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Why do bidders tend to bid higher than the risk-neutral Nash equilibrium in sealed-bid first price auction
experiments? The effect of risk aversion has long been offered as a possible explanation. More recently,

several studies proposed regret as another explanation, citing strong experimental evidence. But which effect is
more important? We design an experiment to separate the effects of risk aversion from those of regret. We find
overwhelming evidence in support of the regret model, and virtually no support for the constant relative risk
aversion model.
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1. Introduction
Risk aversion in general, and constant relative risk
aversion (CRRA) in particular, has been offered as
an explanation for the commonly observed “overbid-
ding” relative to the risk-neutral Nash equilibrium
(RNNE) in sealed-bid first price (SBFP) auction exper-
iments (see, for example, Cox et al. 1988). If bidders
are risk averse rather than risk neutral, the resulting
models fit the actual SBFP auction data reasonably
well. Risk aversion, however, has been reported to
be inconsistent with observed behavior in a number
of other auction and auction-like settings. Examples
include the experiments of Kagel and Levin (1993),
Cason (1995), Isaac and James (2000). In short, risk
aversion may have very little effect in auction exper-
iments even though the observed behavior in SBFP
auctions is consistent with risk aversion—the risk
aversion model may fit the SBFP auction data for the
wrong reason.
Several recent studies report data for which risk

aversion by itself does not provide a sufficient expla-
nation. Ivanova-Stenzel and Salmon (2008) report that
when bidders can select whether to enter an SBFP

or an ascending auction, more bidders enter the
ascending auction than risk aversion by itself implies.
Ivanova-Stenzel and Salmon (2004) also find that sub-
jects are willing to pay more than risk aversion would
imply for the right to participate in an ascending auc-
tion than in an SBFP auction. Ivanova-Stenzel and
Salmon (2008, p. 17) note that both sets of results
imply that “people have a nonpecuniary preference
for the ascending auction” and proceed to argue that
this preference can be explained by “minimizing the
possibility of regret.”
The basic idea of regret in auctions, first proposed

by Engelbrecht-Wiggans (1989), which builds on ear-
lier work on regret by Bell (1982) and Bell (1983) as
well as related work on disappointment (Bell 1985),
is that bidders are motivated not only by expected
profits, but also by two types of regret. Winner regret
occurs when the winner pays more than the second
highest bid, and loser regret occurs when a loser
misses a profitable trade opportunity by bidding too
low. Engelbrecht-Wiggans (1989) argues that the equi-
librium bids will be above or below the RNNE bids
depending on whether the bidders are more sensitive
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to loser regret or to winner regret. In Engelbrecht-
Wiggans and Katok (2007), we extend the model to
allow the decision maker to have a more general
utility function; for example, social preferences may
matter in addition to risk aversion and regret. Again,
optimal bids increase as the sensitivity to loser regret
increases, and decrease as the sensitivity to winner
regret increases. We also show that regret can explain
not only the observed overbidding in SBFP auctions,
but also the behavior observed by, for example, Kagel
and Levin (1993), Cason (1995), and Isaac and James
(2000)—behavior that could not be explained by risk
aversion. Given how well regret organizes a variety
of data, it should be considered as a promising expla-
nation for bidding behavior.
The effect of regret on bidding in SBFP auctions

has been examined in the laboratory by several differ-
ent researchers. These experiments manipulate feed-
back information, making one or the other type of
regret more or less salient. Regret theory predicts that
average bids should shift down when winner regret
is emphasized or up when loser regret is empha-
sized. In Engelbrecht-Wiggans and Katok (2008) we
report on an experiment in which human bidders
compete against computerized opponents in a large
number of auctions.1 We find that manipulating the
saliency of the winner and the loser regret has the
effect predicted by the theory, and this effect per-
sists over time. Filiz-Ozbay and Ozbay (2007) focus
on bidders’ reaction to anticipated regret and find an
effect for loser regret, but not for winner regret. Their
experiment does not control for potential effects that
may result from interpersonal interactions, such as of
collusion or inequality aversion (for example, those
of Isaac and Walker 1985, Dufwenberg and Gneezy
2002, Ockenfels and Selten 2005, and Neugebauer and
Selten 2006) or address how reaction to regret evolves
over time.
At this point, we have presented two possible

explanations for observed behavior. Risk aversion
fails to explain certain behavior that can be explained

1 The present manuscript reports on a larger data set, and the data
that we analyzed earlier in Engelbrecht-Wiggans and Katok (2008)
is a part of the data set on which we report presently. There are,
however, two additional information conditions that are new to
the present manuscript and have not been previously analyzed
anywhere.

by regret. This, however, does not rule out the pos-
sibility that risk aversion is still a significant part of
the explanation; it does not answer the question of
how important is risk aversion relative to regret in
explaining observed bidding behavior in SBFP auc-
tions.2 This paper directly addresses that question.

Our experimental design has two novel aspects.
First, bidders bid in a large number of auctions—
each bidder makes 100 bidding decisions. This allows
us to determine that the effects of regret persist—
even increase—with experience despite the fact that
reacting to regret hurts the bidder’s expected profit;
this argues against the possibility that bidders actu-
ally want to maximize expected profit and simply
don’t realize—as they may well not in a one-
shot setting—that reacting to regret adversely affects
expected profit. Second, and most importantly, each of
our human bidders bids against computerized rivals
rather than other human bidders, so they are facing
a decision analysis problem. This decision analytic
focus plays three critical roles in our design. (1) It
controls for interpersonal interactions. Other expla-
nations that have been offered for overbidding that
rely on interpersonal interactions, including collusion
(Isaac and Walker 1985), spite (Morgan et al. 2003),
and inequality aversion (Ockenfels and Selten 2005).
By using computerized rivals, we can rule these out
as possible explanations for our experimental results.
(2) It allows us to vary the amount (rather then
the type) of feedback by showing participants how
their bid would fare in several identical independent
auctions. (3) It allows us to vary the payment rule.
Specifically, subjects can be paid based on how their
particular bid fared in one auction, or how it fared, on
average, in many auctions. This allows us to directly
manipulate the amount of risk of the auction.3

By varying the amount of feedback and the pay-
ment rule in addition to varying the type of feedback,
we can cleanly and directly separate the effects of

2 We are not questioning the importance of risk aversion as a con-
cept, as there is plenty of evidence that in many settings risk aver-
sion organizes behavioral data well. We are, however, questioning
whether risk aversion is needed to explain SBFP bidding behavior.
3 See Katok and Salmon (2008) for a laboratory experiment that
measures a similar effect of variance reduction on decisions in a
simpler setting of selecting between pairs of lotteries, and on mea-
suring certainty equivalence.
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regret versus risk aversion. If risk aversion matters,
then bidders should overbid less when their payment
is based on the average outcome of many auctions
rather than just one auction (we show this formally
in the next section). However, the amount (and even
type) of feedback provided should have no effect on
a risk-averse bidder. In contrast, changing the type of
feedback has already been shown to affect regret. We
discover that changing the type of feedback has a sig-
nificant effect, but varying the payment rule does not,
which suggests that regret plays a much larger role in
bidders’ bidding decisions than does risk aversion.

2. The Theory for the Direct Test of
the CRRA Model

Imagine a human subject bidding against computer-
ized opponents in a sealed-bid first price auction. The
human subject has a privately known value v for the
good that is being auctioned and must decide on a
bid b. This bid will be applied to k independent repli-
cations of the auction—v remains fixed but the com-
puterized bids change. The subject is paid the average
of his winnings in the k auctions.
Intuitively, as k increases, the variance in the human

subject’s payoff decreases and a risk-averse bidder’s
best bid decreases. More precisely, a risk-averse bid-
der should bid higher than a risk-neutral bidder when
k = 1. As k increases, the payoff resulting from any
specific bid converges (in distribution) to the expected
payoff from that bid. In the limit as k goes to infin-
ity, there is no uncertainty, and therefore, any bidder
whose utility function increases as payoff increases
should bid the same as a risk-neutral bidder. So,
at least in the limit of infinite k, one might expect
that a risk-averse bidder’s best bid decreases as k
increases.
Arguing that best bids decrease as k goes from 1 to

some finite k >1 is more difficult. Indeed, best bids do
not always decrease as k increases.4 However, we now

4 For example, let u!x"= x for 0≤ x≤ 0#1, and u!x"= 0#1+ 0#85!x−
0#1" for 0#1 ≤ x; this is a piecewise linear function with a slope of
1.0 for small x and a slope of 0.85 for larger x. Imagine that my
value is v = 0#64 and I’m bidding against two opponents whose
bids are independent Uniform(0, 2/3). Then, it is straightforward
to calculate that my best bid is 0.4384 for k= 1, but is 0.44 (putting
(v−b∗)/2 right at the kink) for k= 2; as k increases, so too does my

show that best bids indeed do increase as k increases
for the most commonly assumed forms of risk-averse
utility functions. Specifically, let u!x" denote my util-
ity for $x. Then my expected utility from bidding b in
k independent auctions when my value is v is

U !b$v%k"

=
k∑

i=0

u

(
!v− b"i

k

)
k!

i!!k− i"!F !b"
i!1− F !b""k−1%

where F !b" denotes the probability that all the com-
puterized bids in an auction are at most b.
A necessary condition for a best bid is that

dU/db= 0. So, we examine dU/db for k > 1 and eval-
uate it at the bid that is optimal when k= 1. Assume
that u is a strictly increasing, differentiable function
of x. Also, without loss of generality, assume u!x"= 0.
Then (see Appendix A.1 for an outline of the deriva-
tion) dU !b$v%k"/db may be written as

k−1∑

i=0

{[(
u!x!i+ 1"/k"−u!xi/k"

u!x"

)
k

]
u!x"F ′!b"

−
(
u′!x!i+ 1"/k"

u′!x"

)
u′!x"F !b"

}

× !k− 1"!
i!!!k− 1"− i"!F !b"

i!1− F !b""!k−1"−i%

where x ≡ v− b. Let b∗ denote the best bid for k = 1.
Then, u!x∗"F ′!b∗"− u!x∗"F ′!b∗"= 0, where x∗ ≡ v− b∗,
and dominance arguments imply x∗ ≥ 0. So, for b= b∗

and x = x∗, the ith term of the above sum will have
the same sign as

&!x∗$ i%k" ≡
[
u

(
x∗!i+ 1"

k

)
−u

(
x∗i

k

)]
k
/
u!x∗"

−u′
(
x∗!i+ 1"

k

)/
u′!x∗"#

Note that if this expression is nonpositive for
all i, and is negative for at least one i, then
dU !b$v%k"/db!b=b∗ < 0.
Now consider the specific case of CRRA. In this

case, u!x"= xr for x ≥ 0, with 0< r ≤ 1. It is straight-
forward to verify (see Appendix A.2) that &!x∗$ i%k"=
0 for all x > 0 when i = 0, and &!x∗$ i%k" < 0 when

best bid (for this specific v, and for other v’s that are large enough).
The RNNE bid is !2/3"!0#64"≈ 0#42667.
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i > 0. Therefore, when k > 1, dU !b$v%k"/db!b=b∗ < 0.
In words, a CRRA bidder’s expected utility decreases
as the bidder increases his bid past the amount that
was best when k= 1; roughly speaking, a CRRA bid-
der should bid lower when k > 1 than when k = 1.5

Furthermore, once we have an estimate of the param-
eter r , we can predict by how much bids should
decrease due to CRRA as k increases.

3. Experimental Design and
Research Hypotheses

In our experiments we manipulate two factors: the
first we will call the payment and the second we will
call the feedback. We manipulate the payment in three
different ways and the feedback in four different ways
for the total of 12 treatments. Each treatment included
20 participants, with 240 participants in all. The fac-
tors we manipulate are as follows.

Each bidding decision affects k independent auctions,
and after each decision participants are given feedback for
the k auctions and are paid based on either all k auc-
tions or just one of the k auctions. We have three payment
conditions:
(1) In the k = 1 condition, each bidding decision

affects a single auction; participants are paid for this
auction and observe feedback only from this auction.
(2) In the k = 10 condition, each bidding decision

affects 10 independent Auctions; participants are paid
for the average of the 10 auctions and observe feed-
back for all 10 auctions.6

(3) Because participants in the k= 10 condition see
10 times as many auction outcomes as participants in
the k= 1 condition, we also conducted a set of k= 1∗

treatments in which upon receiving feedback from the
one auction that affects the payment, participants see
a screen with the outcome of nine additional random

5 Similarly, Appendix A.3 shows that if k > 1 and u!x" = 1 − e−ax

with a > 0, then dU !b$v%k"/db!b=b∗ < 0. Therefore, a constant abso-
lute risk-averse (CARA) bidder’s expected utility increases as the
bidder increases his bid past the amount that was best when k= 1;
roughly speaking, a CARA bidder should bid lower when k > 1
than when k= 1. A similar result holds for the quadratic risk-averse
utility function u!x"= ax− x2 with a > 2.
6 The data in this condition are reported in Engelbrecht-Wiggans
and Katok (2008). The data in the other two conditions are new to
the present manuscript.

auctions that do not have any effect on the payment,
but do provide information about the distribution of
the computerized opponents’ bids.

We manipulate the saliency of the two types of regret by
varying the feedback provided after each decision. We either
show the winner the second highest bid or not !winner
regret" and either show the losers the winning bid or not
!loser regret". This manipulation results in four feedback
conditions:
(1) Winner Regret: winners know the second highest

bid (as well as the winning bid, because the winning
bid is their own). Losers receive no feedback informa-
tion except that their bid did not win.
(2) Loser Regret: winners do not know the second

highest bid but losers know the winning bid.
(3) Both Regrets: winners know the second highest

bid and losers know the winning bid.
(4) No Regret: winners do not know the second

highest bid and losers do not know the winning bid.

Each human bidder bids against two computerized
opponents and has the same value v for 20 consec-
utive decisions. Subjects cycle through five different
values (50, 60, 70, 80, and 90) for a total of 100 bid-
ding decisions (affecting a total of 100k auctions) per
session.7 We tell the subjects in the written instruc-
tions that the computerized bidders’ values are inte-
gers uniformly distributed from 1 to 100, and that the
computerized bidders are programmed to bid so as
to maximize their expected profits under the assump-
tion that all of their opponents follow the identical
strategy (see the example instructions in Appendix B).
Consistent with this explanation, we programmed
the computerized bidders to bid 2/3 of their values
(rounded to two decimals), which is the RNNE strat-
egy for three computerized bidders bidding against
each other.8

7 All subjects cycled through the values in the same increasing
order, but different subjects started at different points in the cycle.
8 To keep the information consistent with standard laboratory auc-
tion experiments, we tell our subjects the distribution of the oppo-
nents’ values but not their bids. To avoid leading the subjects in
their bidding decisions, we do not tell the subjects that the com-
puterized bidders’ strategy is to bid 2/3 of their values. To help
subjects better infer the actual distribution of the computerized bid-
ders’ bids, we compute and display to them the actual probabil-
ity their bid wins, which they see prior to finalizing their bidding
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Each bidder participated in only a single treatment.
Each session lasted for approximately 45 minutes,
and the average earnings (including a $5 participa-
tion fee) were $16. All sessions were conducted at
the Laboratory for Economic Management and Auc-
tions at Penn State Smeal College of Business. Partic-
ipants were Penn State students, mostly undergrad-
uates, from a variety of majors, recruited through
a Web-based recruitment system, with earning cash
being the only incentive offered. The auction software
we used was Web based and was built using PHP and
mySQL.
The regret hypothesis we test is as follows (see

Table 2 in §5 for the formal statements of the four
specific predictions of the regret theory):

Hypothesis 1 (Regret). For all payment conditions,
providing information about the winning bid to losers
increases bids, and providing information about the second
highest bid to winners decreases bids.

Our design also provides a direct test of risk aver-
sion as the explanation for overbidding in SBFP auc-
tions because risk aversion implies a shift (lower bids
in k= 10 condition than in k= 1∗ condition), and this
shift should be independent of feedback information.
The risk aversion hypothesis we test is as follows (for-
mal statements in Table 2 in §5).

Hypothesis 2 (Constant Relative Risk Aver-
sion). For all feedback information conditions, average
bids will be lower in the k = 10 treatments than in the
k= 1∗ treatments.

The third hypothesis has to do with the effect of the
amount of information. The critical point to note is
that the four regret feedback information conditions
provide (by design) different amounts of information
to winners and losers. To see this, note that in the
Winner Regret condition participants learn new infor-
mation when they win (the second highest bid) but
not when they lose. When a single decision results
in feedback for 10 auctions, the probability that any

decisions. If human subjects do not infer the probability of winning
correctly on their own (see Dorsey and Razzolini 2003), providing
this information helps stimulate learning as well as allow them to
infer the true distribution of the computerized bids. Having this
information in all 12 treatments ensures that it cannot account for
any of the treatment effects.

given bid provides winner information for at least one
auction is much higher than when a single decision
results in feedback for a single auction. Therefore, it
is possible that at least in some of the feedback con-
ditions in the k= 1 payment treatments subjects may
bid higher to improve their chances of winning and to
acquire additional information only available to win-
ners (for example, the amount of the winning bid).
We test for this as follows:

Hypothesis 3 (Information). For all feedback infor-
mation conditions, average bids will be lower in the k= 1∗

treatments than in the k= 1 treatments.

4. CRRA Predictions
Another test for the effect of risk aversion is to com-
pare the actual bidding behavior in the k= 10 condi-
tion with that implied by the CRRA model. To make
this test requires a prediction of what the k= 10 bids
would be if bidders were affected by CRRA. Calcu-
lating this prediction for k = 10 involves two steps:
(1) using the k = 1∗ data to estimate the distribution
of the CRRA parameter r in the subject pool under
the assumption that subjects are maximizing CRRA
utility, and then (2) using this distribution to simulate
the utility-maximizing bids for a players with those
CRRA utility functions. We elaborate on each in turn.
In our experiment, the subject competes against

n − 1 computerized bidders who bid uniformly on
'0%66#67(. The best response for the CRRA bidder who
has a value v and a CRRA parameter of r is to bid

b=min
{
v

n− 1
n− 1+ r

%66#67
}
% (1)

where b is the optimal bid, v is value, and r is the true
CRRA parameter. This is similar to other researchers’
models in that it predicts bids being proportional to
value for all small enough bids.
The standard method for estimating rs is first to fit

a regression model for each subject:

bt = )+*vt + errort% (2)

where bt and vt are the observed bid and the value
in auction t. Because the prediction that bids are pro-
portion to value applies only to small enough bids, it
is common practice (Kagel 1995) to use only data for
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which the observed bids fall below the highest possi-
ble bid of a risk-neutral bidder (in our case, 66.67) and
exclude data from subjects whose ) estimate is sig-
nificantly different from 0. The resulting * is an esti-
mate of !n− 1"/!n− 1+ r". Setting this estimate equal
to !n− 1"/!n− 1+ r" and solving for r provides the
estimate of r .
We departed from the above-described procedure

in how we estimated !n− 1"/!n− 1+ r". Instead of
using the * obtained from the linear regression, to we
used the average b/v ≡ !

∑
t bt/vt"/T for each subject

(where T is the number of decisions by the subject).
We believe that this method provides a better esti-

mate than the regression. Specifically, we question the
assumption, implicit in the linear regression, that the
errors are i.i.d. normal with mean zero and variance
independent of v; without this assumption, there is
no assurance that * will be an unbiased estimate of
!n− 1"/!n− 1+ r". For b/v to be an unbiased estimate
of !n− 1"/!n− 1+ r", we only need to assume that
errors have the mean of zero. We actually used all 100
samples for each subject in computing the estimates,
and we verified that censoring samples that are at or
above 66 makes virtually no difference to any of our
conclusions.9

Given an estimate for the parameter r of a sub-
ject’s CRRA, we then compute the utility-maximizing
bid for a player with that CRRA utility function.10

Specifically, for each value v of 50, 60, 70, 80, and 90,
we (numerically) calculate the expected utility for the
k= 10 condition for each possible bid from 1 to 100
and select the bid that would maximize the expected
utility. Then, we calculate the average b/v ratio for
each r (i.e., for each treatment). Finally, the figures
reported in the last row of Table 1 are averages of the
(CRRA estimated best bid)/(value) for 20 subjects.

9 Using regression model (2) and * to estimate !n− 1"/!n− 1+ r"

actually noticeably lowers estimated optimal bids, further strength-
ening our conclusions; but as we explained above, we do not think
this is a good method.
10 We do not attempt to estimate the standard error of the risk aver-
sion parameter, and in that our approach is simplistic. Although
there may be more sophisticated methods for estimating distribu-
tions of the risk aversion parameter, most are not without their own
problems and they are beyond the scope of our paper. We thank
an anonymous referee for pointing this out and acknowledge that
this as a limitation.

Table 1 Averages and Standard Deviations (in Parentheses) of b/v for
the 12 Treatments, and the CRRA Prediction for the k = 10
Condition Based on the k = 1∗ Data

Feedback

Both Regrets Loser Regret No Regret Winner Regret
Payment (both) (LR) (none) (WR)

k = 1 0!7039 0!7603 0!764 0!7375
"0!0385# "0!0813# "0!0925# "0!0122#

k = 1∗ 0!7183 0!7578 0!7268 0!6751
"0!0634# "0!0604# "0!0331# "0!0601#

k = 10 0!7261 0!7660 0!7154 0!6973
"0!0529# "0!048# "0!0687# "0!0652#

k = 10 CRRA 0!6988 0!7228 0!7021 0!6721
prediction "0!0368# "0!0386# "0!0197# "0!0161#

5. Results
On average, subjects earned $10.76 in the k = 1 con-
dition, $11.06 in the k = 1∗ conditions, and $11.41 in
the k= 10 condition. The expected profit-maximizing
strategy for a subject bidding against our comput-
erized bidders is for the subject to bid 2/3 of her
value. Given the value draws in our experiments, the
average expected profits of the human bidders from
always following this strategy were $13.67 in the k= 1
and k = 1∗ conditions and $12.83 in the k = 10 con-
ditions (we kept the value draws constant between
treatments in the same payment condition and in the
k= 1 and k= 1∗ conditions). Thus, the subjects earned
27% less in the k = 1 and k = 1∗ conditions and 12%
less in the k = 10 condition then they could have
done had they played the best reply to uniformly dis-
tributed bids.
Table 1 shows the averages and standard devia-

tions (in parentheses) of bid/value (b/v" for the 12
treatments, as well as the CRRA predictions discussed
in §4.
Table 2 summarizes statistical tests for the three

hypotheses. The p-values are from the Wilcoxon test,
and p-values below 0.05 are in bold.

5.1. Regret Hypotheses
We generally find support for both regret hypothe-
ses. One part of the regret hypothesis is that bids in
the Loser Regret feedback condition are higher than
in the No Regret feedback condition. We find support
for this hypothesis in the k = 1∗ and k = 10 payment
conditions, but not in the k = 1 payment condition.



Engelbrecht-Wiggans and Katok: A Direct Test of Risk Aversion and Regret in First Price Sealed-Bid Auctions
Decision Analysis 6(2), pp. 75–86, © 2009 INFORMS 81

Table 2 Hypotheses Testing

Hypotheses statement k = 1 k = 1∗ k = 10

Winner Regret Ho: Both≥ LR 0!004 0!021 0!000
Ha: Both< LR
Ho: WR≥ None 0!027 0!003 0!212
Ha: WR< None

Loser Regret Ho: Both≤WR 0!999 0!013 0!038
Ha: Both>WR
Ho: LR≤ None 0!656 0!021 0!011
Ha: LR> None

Both Loser No Winner
Hypotheses statement Regrets Regret Regret Regret

Risk aversion: Ho: "k = 1∗#≤ "k = 10# 0!831 0!841 0!127 0!788
Shift Ha: "k = 1∗#> "k = 10#

Risk aversion: Ho: "k = 10#= CRRA 0!033 0!002 0!204 0!032
Prediction Ha: "k = 10# *= CRRA
Information Ho: "k = 1∗#≥ "k = 1# 0!940 0!399 0!014 0!001

Ha: "k = 1∗#< "k = 1#

Notes. The p-values are from the Wilcoxon test. p-values below 0.05 are in
bold. Ho, null hypothesis; Ha, alternative hypothesis; LR, Loser Regret; WR,
Winner Regret.

We also find support (in the k = 1∗ and k = 10 con-
ditions) for our second hypothesis dealing with loser
regret: bids in the Both Regrets feedback condition are
higher than in the Winner Regret feedback condition
in those two payment conditions, but not in the k= 1
payment condition.
One part of the winner regret hypothesis is that

bids in the Winner Regret feedback condition are
lower than in the No Regret feedback condition.
Based on data aggregated over all 100 decisions, we
do find support for this hypothesis in our k = 1 and
k= 1∗ payment conditions, but not in our k= 10 pay-
ment condition (although the direction of the shift
is consistent with winner regret even there, and, as
subsequent analysis will show, the effect becomes sig-
nificant toward the end of the session). Additionally,
we find support in all three payment conditions for
our second winner regret hypothesis, that bids in the
Both Regrets feedback condition are lower than in the
Loser Regret feedback condition.11

11 The regret model also makes a prediction about a direct compari-
son between the Loser Regret and the Winner Regret treatments: Ho:
LR≤WR; Ha: LR>WR. This comparison is also consistent with the
regret model in all three payment conditions: Wilcoxon test p-values
are 0.0739 for k= 1, 0.0001 for k= 1∗, and 0.0006 for k= 10.

Does regret persist with experience? Our experi-
mental design gives us the ability to answer this ques-
tion. For each of the four regret hypotheses in Table 2,
regret implies that the b/v ratio in one feedback con-
dition is strictly smaller than in another feedback con-
dition. To analyze the regret effect over time, we first
computed the average of the b/v ratios across all sub-
jects in each decision period, separately for each treat-
ment. We then calculated the difference between the
larger and the smaller b/v ratio, as implied by the cor-
responding alternative hypothesis in Table 2, for each
of the four hypotheses in each of the 100 decision peri-
ods. And finally, for each of the four hypotheses in
Table 2, we estimated the following linear regression
model:

(
blarger

v

)

t

−
(
bsmaller

v

)

t

= *0 +*t × t+ +t# (3)

We are interested in the estimated *0s because these
estimates tell us the magnitude of the regret effect at
the beginning of the session (a measure of anticipated
regret, if you will). We can also estimate the magni-
tude of the regret effect at the end of the session by
fitting !blarger/v"t − !bsmaller/v"t = *100 +*!100−t" × !100−
t"++t . Of course *!100−t" =−*t , but *100s provide esti-
mates of the regret effect at the end of the 100-decision
session. In Figure 1, we plot !blarger/v"t − !bsmaller/v"t
(on the y-axis) over time (on the x-axis) for all four
regret hypotheses stated in Table 2, and also report
corresponding estimates of *0, *100, and *t .

We conclude that generally the magnitude of the
regret effect persists with experience. In all nine
instances (highlighted in bold in the top panel of
Table 2) in which the data are consistent with the
regret model, on aggregate, it continues to be con-
sistent, both at the beginning of the sessions and at
the end of the sessions. Additionally, the one Win-
ner Regret (Ho: WR ≥ None) comparison in the k =
10 payment condition, that was in the direction con-
sistent with the regret hypothesis but not statistically
significant using aggregate data, becomes consistent
with the regret model in later periods. The two Loser
Regret comparisons that were not consistent with the
regret model based on aggregate data in the k= 1 con-
dition are not consistent with it both at the beginning
and at the end of the session (these two treatments
will be the subject of the discussion in §5.3, about the
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Figure 1 Magnitude of the Regret Effect over Time
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Notes. Panel (a) k = 1: $0 = 0!047∗∗, $100 = 0!066∗∗, $t = 0!0002∗; k = 10: $0 = 0!014∗∗, $100 = 0!065∗, $t = 0!0005∗∗; k = 1∗: $0 = 0!042∗, $100 = 0!037∗,
$t = −0!0002∗∗. Panel (b) k = 1: $0 = 0!023∗∗, $100 = 0!030∗∗, $t = 0!0001; k = 10: $0 = −0!020∗∗, $100 = 0!057∗∗, $t = 0!0008∗∗; k = 1∗: $0 = 0!027∗∗,
$100 = 0!076∗∗, $t = 0!0005∗∗. Panel (c) k = 1: $0 = −0!021∗∗, $100 = −0!046∗∗, $t = −0!0002∗; k = 10: $0 = 0!030∗∗, $100 = 0!028∗, $t = −0!0001∗∗;
k = 1∗: $0 = 0!012∗∗, $100 = 0!075∗∗, $t = 0!0006∗∗. Panel (d) k = 1: $0 = 0!003, $100 = −0!010∗, $t = −0!0001; k = 10: $0 = 0!064∗∗, $100 = 0!037∗∗,
$t =−0!0003∗∗; k = 1∗: $0 = 0!027∗∗, $100 = 0!035∗∗, $t = 0!0001∗∗.

role of information). The estimates of the slope coeffi-
cients *t are positive in seven of the 12 comparisons,
negative in four, and not significantly different from 0
in two. Such distribution is no different from random
(sign test p-value = 0#54). Thus, there is no evidence
that the regret effect disappears with experience.

5.2. Risk Aversion
We find virtually no support for CRRA. In all four
feedback conditions we cannot reject the null hypoth-
esis that average bids in the k= 1∗ payment condition
are equal to the average bids in the k = 10 payment
condition. In three of the four feedback conditions,
average bids when k= 10 are higher than when k= 1∗

(not statistically significantly so), which is the oppo-
site of the risk aversion prediction. Additionally, we
compare the k= 1∗ and k= 10 bids using an aggregate

matched-pair t-test treating the average b/v in each of
the four information conditions as a single observa-
tion, and the p-value of this test is 0.4032. We can also
reject, in three of the four feedback conditions, the
null hypothesis that the average k= 10 bids are equal
to the CRRA prediction.12 Again, the only feedback
condition in which the data are consistent with risk
aversion is the No Regret condition. Additionally, we
compare the k= 10 data and CRRA prediction for k=
10 based on k= 1∗ data using an aggregate matched-
pair t-test treating the average b/v in each of the four

12 The standard errors in our CRRA prediction assume that the risk
aversion coefficient r is estimated without an error, thus the CRRA
standard errors in Table 2 may be lower than they should be and
the actual p-values may be higher than reported in Table 2.
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information conditions as a single observation, and
the p-value of this test is 0.0213.

5.3. Information
Our findings about the information hypothesis are
more nuanced. We find support for the information
hypothesis in feedback conditions in which the losers
do not see the winning bid (No Regret and Win-
ner Regret) but not in the feedback conditions in
which losers do see the winning bid (Both Regrets and
Loser Regret). This result indicates that the feedback
conditions in which the selling price is not revealed
to losers are especially challenging for subjects to
contend with in our settings; one critical piece of
information subjects need to learn is the distribution
of the bids of the computerized rivals—what is the
highest the computerized rivals ever bid? No infor-
mation about the computerized rivals’ bids is ever
reported directly in the No Regret condition; winners
can infer that their own bid is an upper bound on
the rivals’ bids, but losers can’t even do that. In the
Winner Regret condition, winners are told the high-
est rival bid, but losers are not. In both conditions,
the only way to collect information about how com-
puterized rivals bid is by observing winning auctions;
losing auctions provide no information at all. In the
k= 1∗ treatments, each decision results in being able
to observe 10 auctions, and each decision is 10 times
as likely to produce at least one win than is the
k = 1 treatment. Therefore, it is possible that in the
No Regret and Winner Regret conditions, bidders bid
higher in the k= 1 treatments to win auctions, which
is the only way to obtain some information about how
high the computerized bidders bid, and the decrease
in average bids in the k= 1∗ treatments is due to the
fact that, in that setting, lower bids are more likely
to generate at least some winning auctions. Conse-
quently, the lower average bids in the k= 1∗ condition
than in the k= 1 condition in the No Regret and Win-
ner Regret treatments may be due to this desire to
learn about the computerized rivals.
The above explanation does account for our failure

to find evidence for the loser regret hypotheses in the
k = 1 payment condition. The alternative hypotheses
state that the average Winner Regret bids (the first)
and the average No Regret bids (the second) should
be lower than average bids in corresponding treat-
ments with the winning price revealed. If bidders bid

high in the Winner Regret and No Regret treatments
to win auctions and learn about the distribution of the
rivals’ bids, that would explain the lack of a shift pre-
dicted by the regret model. The regret effect pushes
bids down, but the desire to acquire additional infor-
mation from winning auctions pushes the bids back
up. The fact that average bids in the k= 1∗ treatments
are lower is consistent with the above logic.

6. Summary
We investigate causes for bidding above the risk-
neutral Nash equilibrium in sealed-bid first price auc-
tions with independently known private values, and
present experimental evidence to evaluate two expla-
nations: the long-standing risk aversion explanation
and the regret explanation. To provide a direct test
of the CRRA model, we consider applying a bidder’s
bid to k independent, stochastically identical auctions
and then paying the bidder the average outcome. To
keep the amount of feedback information constant for
the k = 1 and k = 10 payment conditions, we show
bidders in the k = 1 payment condition outcomes of
10 auctions, but pay them only for one. We call this
condition k = 1∗. We show that the best bid of a
CRRA bidder should decrease as k increases. Indeed,
by using the bidding data from the k = 1∗ case, we
can predict how much the bids should decrease. We
find virtually no support for the risk aversion model.
In most cases, bids in the k= 10 condition are slightly
higher than bids in the k= 1∗ condition, and are sig-
nificantly higher than the CRRA prediction.
We do, however, find overwhelming support for the

regret model. Of the 12 predictions the regret model
makes for our data, nine at the beginning of the ses-
sion and 10 by the end of the session result in a sta-
tistically significant shift that is consistent with the
model. Only two of the 12 comparisons are inconsis-
tent with the regret model. Our findings about the
information hypothesis provide an explanation for
these deviations.
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Appendix A

A.1. Details in Deriving dU !b$v%k"/db:

dU !b$v%k"

db
= d

db

k∑

i=0
u

(
!v− b"i

k

)
k!

i!!k− i"! F !b"
i!1− F !b""k−1#

Differentiating inside the summation, defining x ≡ v − b,
rearranging and dropping terms that are equal to zero,
redefining the index so that each sum starts at i = 0, com-
bining the three sums, and, finally, inserting a factor of
u!x"/u!x" in the first term and a factor of u!x"/u!x" into the
second term gives the expression presented in this paper.

A.2. Details for the Case of CRRA
Under CRRA, u!x"= xr where 0< r ≤ 1, and note that
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which is zero when i = 0, and negative for all i > 0. So, if
k > 1, then dU !b$v%k"/db!b=b∗ < 0.

A.3. Details for the Case of CARA
In this case, without loss of generality, u!x" = 1− e−x and
u′!x"= e−x. Therefore,

&!x∗$ i%k"

≡
[
u

(
x∗!i+ 1"

k

)
−u

(
x∗i

k

)]
k
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if y ≡ e−x∗/k (where x∗ > 0 implies that 0<y < 1)

= yi−k

1− yk
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[
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+ !yk−1 − y2"+ · · ·+ !yk−1 − yk−1"
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%

which is negative whenever k > 1. Therefore, if k > 1, then
dU !b$v%k"/db!b=b∗ < 0.

Appendix B
Instructions for the Both Regrets treatment in the k= 10 con-
dition are shown below. In the other treatments, references
to the corresponding feedback information and/or k = 10
auctions were removed.

B.1. Overview
You are about to participate in an experiment in the eco-
nomics of decision making. If you follow these instructions
carefully and make good decisions, you will earn a consid-
erable amount of money that will be paid to you in cash at
the end of the session. If you have a question at any time,
please raise your hand and the monitor will answer it. We
ask that you not talk with one another for the duration of
the experiment.

In each round of today’s session you will be competing
with two other bidders to purchase a unit of a fictitious
asset. You will be bidding in an auction against two com-
puterized competitors. The computerized competitors have
been programmed to bid in a way that would maximize
their expected earnings when they bid against likewise pro-
grammed competitors. You will make a total of 100 bidding
decisions.

On your desks you should have a checkout form, a pen,
and two copies of the consent form.

B.2. How You Make Money
In the beginning of each bidding decision you will learn
your resale value for a fictitious asset. The resale values
for your two computerized opponents have already been
predetermined for all auctions in today’s session, and they
are integers from 1 to 100, with each integer being equally
likely. Their resale values in one round have no correlation
with their resale values in any other round or with the resale
values of any of the other bidders (in other words, all resale
values have been drawn independently). The bids of the
computerized bidders have also been determined, and they
cannot be affected by your decisions today.

Your own value for the asset will be 90 in 20 bidding deci-
sions, 80 in 20 bidding decisions, 70 in 20 bidding decisions,
60 in 20 bidding decisions, and 50 in 20 bidding decisions.
You will have the same value in 20 consecutive bidding
decisions and then the value will change (and will then
stay at this new value for the next 20 consecutive auctions,
etc.). The order of your resale values has been determined
randomly.

You make one bidding decision for a block of 10 consecu-
tive auctions. In each of those 10 auctions, your competitors
will have different values and place different bids, whereas
your own bid and value will remain the same.

You make money by winning the auction at a favorable
price. If you win an auction at a price that is below your
resale value, then your profit is

Your resale value−Auction price#
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For example, if your resale value is 60 and you win the auc-
tion at a price of 45, then your profit in this auction is 60−
45= 15. Note that if you win the auction at an unfavorable
price (at a price that is above your resale value), you will lose
money. Because you will know your resale value prior to
bidding, you can avoid the possibility of losing any money
in an auction by not bidding at unfavorable prices. If you do
not win the auction, your profit for the round is 0.

B.3. The Mechanics of the Auction
You bid in the auction by clicking the “Bid” button and
then typing your bid into a box on your screen. On the
next screen you will see a message asking you to confirm
your bid. The confirmation screen also displays the follow-
ing information:

• Your value: this is a reminder of your value from the
previous screen;

• Your bid: this is the bid you have just entered;
• Your profit if your bid wins: this is always your value

minus your bid;
• Profit if you lose: 0;
• Your probability of winning: this is the percentage of

times the bid you just entered would win in this auction
(note that this information is helpful in deciding on the bid
amount);

• Your expected profit: this would be your average profit
if you made this same bid in this same auction situation
many times. (Mathematically, it is your profit if your bid
wins multiplied by your probability of winning.)

If you wish to confirm your bid, click the “Confirm” but-
ton, and if you wish to change your bid, click the “Cancel”
button. You can change your bid as many times as you
wish. Your bid will be entered after you have clicked the
“Confirm” button.

Your two computerized opponents have been pro-
grammed to bid in the beginning of each round, before you
have entered your bid. Please note that just as you are not
aware of the bid amounts your computerized opponents
have placed, neither are they aware of your bid amount at
the time their bids are placed.

The bidder who places the highest bid wins the auction
and pays the amount they bid. The winner earns resale
value minus purchase price. The other two bidders who did
not win the auction earn zero.

Example 1. Suppose your resale value is 80, and you
place the bid of 65. On the confirmation screen you will see
the following information:

Your bid: 65;
Expected profit if you win: 15;
Profit if you lose: 0;
Winning probability: 0.95 (Note: this means that 95% of
the time a bid of 65 will win);
Expected Profit: 14.25 (Note: 0#95× 15= 14#25).
Suppose the two bids your computerized opponents

placed are 47 and 51. In this case, because your bid of 65

is higher than the other two bids, you win the auction and
earn 80− 65= 15. The two computerized bidders earn 0.

Now suppose that, instead, the two bids placed by the
computerized bidders were 47 and 66. In this case, the bid-
der who bid 66 wins the auction and pays 66. You do not
win the auction, and earn 0.

B.4. Summary Information You Will See at the End of
Each Auction

After each bidding decision (at the end of each block of 10
auctions, after you have confirmed your own bid) you will
see the following information:

• Your own resale value;
• Your own bid amount.

For each of the 10 auctions:
• The selling price;
• The second highest bid amount;
• Your profit and whether or not you won.

In addition, in each of the 10 auctions, the computer will
calculate and display the following for you:

• Money left on the table, which is always 0 if you do
NOT win the auction, and is your bid minus the second
highest bid when you do win the auction;

• Missed opportunity to win, which is always 0 when
you DO win as well as when your resale value is below the
highest bid amount the auction, and otherwise it is your
resale value minus winning bid amount.

You will also see the average selling price, the average
second highest bid, the number of times you won, the total
profit, the total money left on the table, and the total missed
opportunities to win for ALL 10 auctions.

B.5. How the Session Will Progress
The session will include 1,000 auctions in blocks of 10. You
will make 100 bidding decisions, and each decision will be
used in 10 consecutive auctions. You will have the same
resale value for each 20 consecutive decisions (200 consec-
utive auctions).

Your earnings from all auctions will contribute to your
total earnings from the session. Remember that you will be
bidding against two computerized competitors in all 1,000
auctions, and the resale values of your competitors will
be integers from 1 to 100, each integer equally likely. The
resale values of your competitors will change in each auc-
tion (even when your own resale value stays the same).

B.6. How You Will Be Paid
At the end of the session, the computer will calculate the
total profit you earned in all auctions and will convert it to
U.S. dollars at the rate of 1 cent per 10 tokens. Your dollar
earnings will be added to your $5 participation fee and dis-
played on your computer screen. Please use this informa-
tion to fill out the check-out form on your desk. All earnings
will be paid in cash at the end of the session.

If you have any questions, please raise your hand and
ask the monitor. If you understand these instructions and
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wish to continue to participate in this study, please sign one
of the two copies of the consent forms on your desk and
give it to the monitor before you start the session.
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