems significantly more difficult

to solve to optimality than the smaller problems. In particular, each GPDP data file has more than 30

million records (vs. 3 million for a smaller problems), and the size of the file ranges between 9 and 20

gigabytes. Each data file takes about 2.5 hours to generate (vs. 20 minutes for a smaller problems) and

about 90 minutes to solve (vs. 10 minutes for a smaller problems) on the same IBM ThinkPad we used to

solve the smaller problems.
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Figure 5: Results for Problems with High Demand.

We summarize the results in Figure 5. The results look very similar to those for small problems. Overall,

the hybrid heuristic produces the best results, followed by the FE heuristic, and then the OUTP heuristic.

The percentage errors are fairly close to the ones for small problems.

5.3 Jeppesen Test Problem

To demonstrate the performance of our heuristics for a wider range of problems, we created a third data

set based on the actual characteristics of Jeppesen’s Enroute and Area charts. These charts are large and

multicolored, and Jeppesen usually out-sources their production. Each time a chart is ordered, regardless

of whether the chart revised, Jeppesen pays a large fixed charge. This fixed charge varies depending on the

chart characteristics (size, the number of colors, type of paper, etc.). The variable printing cost similarly

varies. The distributions of bi-weekly demand and revision history are forecasted based on historical data.

Jeppesen charts revise on an 8-week cycle, and at most they last for 48 weeks (six 8-week cycles). Each

specific chart is always produced on either odd or even weeks. So for Jeppesen, an 8-week cycle has 4 periods,

where each period contains two weeks. Bi-weekly demand varies from as few as one or two charts in two

weeks, to over 1,000. The coefficient of variation of bi-weekly demand ranges between 0.03 to 0.28. The

fixed order cost is either 383, 500, 900, 1006 or 1600 dollars, and the variable printing cost is either 2, 15, 20

or 45 cents per chart.

To create problems that we can solve to optimality we had to scale the bi-weekly demands and approx-

imate them by a discrete random variables with no more than 11 demand levels. To do this, we introduce

the notion of a “unit” of demand. Each unit can contain more than one chart, and bi-weekly demand and

printing cost are converted to be in terms of units. We select the unit size for each chart in such a way that

approximates the demand with a mean of 5 “units.” We select the standard deviation of bi-weekly demand

that preserves its original coefficient of variation. For example, if a chart has the average demand of 50 and

standard deviation of 10, the printing cost of 20 cents and setup cost of $900, the scaled problem of that
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chart uses the unit size 50/5 = 10, so the new average demand is 50/10 = 5 “units” (each unit represents

10 charts), the new standard deviation is 10/10 = 1, the new printing cost is 0.20 × 10 = 2, and the new

setup cost remains at 900. The original data for the Jeppesen problems, along with the conversion factors

(the number of charts in each “unit”) and the resulting parameters for the scaled problems is presented in

the Appendix. The data in the Appendix also contains revision patterns for charts. Inventory holding costs

for the Jeppesen problems are 0.

Results for Jeppesen problems are displayed in Figure 6. For these realistic problems, both the FE and

the hybrid heuristics locate near-optimal solutions (0.29% and 0.17% above the optimum). The OUTP

heuristic locates the solutions 4.65% above the optimum.
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Figure 6: Results for Jeppesen problems. The relative gap 4.65% for the OUTP, 0.29% for FE and 0.17%

for Hybird.

6 Conclusion

In this paper we consider a variation of an inventory problem with obsolescence, where products are subject

to upgrades, and hence have uncertain life spans and non-stationary demand. Our work was inspired by

a real-world problem faced by Jeppesen Sanderson, Inc., a Boeing subsidiary and the major provider of

aviation information worldwide. Since aviation information is constantly evolving, Jeppesen is faced with

the problem of deciding on stock levels for aviation charts that may revise in the future.

We formulate the problem as a dynamic programming model, and present formal analysis of the problem

with deterministic demand. Since the size of real problems may be too large to solve to optimality using

standard dynamic programming solution methods, we develop three simple, yet effective, heuristic methods.

We compare these heuristic methods using two sets of systematically generated test problems, and a third

set based on the actual Jeppesen problems.

The performance of all heuristics is generally robust against different levels of holding costs, lifetime
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patterns and demand distributions. All three heuristics perform the best on problems with high setup costs.

Most heuristics do slightly worse for the problems where the probability of obsolescence is high towards the

end of the product’s life span.

Overall, the best of the three heuristics–the hybrid heuristic–finds solutions that are about 0.15% worse

than the optimum on average. While large-scale problems cannot be solved to optimality with standard

dynamic programming algorithms, the heuristics we present in this paper can be easily implemented on

a spreadsheet, even for large-scale problems. We built and implemented a Decision Support System that

incorporates many of the ideas in this paper (see Katok, Lathrop, Tarantino, and Xu (2001)).
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7 Appendix

Original (bi-weekly) Charts/ Scaled Probability of Revision (week number)

ID Title µ σ c Unit µ σ c A 8 16 24 32 40 48

1 US (HI) 3/4 (DAL) 123.20 6.83 0.20 24.64 5.00 0.28 4.93 900.00 0.20 0.60 0.20 0.00 0.00 0.00

2 US (HI) 5/6 563.73 37.57 0.15 112.75 5.00 0.33 16.91 500.00 0.14 0.71 0.14 0.00 0.00 0.00

3 CA (HI) 3/4 367.73 35.52 0.15 73.55 5.00 0.48 11.03 500.00 0.14 0.29 0.57 0.00 0.00 0.00

4 CA (HI) 3/4 (NWA) 39.67 4.78 0.20 7.93 5.00 0.60 1.59 900.00 0.29 0.14 0.57 0.00 0.00 0.00

5 CA (HI) 5/6 98.93 27.33 0.15 19.79 5.00 1.38 2.97 500.00 0.22 0.56 0.22 0.00 0.00 0.00

6 CA (HI) 5/6 (UAL) 162.40 27.33 0.20 32.48 5.00 0.84 6.50 900.00 0.29 0.43 0.29 0.00 0.00 0.00

7 CA (LO) 3/4 452.67 34.16 0.15 90.53 5.00 0.38 13.58 500.00 0.00 0.33 0.00 0.00 0.67 0.00

8 LA (H/L) 1/2 (DAL) 79.33 6.15 0.20 15.87 5.00 0.39 3.17 900.00 0.50 0.00 0.25 0.13 0.13 0.00

9 LA (H/L) 1/2 (AAL) 104.07 10.93 0.20 20.81 5.00 0.53 4.16 900.00 0.44 0.11 0.33 0.11 0.00 0.00

10 LA (H/L) 3/4 (UAL) 67.67 4.10 0.20 13.53 5.00 0.30 2.71 900.00 0.25 0.38 0.25 0.13 0.00 0.00

11 LA (H/L) 3/4 (NWA) 18.20 2.05 0.20 3.64 5.00 0.56 0.73 900.00 0.33 0.44 0.11 0.11 0.00 0.00

12 SA (HI) 3/4 273.47 30.74 0.15 54.69 5.00 0.56 8.20 500.00 0.50 0.40 0.00 0.00 0.10 0.00

13 SA (LO) 7/8 222.60 15.71 0.15 44.52 5.00 0.35 6.68 500.00 0.20 0.40 0.00 0.20 0.00 0.20

14 SA (H/L) 13 49.93 2.73 0.20 9.99 5.00 0.27 2.00 900.00 0.67 0.00 0.00 0.00 0.00 0.33

15 AS (H/L) 1/2 (MNA) 15.00 1.18 0.20 3.00 5.00 0.39 0.60 900.00 0.00 0.00 0.00 0.00 0.50 0.50

16 AS (H/L) 5/6 136.73 12.98 0.20 27.35 5.00 0.47 5.47 900.00 0.33 0.00 0.17 0.33 0.17 0.00

17 ANCHORAGE, AS 385.93 23.23 0.02 77.19 5.00 0.30 1.23 383.00 0.25 0.00 0.50 0.00 0.00 0.25

18 CALI, COL 193.20 28.01 0.02 38.64 5.00 0.72 0.62 383.00 0.50 0.00 0.00 0.50 0.00 0.00

19 FUKUOKA, JAPAN 318.73 23.23 0.02 63.75 5.00 0.36 1.02 383.00 0.60 0.00 0.20 0.00 0.00 0.20

20 GUADALAJARA, MEX 512.40 80.61 0.02 102.48 5.00 0.79 1.64 383.00 0.33 0.00 0.00 0.00 0.00 0.67

21 HAVANA, CUBA 465.27 40.30 0.02 93.05 5.00 0.43 1.49 383.00 0.33 0.33 0.00 0.33 0.00 0.00

22 MELBOURNE, VIC, AUST 171.27 15.71 0.45 34.25 5.00 0.46 15.41 1006.00 0.00 0.25 0.25 0.25 0.00 0.25

23 PUERTO MONTT, CHILE 115.73 7.51 0.02 23.15 5.00 0.32 0.37 383.00 0.00 0.00 0.00 0.50 0.00 0.50

24 SEATTLE, WASH 1081.73 51.23 0.02 216.35 5.00 0.24 3.46 383.00 0.00 0.50 0.00 0.50 0.00 0.00

25 TAIPEI, TAIPEI/TAIWAN 380.80 38.94 0.02 76.16 5.00 0.51 1.22 383.00 0.33 0.00 0.00 0.00 0.00 0.67

26 AT (H/L) 1/2 231.93 19.13 0.20 46.39 5.00 0.41 9.28 900.00 0.00 0.00 0.60 0.40 0.00 0.00

27 P (HI) 1/P (H/L) 2 239.40 15.71 0.20 47.88 5.00 0.33 9.58 900.00 0.33 0.50 0.17 0.00 0.00 0.00

28 AT (HI) 5/BLK 58.80 5.47 0.20 11.76 5.00 0.46 2.35 900.00 0.00 0.25 0.25 0.00 0.00 0.50

29 CA (LO) 3/4 (DAL) 60.67 5.47 0.20 12.13 5.00 0.45 2.43 900.00 0.00 0.33 0.00 0.00 0.67 0.00

30 US (HI) 3/4 (AAL) 104.07 10.93 0.20 20.81 5.00 0.53 4.16 900.00 0.20 0.60 0.20 0.00 0.00 0.00

31 US (HI) 3/4 (AWE) 14.47 2.05 0.20 2.89 5.00 0.71 0.58 900.00 0.20 0.60 0.20 0.00 0.00 0.00

32 CA (LO)9/(H/L)10 337.40 32.79 0.15 67.48 5.00 0.49 10.12 500.00 0.00 0.60 0.20 0.00 0.00 0.20

33 AK (LO) 3/4 (DAL) 37.80 4.10 0.20 7.56 5.00 0.54 1.51 900.00 0.00 0.50 0.25 0.25 0.00 0.00

34 ENROUTE 1/2 (CRA) 5.13 1.37 0.02 1.03 5.00 1.33 0.02 383.00 0.87 0.13 0.00 0.00 0.00 0.00

35 ENROUTE 3/4 (CRA) 5.13 1.37 0.02 1.03 5.00 1.33 0.02 383.00 0.87 0.13 0.00 0.00 0.00 0.00

36 ENROUTE 5/6 (CRA) 5.13 1.37 0.02 1.03 5.00 1.33 0.02 383.00 0.87 0.13 0.00 0.00 0.00 0.00

37 ENROUTE 4A/BLK (CRA) 5.13 1.37 0.02 1.03 5.00 1.33 0.02 383.00 0.87 0.13 0.00 0.00 0.00 0.00

38 LA (H/L) 7/8 (UAL) 67.67 4.10 0.20 13.53 5.00 0.30 2.71 900.00 0.63 0.38 0.00 0.00 0.00 0.00

39 US (HI) 5/6 (AWE) 14.47 2.05 0.20 2.89 5.00 0.71 0.58 900.00 0.14 0.57 0.29 0.00 0.00 0.00

40 DAL CA (HI) 5/6 27.07 2.05 0.20 5.41 5.00 0.38 1.08 900.00 0.29 0.14 0.43 0.14 0.00 0.00

41 AU (LO) 1/2 67.67 4.78 0.20 13.53 5.00 0.35 2.71 1600.00 0.00 0.40 0.20 0.40 0.00 0.00

42 AU (LO) 7/8 42.47 4.10 0.20 8.49 5.00 0.48 1.70 1600.00 0.00 0.25 0.25 0.25 0.00 0.25

43 SA (LO) 1/2 (UAL) 57.40 4.10 0.20 11.48 5.00 0.36 2.30 900.00 0.00 0.50 0.33 0.17 0.00 0.00

44 CA (LO)9/(H/L)10(UAL) 64.40 4.10 0.20 12.88 5.00 0.32 2.58 900.00 0.00 0.60 0.20 0.00 0.00 0.20

45 FE (H/L) 1/2 (MNA) 15.00 1.18 0.20 3.00 5.00 0.39 0.60 900.00 0.38 0.25 0.13 0.25 0.00 0.00

46 FE (H/L) 3/4 (MNA) 15.00 1.18 0.20 3.00 5.00 0.39 0.60 900.00 0.38 0.50 0.00 0.00 0.00 0.13

47 US (HI) 5/6 (SWA) 84.47 2.73 0.20 16.89 5.00 0.16 3.38 900.00 0.00 0.67 0.33 0.00 0.00 0.00

48 HARRISBURG, PA 564.67 36.89 0.02 112.93 5.00 0.33 2.26 500.00 0.00 0.00 0.00 0.00 0.50 0.50

49 SA (HI) 1/2 (AAL) 94.73 5.47 0.20 18.95 5.00 0.29 3.79 900.00 0.20 0.20 0.20 0.20 0.20 0.00

50 EA (H/L) 3/4 32.20 1.37 0.20 6.44 5.00 0.21 1.29 900.00 0.20 0.00 0.40 0.20 0.20 0.00

51 EA (H/L) 9/10 82.60 4.78 0.20 16.52 5.00 0.29 3.30 900.00 0.00 0.33 0.33 0.17 0.17 0.00

52 US (HI) 1/2 818.07 42.35 0.15 163.61 5.00 0.26 24.54 500.00 0.44 0.33 0.11 0.00 0.11 0.00

53 US (HI) 1/2 (AWE) 14.47 2.05 0.20 2.89 5.00 0.71 0.58 900.00 0.33 0.33 0.33 0.00 0.00 0.00

54 US (HI) 1/2 (SWA) 84.47 2.73 0.20 16.89 5.00 0.16 3.38 900.00 0.33 0.33 0.33 0.00 0.00 0.00

55 DENVER, COLO 1178.33 53.97 0.02 235.67 5.00 0.23 3.77 383.00 0.00 0.00 0.00 0.50 0.00 0.50

56 SA (LO) 1/2 (COA) 36.87 5.47 0.20 7.37 5.00 0.74 1.47 900.00 0.00 0.20 0.40 0.40 0.00 0.00

57 SA (HI) 3/4 (COA) 40.13 4.78 0.20 8.03 5.00 0.60 1.61 900.00 0.56 0.22 0.00 0.11 0.11 0.00

58 ENROUTE 11/12 (CRA) 5.13 1.37 0.02 1.03 5.00 1.33 0.02 383.00 0.87 0.13 0.00 0.00 0.00 0.00

59 CA (HI) 1/2 (AWE) 13.07 2.05 0.20 2.61 5.00 0.78 0.52 900.00 0.25 0.38 0.38 0.00 0.00 0.00

60 US (LO) 33/34 1403.27 75.14 0.20 280.65 5.00 0.27 56.13 1600.00 0.00 0.33 0.00 0.67 0.00 0.00

61 US (LO) 45/46 (KAC) 187.50 14.73 0.20 37.50 5.00 0.39 7.50 900.00 0.00 0.50 0.50 0.00 0.00 0.00

62 US (LO) 3/4 (DAL) 92.40 6.15 0.20 18.48 5.00 0.33 3.70 900.00 0.00 0.00 0.67 0.00 0.00 0.33

63 US (LO) 11/11A/12 875.47 45.77 0.20 175.09 5.00 0.26 35.02 1600.00 0.17 0.33 0.17 0.17 0.17 0.00

64 US (LO) 11/11A/12(DAL) 87.73 6.15 0.20 17.55 5.00 0.35 3.51 900.00 0.20 0.40 0.00 0.20 0.20 0.00

65 US (LO) 27/28 1036.47 67.63 0.20 207.29 5.00 0.33 41.46 1600.00 0.33 0.00 0.33 0.33 0.00 0.00

66 US (LO) 37/38 1220.33 40.99 0.20 244.07 5.00 0.17 48.81 1600.00 0.00 0.25 0.25 0.50 0.00 0.00

67 US (LO) 43/44 1155.00 45.09 0.20 231.00 5.00 0.20 46.20 1600.00 0.00 0.00 0.00 0.67 0.00 0.33

68 US (LO) 49/50 1539.07 77.19 0.20 307.81 5.00 0.25 61.56 1600.00 0.00 0.00 0.67 0.33 0.00 0.00

69 MIAMI, FLA NASSAU 1223.13 58.75 0.02 244.63 5.00 0.24 3.91 383.00 0.33 0.00 0.00 0.00 0.33 0.33

70 AT (H/L) 1/2 (AAL) 85.87 5.47 0.20 17.17 5.00 0.32 3.43 900.00 0.00 0.00 0.25 0.50 0.00 0.25
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Original (bi-weekly) Charts/ Scaled Probability of Revision (week number)

ID Title µ σ c Unit µ σ c A 8 16 24 32 40 48

71 ENROUTE 14/BLK 5.13 1.37 0.02 1.03 5.00 1.33 0.02 383.00 0.88 0.13 0.00 0.00 0.00 0.00

72 CSN FE (HI) 8/BLK 15.00 1.18 0.20 3.00 5.00 0.39 0.60 900.00 0.43 0.43 0.00 0.00 0.14 0.00

73 MILAN, ITA 138.60 15.03 0.02 27.72 5.00 0.54 0.44 383.00 0.00 0.25 0.25 0.25 0.00 0.25

74 MUNICH, GER 117.60 15.03 0.02 23.52 5.00 0.64 0.38 383.00 0.00 0.25 0.25 0.25 0.25 0.00

75 NICE-COTE D’AZUR 64.40 13.66 0.02 12.88 5.00 1.06 0.21 383.00 0.50 0.00 0.00 0.00 0.00 0.50

76 GENEVA, SWITZ 62.07 13.66 0.02 12.41 5.00 1.10 0.20 383.00 0.50 0.00 0.00 0.00 0.00 0.50

77 MARSEILLE-PROV. 23.33 2.73 0.02 4.67 5.00 0.59 0.07 383.00 0.50 0.00 0.00 0.00 0.00 0.50

78 E (H/L) 3/4 124.60 14.35 0.20 24.92 5.00 0.58 4.98 900.00 0.14 0.43 0.29 0.14 0.00 0.00

79 E (LO) 7/8 198.33 19.13 0.20 39.67 5.00 0.48 7.93 900.00 0.25 0.25 0.25 0.25 0.00 0.00

80 ME (H/L) 1/2 100.80 15.03 0.20 20.16 5.00 0.75 4.03 900.00 0.00 0.20 0.20 0.60 0.00 0.00

81 ME (H/L) 5/6 91.47 14.35 0.20 18.29 5.00 0.78 3.66 900.00 0.00 0.17 0.17 0.50 0.17 0.00

82 EE (H/L) 1/2 59.73 14.35 0.20 11.95 5.00 1.20 2.39 900.00 0.13 0.63 0.25 0.00 0.00 0.00

83 E (HI) 1/2 210.00 19.81 0.20 42.00 5.00 0.47 8.40 900.00 0.00 0.78 0.11 0.11 0.00 0.00

84 E (HI) 7/8 129.27 18.44 0.20 25.85 5.00 0.71 5.17 900.00 0.00 0.88 0.13 0.00 0.00 0.00

85 US (LO) SE-1/SE-2 116.20 7.51 0.20 23.24 5.00 0.32 4.65 900.00 0.33 0.00 0.67 0.00 0.00 0.00

86 US (HI) 7/8 (SWA) 84.47 2.73 0.20 16.89 5.00 0.16 3.38 900.00 0.17 0.33 0.50 0.00 0.00 0.00

87 E (HI) 3/4 (UAL) 49.47 4.10 0.20 9.89 5.00 0.41 1.98 900.00 0.00 0.80 0.00 0.20 0.00 0.00

88 E (HI) 9/10 (UAL) 28.47 2.73 0.20 5.69 5.00 0.48 1.14 900.00 0.00 0.67 0.33 0.00 0.00 0.00

89 E (HI) 13/14 106.87 18.44 0.20 21.37 5.00 0.86 4.27 900.00 0.17 0.67 0.17 0.00 0.00 0.00

90 E (HI) 21/22 62.53 13.66 0.20 12.51 5.00 1.09 2.50 900.00 0.20 0.40 0.20 0.00 0.20 0.00

91 LA (H/L) 5/6 (NWA) 27.07 2.05 0.20 5.41 5.00 0.38 1.08 900.00 0.33 0.00 0.00 0.00 0.33 0.33

92 LA PAZ, MEX. 106.40 11.61 0.02 21.28 5.00 0.55 0.34 383.00 0.00 0.00 0.00 0.50 0.00 0.50

93 A (HI) 1/2 52.50 4.12 0.20 10.50 5.00 0.39 2.10 900.00 0.00 0.00 0.00 0.50 0.50 0.00

94 A (HI) 5/6 52.50 4.12 0.20 10.50 5.00 0.39 2.10 900.00 0.00 0.00 0.00 0.50 0.50 0.00

95 ME (H/L) 9/10 65.33 14.35 0.20 13.07 5.00 1.10 2.61 900.00 0.00 0.00 0.00 0.50 0.50 0.00

96 MERIDA, MEX. 168.00 8.20 0.02 33.60 5.00 0.24 0.54 383.00 0.50 0.00 0.00 0.00 0.00 0.50

97 SA (HI) 3/4 (JAL) 5.13 0.68 0.20 1.03 5.00 0.67 0.21 900.00 0.75 0.00 0.00 0.00 0.25 0.00
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