
Online Appendices

C Additional Analysis of Sufficient Operational Statistics

Additional Result About Sufficiency. There is an additional way to identify sufficient op-

erational statistics based on ancillary and complete statistics. However, this result is restrictive

and mostly covered by Theorem 1. Specifically, given a random sample Y from a distribution

parameterized by θ, (1) a statistic S is said to be ancillary if its distribution does not depend on θ;

(2) a statistic T is said to be complete if for every measurable function g(·), Eθ(g(T )) = 0 for all θ

implies Pθ(g(T ) = 0) = 1 for all θ.

As shown in Lemma 1, for a random sample Y parameterized by an unknown scale parameter

θ, a condition leading to the sufficiency of t(·) is that t(Y ) is independent of Y /t(Y ). Clearly,

the statistics Y /t(Y ) are ancillary given the scale parameter. Thus, by Basu’s Theorem, if t(Y )

is a complete sufficient statistic, then t(Y ) is independent of Y /t(Y ) and hence is a sufficient

operational statistic.

While this result appears promising, its applicability is in fact limited. The limitation is due to

the completeness with a scale parameterization (note that the factorization rule in Theorem 1 itself

does not require a scale parameterization although the decision problem assumes it). First, identi-

fying a complete statistic by using its definition is difficult, except in some special cases. Even in

those special cases, the parameterization is often not a scale parameterization. In statistical theory,

the most commonly used result regarding completeness is with respect to the exponential family: If

each observation Yi in the sample Y has a density function of the form fYi(yi) = h(yi)c(θ)e
w(θ)t(yi),

then
∑n

i=1 t(Yi) is a complete statistic (adapted from Theorem 6.2.25 in Casella and Berger 2002

to fit our context). However, the scale parameterization restricts the applicability of this result:

given the scale parameterization, Yi has a density of the form fYi(yi) = (1/θ)fZ(yi/θ) for some base

distribution fZ(·). Further, if a function of the form u(x/θ) can be multiplicatively decomposed

as u(x/θ) = v(x)w(θ), then this relationship is equivalent to u(x/θ)u(1) = u(x)u(1/θ). Functions

satisfying this relationship are completely multiplicative functions, which primarily concern power

functions, i.e., u(x) = xa, a > 0 (completely multiplicative functions also include some special func-

tions like Liouville function, Dirichlet characters, Jacobi symbol and Legendre symbol, but these

are not commonly used in practice). Because power functions are homogeneous, such cases are

already covered by Theorem 1.
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In summary, although this characterization of sufficient operational statistics based on ancillary

and complete statistics may cover some additional special cases, most of the commonly used cases

have already been covered by Theorem 1. Theorem 1 is much more general than this result. We

thus do not focus on this case. �

Proof of Auction Example. From Theorem 1 and Equation (3), r∗(x̂ ) = a∗t(x̂ ), where a∗ is

the maximum solution to the problem

E
[
Z[2]I(Z[2] > at(Ẑ )) + at(Ẑ )I(Z[2] ≤ at(Ẑ ) ≤ Z[1])

]
.

Its first-order condition can be shown to be:

Et(Ẑ )

{
t(Ẑ )m

[
1− FZ(at(Ẑ ))− at(Ẑ )fZ(at(Ẑ ))

]
FZ(at(Ẑ ))m−1

}
= 0. (5)

This condition applies to any value distribution. We next apply this condition to the uniform

distribution case, where the base value Z follows a standard uniform distribution, fZ(z) = 1 and

FZ(z) = z for z ∈ [0, 1]. When a ≤ 1, this condition becomes:

Et(Ẑ )

{
t(Ẑ )

[
1− at(Ẑ )− at(Ẑ )

]
(at(Ẑ ))m−1

}
=0

Et(Ẑ )

[
t(Ẑ )m

]
− 2aEt(Ẑ )

[
t(Ẑ )m+1

]
=0∫ 1

0
ymnyn−1dy − 2a

∫ 1

0
ym+1nyn−1dy =0.

Here, the last step follows from t(Ẑ ) = max(Ẑ ), which has a density of nyn−1. We solve this

equation and obtain

a∗ =
m+ n+ 1

2(m+ n)
. (6)

When a > 1, in the condition (5), the expression inside Et(Ẑ ){} is nonzero only when 0 < at(Ẑ ) < 1.

By assumption, at(Ẑ ) > 0. That at(Ẑ ) < 1 means t(Ẑ ) < 1/a. Thus, (5) becomes

Et(Ẑ )

{
t(Ẑ )

[
1− at(Ẑ )− at(Ẑ )

]
(at(Ẑ ))m−1I(t(Ẑ ) < 1/a)

}
=0

Et(Ẑ )

[
t(Ẑ )mI(t(Ẑ ) < 1/a)

]
− 2aEt(Ẑ )

[
t(Ẑ )m+1I(t(Ẑ ) < 1/a)

]
=0∫ 1/a

0
ymnyn−1dy − 2a

∫ 1/a

0
ym+1nyn−1dy =0.

It is easy to verify that this equation only holds when a =∞, which cannot be the optimal solution.

Thus, the solution is given by (6). �
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D Additional Details About Mean-Bounded Examples

The examples in Section 3 are standard results, with some technical details provided here. First,

consider the sample mean t(Ẑ ), where the sample Ẑ is drawn from a sub-Gaussian distribution.

By Hoeffding’s or Khintchine’s inequality, P
(
|t(Ẑ )− 1| ≥ a

)
≤ 2 exp(−cna2) for all a ≥ 0 and

some c ≥ 0; here, we have used the fact that centering does not harm the sub-Gaussian property.

This means

E
(
|t(Ẑ )− 1|

)
≤ c√

n
, for some c ≥ 0.

In addition, if Ẑ comes from a sub-exponential distribution, then by Bernstein’s inequality,

P
(
|t(Ẑ )− 1| ≥ a

)
≤ 2 exp

(
−c1nmin{ac2, a2c22}

)
for all a ≥ 0 and some c1, c2 ≥ 0. Thus,

E
(
|t(Ẑ )− 1|

)
≤ c

n
+

d√
n
, for some c, d ≥ 0.

Finally, consider the sample maximum Y , where the sample is drawn from a bounded dis-

tribution FZ with a support of [0, 1] and without a probability mass at 1. Here, without loss

of generality, we have normalized the support to [0, 1]. Thus, FY (y) = FZ(y)n on [0, 1]. For

any ε ∈ [0, 1], P(1 − Y ≥ ε) = FZ(1 − ε)n and for ε > 1, P(1 − Y ≥ ε) = 0. Therefore,

E|Y − E(Y )| ≤ [1 − E(Y )] + E(1 − Y ) = 2E(1 − Y ) = 2
∫ 1
0 FZ(1 − ε)ndε. The right-hand-side

clearly decreases in n as FZ < 1 almost surely, and converges to 0 by dominated convergence

theorem.

E Location-Scale Parametric Setting

We next consider a location-scale parametric setting, where the random variables in the decision-

making problem X = τe + θZ and the sample X̂ = τe + θẐ , where τ ∈ R and θ ∈ R+ are

unknown, Z = (Z1, ..., Zm) and Ẑ = (Ẑ1, ..., Ẑn) have known distributions, and, with slight abuse

of notation, e is a “dimension filler,” a vector of ones to match the dimension in an expression. We

focus on decision rules and payoff functions with the following properties.

Definition 2 A function f : Rn → R is said to be shift-invariant degree-one homogeneous (SH1)

if f(αe +βx ) = α+βf(x ) + ∆ for α ∈ R, β ∈ R+, x ∈ Rn, and some ∆ ∈ R that does not contain

x . The function is said to be strictly shift-invariant degree-one homogeneous (SSH1) if ∆ = 0.

For example, a major model with an SH1 payoff function is the newsvendor model, and the

H e
1 decision rule class in Chu et al. (2008) contains SSH1 functions. To further our analysis, we
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again need to identify sufficient operational statistics. Since there are two unknown parameters τ

and θ, we generally need two statistics, tτ (·) and tθ(·), and represent the decision as a function of

the two statistics. As discussed in the main text, such a representation only preserves sufficiency

under certain conditions. The basic idea to derive the conditions is to first normalize the sample by

subtracting a location statistic of the sample. The resultant sample then has only a scale structure

and is solvable by Theorem 2. Formally, suppose tτ (·) is an SSH1 function, and let Ŷ = X̂−tτ (X̂ )e

be the normalized sample and B̂ = Ẑ − tτ (Ẑ )e be the normalized base sample. Then,

Ŷ = X̂ − tτ (X̂ )e = τe +θẐ − tτ (τe +θẐ )e = τe +θẐ −
[
τ + θtτ (Ẑ )

]
e = θ

[
Ẑ − tτ (Ẑ )e

]
= θB̂ ,

which has a scale structure. We then apply Theorem 2 to Ŷ and B̂ to obtain the solution.

We say a function is of an exponential form if f(x) = c
∏
i d
aix+bi
i for some ai, bi, c, di (e.g.,

ce−ax and pa1x(1− p)a2x+b). Then

Proposition 1 If the sample is drawn from a density/mass function of an exponential form, then

any SSH1 statistic is a sufficient operational statistic for τ .

Proposition 2 In a problem with a location-scale parametric setting, if the payoff function is SH1

and the decision rule is SSH1, then r∗(x̂ ) = a∗tθ(x̂ − tτ (x̂ )e) + tτ (x̂ ), where

a∗ = arg max
a
E
[
φ
(
at(B̂),B

)]
.

In the first proposition, it is easy to find an SSH1 function of data (e.g., the sample mean). Any

of such functions can be used as a sufficient operational statistic for τ . The density/mass function

needs to have an exponential form, which covers some distributions, but is more restrictive than

the factorization rule in Theorem 1.

Proofs. The following result is necessary: For a random sample Ẑ drawn from a density/mass

function of an exponential form, if t(·) is an SSH1 statistic, then t(Ẑ ) is independent of Ẑ − t(Ẑ )e .

The proof is similar to that of Lemma 1. Consider the transformation from Ẑ to Y = [Ẑ1 −

t(Ẑ ), ..., Ẑn−1 − t(Ẑ ), t(Ẑ )]. Clearly, ẑi = yi + yn for i = 1, ..., n− 1, and

ẑn = argẑ[t(ẑ1, ..., ẑn−1, ẑ) = yn] = argẑ[t(ẑ1 − yn, ..., ẑn−1 − yn, ẑ − yn) = 0]

= argw[t(y1, ..., yn−1, w) = 0] + yn = s(y1, ..., yn−1) + yn,

where s(·) represents some function of y1, ..., yn−1, and the second equality holds since t(·) is SSH1.
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Thus, the Jacobian determinant

det(J) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 1

0 1 · · · 1
...

...
...

...

s1(y1, ..., yn−1) s2(y1, ..., yn−1) · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
,

where si(·) is the derivative of s(·) with respect to its ith argument. By the Leibniz formula and

following the steps in the proof of Lemma 1, we have

det(J) = 1−
n−1∑
i=1

si(y1, ..., yn−1).

Thus, the joint pdf of Y is:

fY (y) =fẐ (y1 + yn, ..., yn−1 + yn, s(y1, ..., yn−1) + yn)| det(J)|

=h(y1, ..., yn−1, s(y1, ..., yn−1))g(yn)| det(J)|,

where second equality holds by the exponential form of the density function. fY (y) is then mul-

tiplicatively separable in (y1, ..., yn−1) and yn. A same argument as that in the proof of Lemma 1

concludes that Ẑ − t(Ẑ )e is independent of t(Ẑ ).

Now we prove the propositions. As defined, Ŷ = X̂ − tτ (X̂ )e and B̂ = Ẑ − tτ (Ẑ )e are

the normalized sample and base sample, and Y = X − tτ (X̂ )e and B = Z − tτ (Ẑ )e are the

normalized random variables and base random variables. By the aforementioned result, Y and Ŷ

are independent. In addition, the transformed sample and random variables have a scale structure.

Then,

max
r(·)

E
[
φ
(
r(X̂ ),X

)]
= max

r(·)
E
[
φ
(
r
(
X̂ − tτ (X̂ )e

)
,X − tτ (X̂ )e

)
+ tτ (X̂ ) + ∆

]
= max

r(·)
E
[
φ
(
r
(
Ŷ
)
,Y
)]

+ E
[
tτ (X̂ ) + ∆

]
,

where the first equality holds because r(·) is SSH1 and φ(·) is SH1. By Theorem 2, the solution

of the transformed problem is: a∗tθ(ŷ), where a∗ = arg maxaE
[
φ
(
at(B̂),B

)]
. Since by the

normalization r∗(x̂ ) = r∗(ŷ) + tτ (x̂ ), the propositions hold.
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