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When bidders incur a cost to learn their valuations, bidder entry can impact auction performance. Two
common selling mechanisms in this environment are an English auction and a sequential bidding process.

Theoretically, sellers should prefer the auction, because it generates higher expected revenues, whereas bidders
should prefer the sequential mechanism, because it generates higher expected bidder profits. We compare the
two mechanisms in a controlled laboratory environment, varying the entry cost, and find that, contrary to the
theoretical predictions, average seller revenues tend to be higher under the sequential mechanism, whereas
average bidder profits are approximately the same. We identify three systematic behavioral deviations from the
theoretical model: (1) in the auction, bidders do not enter 100% of the time; (2) in the sequential mechanism,
bidders do not set preemptive bids according to the predicted threshold strategy; and (3) subsequent bidders
tend to overenter in response to preemptive bids by first bidders. We develop a model of noisy bidder-entry
costs that is consistent with these behaviors, and we show that our model organizes the experimental data well.

Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2013.1800.
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1. Introduction
In this study we analyze a setting in which an asset
or a contract is up for bid, and potential bidders must
incur a cost prior to bidding to learn their valua-
tions. This setting is used in a number of contexts.
For instance, in procurement activities, suppliers must
commit significant resources to estimate the value of
a contract up for bid. In mergers and acquisitions,
one firm must incur the due diligence cost to research
the value of the other company. Similarly, in resi-
dential home sales, the buyer must visit the house,
conduct a home inspection, and research the neigh-
borhood to estimate the value of the property. Two of
the more common mechanisms used by the bid taker
in these (and many other) scenarios are an auction or
a sequential mechanism (Bulow and Klemperer 2009).

Past empirical work suggests that bidders and sell-
ers may differ in terms of how they view auctions.
For example, Warren Buffet, when describing the
Berkshire Hathaway acquisition criteria in his 2008

annual report writes, “We don’t participate in auc-
tions” (Berkshire Hathaway 2009). In a recent poll
of private equity firms, 90% said that as bidders,
they prefer to avoid auctions, but 80% of those same
companies said that as sellers, they prefer auctions
(Stephenson et al. 2006). Auctions appear to be one
of the primary institutions preferred by sellers, but
there is also evidence of sellers utilizing sequential
mechanisms. Often referred to as “go-shop” insti-
tutions in corporate sales, these sequential mecha-
nisms state that after a seller receives a bid from
one firm, they are permitted to shop around for
bids from other companies, to which the original
firm may respond (Denton 2008). Subramanian (2008)
finds that shareholder returns in mergers and acqui-
sitions are 5% higher when companies are acquired
through sequential mechanisms and argues that they
are preferable for both buyers and sellers.

Auctions and sequential mechanisms have been
well studied in the theoretical literature. Bulow and
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Klemperer (2009) (see also Fishman 1988) develop a
model that predicts that sellers should prefer auctions
and bidders should prefer sequential mechanisms,
because auctions are revenue maximizing for sellers,
and sequential mechanisms result in higher bidder
profits. Despite the attention these mechanisms have
gained in the theoretical literature and their use in
practice, no work has explored them from an experi-
mental standpoint. In this study, we investigate how
a standard English auction and sequential mechanism
compare to theoretical predictions and each other in
a controlled laboratory setting.

We adapt a simple version of the Bulow and
Klemperer (2009) model, in which a single item is up
for bid, and two potential bidders must incur entry
costs prior to learning their valuations. The two mech-
anisms we compare are an auction, in which the two
bidders must make entry decisions simultaneously,
and a Bulow and Klemperer (2009) sequential mech-
anism, in which the bidders make entry decisions
sequentially, and the first bidder has an opportunity
to signal her valuation by placing a preemptive jump
bid. We test the predictions of the model in the con-
trolled laboratory setting under two different cost of
entry treatments. In the Lowcost treatment, the cost
of entry is low, so the expected differences in seller
revenue and bidder profits are more modest than in
the Highcost treatment, where the relatively high cost
of entry makes it easy for a first bidder to deter entry
by a second bidder, thus substantially lowering seller
revenue in the sequential mechanism.

The objective of this study is to examine, using the
controlled setting of an economics laboratory, how
the two mechanisms compare to each other in terms
of revenue and profits, and whether bidder behav-
ior is similar to theoretical predictions of the Bulow
and Klemperer (2009) model, which predicts that an
English auction generates higher seller revenues and
the sequential mechanism generates higher bidder
profits. There are a number of reasons why this the-
oretical result may not translate into practice. Past
experimental work has shown that when bidders in
auctions make bidding decisions without knowing
their bidding status, behavior frequently does not
conform to standard game-theoretic predictions (for
a survey of laboratory auction research, see Kagel
1995). Bidders in sealed-bid first-price auctions tend
to bid more aggressively than they should, whereas
bidders in English auctions quickly learn to follow the
weakly dominant strategy. In our study, both bidders’
entry decisions, as well as the first bidder’s preemp-
tive bid decision in the sequential mechanism have
the “sealed-bid” flavor to them because bidders do
not know their winning status, which would result
from their decisions.

Similarly, the sequential mechanism model incorpo-
rates signaling behavior that assumes bidders are per-
fect optimizers who can make complex inferences and
calculations related to entry decisions and preemptive
bidding behavior. Issues of bounded rationality by
bidders are likely to affect their behavior and, ulti-
mately, the normative predictions of revenue and
profits for the two mechanisms (for summaries of
bounded rationality models, see Simon 1984 and
Conlisk 1996). By comparing the performance of the
auction and the sequential mechanism in a controlled
setting of a laboratory, with well-defined rules that
match the Bulow and Klemperer (2009) model, we
can test whether this model is a good predictor of
actual behavior. Previous experimental work, and the
relative complexity of the environment we study,
suggests that some deviations from theory is to be
expected. The objectives of this study are to (1) ascer-
tain whether these deviations are sufficient to reverse
the normative predictions of the theory that a seller
should prefer an auction whereas a bidder should
prefer a sequential mechanism, and (2) develop a new
model to explain the observed behavior.

Our main finding is that the preference of the two
mechanisms for bidders and sellers is different from
the theoretical prediction. In both cost treatments, we
find that the sequential mechanism actually results in
slightly higher seller revenues than does the auction,
whereas average bidder profits are similar. Therefore,
our laboratory results indicate that it may well be that
sellers should prefer sequential mechanisms over auc-
tions, whereas bidders should be indifferent between
the two. We find that the differences between our
data and theoretical predictions result primarily from
three behavioral phenomena, which we incorporate
into a new behavioral model. First, in the auction,
bidders do not enter 100% of the time, as the stan-
dard theory predicts, thus driving its revenue below
that of normative benchmarks. Second, in the sequen-
tial mechanism, the first bidders set positive preemp-
tive bids different from the standard theory. Third,
the second bidders enter the sequential mechanism
auctions more often than they should. This second-
bidder overentry, in particular, drives the revenues in
the sequential mechanism to be significantly higher
than they should be in theory.

Our main contribution is an alternative model of
bidder behavior that better organizes our data. We
show that if individual bidders derive some (ran-
dom) benefit or cost from entering auctions,1 we can

1 The benefit could come from a variety of sources, such as the
joy of competing, or to overestimating the probability of winning
the auction, to name a few possible sources. We do not specifi-
cally model the source of the cost or benefit. Rather, our intent
is to demonstrate that such factors might have a dramatic impact
on both individual behavior and aggregate performance of the
mechanism.
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generate predictions that are largely consistent with
what we observe in the laboratory. We use structural
modeling to estimate this model and illustrate that it
predicts behavior better than the standard theory.

Besides the models of Bulow and Klemperer (2009)
and Fishman (1988), which our experimental environ-
ment is specifically designed to match, the work of
Roberts and Sweeting (2013) is most closely related
to ours. They develop a model in which bidders may
have noisy estimates of their valuations prior to enter-
ing the auction. They show that this addition may
also change the predictions of the standard theory,
and then estimate the model from U.S. Forest Service
timber auctions data. In many ways, our concurrently
developed models and empirical studies are comple-
mentary in that they evaluate the performance of auc-
tions and sequential mechanisms directly, and also
demonstrate the fragility of the Bulow and Klemperer
(2009) results to many small but realistic changes to
the model.

Other related studies include Bernhardt and
Scoones (1993), who present a specific application of
a sequential mechanism to wage offers. Arnold and
Lippman (1995) compare an auction to a sequential
process with information asymmetries, discounting,
and costly search by sellers. Hirshleifer and Png (1989)
also theoretically study a sequential bargaining pro-
cess with two bidders; however, they assume that bid-
ding itself is costly. In their setting, the sequential
mechanism can generate higher revenue compared to
an auction. A concept related to the preemptive bid-
ding in the sequential mechanism is the notion of jump
bidding in an English auction (a bidder places a bid
greater than the minimum required increment). Avery
(1998) models how bidders can use jump bidding to
signal in ascending auctions, with the goal of keeping
other bidders out of the auction, and as a result earn
higher profits, thus differentiating the revenue results
of an English auction from a sealed-bid auction.

In addition to these theoretical papers on jump bid-
ding, there is an empirical literature on jump bidding
in ascending auctions documenting that jump bid-
ding is commonly observed in practice. Isaac et al.
(2007) examine 41 spectrum auctions conducted by
the Federal Communications Commission and find
that sometimes as many as 40% of the bids are
jump bids. Easley and Tenorio (2004) use data from
236 Internet auctions and find that jump bidding
is observed in over a third of their sample. Kwas-
nica and Katok (2007) observe that jump bidding in
ascending auctions emerges as a way to decrease
the auction duration in a treatment in which bidders
have incentives to complete more auctions. However,
Kwasnica and Katok (2007) do not find evidence that
jump bidding is used for signaling.

In the next section, we describe our experimental
design along with standard theoretical predictions for
both the auction and the sequential mechanism. In §3,
we present the results of all the treatments in our
experiment. In §4, we present an alternative model
that builds on the standard theory and show that it
better describes our data using structural modeling
techniques to estimate parameters. In §5, we conclude
our investigation with a summary and comment on
future research.

2. Experimental Design
In all treatments, two bidders compete to purchase
a single indivisible object. We used two bidders to
create the simplest possible environment in which
the theory applies, thus giving the theory the best
chance to be correct. Each subject in every treatment
was randomly assigned the role of either a first or
second bidder. In each round, a first and second bid-
der were randomly matched together.2 In the auc-
tion treatments, each round began with both bidders
making their entry decisions privately and simultane-
ously. If both bidders entered the auction, they were
then shown their own private values, and proceeded
to compete for the item via an ascending clock auc-
tion in which the initial price was 0. The bidder who
dropped out of the auction first lost the auction, and
this drop-out price established the winning bid for the
other bidder.

In the sequential mechanism (Seqmech) treatments,
each round began with the first bidder of each pair
deciding whether or not to enter, and, if she chose to
enter, setting an initial preemptive bid for the auction.
After the first bidder made these decisions, the sec-
ond bidder then made her entry decision after observ-
ing the first bidder’s preemptive bid. If both bidders
entered the auction, then they competed for the item
in an ascending clock auction in which the initial
price corresponded to the first bidder’s preemptive
bid. (Sample instructions are available upon request.)

The private values for all bidders were integer val-
ues, uniformly distributed from 1 to 100, independent
and identically distributed, in each round of all treat-
ments. Each subject participated in a single treatment
only, and each treatment included 30 rounds. To elim-
inate the possibility of losses, we provided each sub-
ject with an initial endowment of 20 laboratory dollars
per round in all four treatments in our study.

In both the auction and sequential mechanism, we
ran one set of treatments with an entry cost of 3
(c = 3), which we refer to as Lowcost. In a second
set of treatments, we set the entry cost to 10 (c = 10),

2 We called the two bidders “bidder A” and “bidder B” in the exper-
iment to avoid any framing effects.
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Table 1 Experimental Design and Number of
Participating Cohorts

Treatment Auction Seqmech Total

Lowcost 10 10 20
Highcost 10 10 20
Total 20 20 40

which we refer to as Highcost. We varied the entry
costs between treatments to help determine whether
any potential results were influenced by entry costs
rather than the selling mechanism. Table 1 summa-
rizes our design of the experiment and sample sizes.
Each treatment included 10 independent cohorts;3 we
use the cohort as the main unit of statistical analysis
in our results section (§3).

After the completion of each round of each treat-
ment, we provided the following information to the
bidders: who entered the auction, the outcome of
any auction (the winning bid was 0 if a single
bidder entered), who won the object, and the result-
ing profits.

In roughly half of the sessions, we also adminis-
tered a separate and independent second stage of the
experiment. This second stage was comprised of the
Holt and Laury (2002) risk-aversion elicitation exer-
cise (see §3.1 for details). We performed this sepa-
rate stage to determine whether any of our results
could be attributed to risk aversion. In terms of our
experimental procedure at the start of these sessions,
subjects were informed that after they finished the
30 rounds of the first stage, there would be a sec-
ond additional exercise. At this time, no details were
provided for the second stage. Then, after all sub-
jects completed all 30 rounds of the first stage, we
distributed the instructions for the second stage, read
them out loud, answered questions, and administered
the exercise.4

We conducted all sessions at the Laboratory for
Economics Management and Auctions at the Pennsyl-
vania State University, Smeal College of Business, in
the spring of 2010 and 2012. Subjects in all four treat-
ments were students, mostly undergraduates, from a
variety of majors. Before each session, subjects were
allowed a few minutes to read the instructions them-
selves. Following this, we read the instructions aloud
and answered any questions. We recruited partici-
pants through an online recruitment system where
cash was the only incentive offered. Subjects were
paid a $5 show-up fee plus an additional amount
that was based on their personal performance for

3 In each of the two Highcost treatments, we had one cohort of 8
and one cohort of 10, but all other cohorts consisted of 6 subjects.
In total, 252 participants were included in our study.
4 We found no differences in the 30 rounds of data between these
sessions and those in which the second stage was omitted.

all 30 rounds. Average compensation for the par-
ticipants, including the show-up fee, was $22. Each
session lasted approximately 60 minutes, and we
programmed the software using the z-Tree system
(Fischbacher 2007).

2.1. Predictions
Given our experimental parameters we begin by
expressing bidder behavior, seller revenue, and bid-
der profits for both the auction and sequential mech-
anism as predicted by the unique sequential perfect
equilibrium identified in the more general model of
Bulow and Klemperer (2009).5

Under both mechanisms, there are two potential
bidders who must decide whether or not to pay a
common cost c to learn their private valuations. Val-
ues are drawn independently from the continuous
uniform distribution on 0 to 1.6

The timing of decisions under the two selling mech-
anisms are different. Under the sequential mechanism,
the first bidder “arrives” first and has the opportu-
nity to pay the cost c to learn her value (v1) and then
enter the auction. We denote the possibly mixed strat-
egy between entry or not by the first bidder with the
probability of entry of �1 and not entry 1 − �1. Con-
tingent upon entry, the first bidder learns her valua-
tion and has the opportunity to place a preemptive bid
that might depend on her valuation and is denoted
by p4v15. The second bidder arrives next and observes
whether or not the first bidder entered, and the pre-
emptive bid. She then decides whether or not to enter
and learn her valuation (v2). We denote the possibly
mixed-entry strategy of the second bidder by �24p5
(enter) and 1 −�24p5 (not enter).7 After the entry deci-
sion of the second bidder, the item is sold in an English
auction with the starting price of either 0 (if the first
bidder did not enter) or p if the first bidder entered.
Assuming that both bidders play the weakly dominant
strategy of bidding up to their value in the auction,

5 The interested reader is referred to Bulow and Klemperer (2009)
for a more detailed development of the theoretical predictions
in addition to the common equilibrium refinement (on out-of-
equilibrium beliefs) that Bulow and Klemperer (2009) utilize to gen-
erate uniqueness of the equilibrium.
6 In the actual experiment, valuations were drawn uniformly on
the integer valuations from 1 to 100. When comparing theoretical
results with our experimental predictions, we simply multiply the
theoretical results by 100. As is standard in experimental auction
studies, we assume that the application of the continuous theory to
a discrete implementation is sufficiently precise.
7 The entry strategy of the second bidder can depend upon the
preemptive bid strategy and the entry decision of the first bidder
in different equilibria (e.g., p4v5 and �1). For notational clarity, we
do not include the observed and equilibrium entry decisions of
the first bidder. It is obvious that, contingent upon nonentry by the
first bidder, the second bidder will have a dominant strategy to
always enter for the parameter values of c in our experiment.
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Figure 1 Payoff Table from Auction Entry Stage

Bidder 2
Enter Not enter

Bidder 1
Enter 1

6 − c1 1
6 − c 1

2 − c1 0

Not enter 01 1
2 − c 01 0

any auction with only one bidder will end at either 0
(in the event the first bidder did not enter but the sec-
ond bidder did) or p (the first bidder enters but the
second bidder does not). An auction with both bidders
will proceed to the maximum of the second-highest
valuation of the two bidders (min8v11v29) and the pre-
emptive bid p.

The auction mechanism is similar except that the
preemptive bid opportunity is not available to the
first bidder. Therefore, in effect, both bidders simul-
taneously decide whether or not to enter and, after
learning their valuations, compete in an English auc-
tion. As before, the English auction will progress to a
price of 0 (only one bidder entered) or to the second-
highest valuation of the two entering bidders.

We first examine the equilibrium in the auction
mechanism since it is easily derived from well-known
auction results. The payoff table in Figure 1 depicts
each player’s (ex ante) expected profits from entry in
the auction. Clearly, as long as c < 1

6 , it is a domi-
nant strategy for both bidders to enter, resulting in
expected bidder profits of 1

6 − c and a seller expected
revenue of 1

3 .8

Now consider the equilibrium in the sequential
mechanism. The preemptive bidding strategy of the
first bidder is the crucial element of the sequen-
tial mechanism since it allows for the first bidder
to transmit information about her valuation to the
second bidder, which might induce the second bid-
der to not enter. Note that the auction mechanism
outcome can always be replicated by the first bid-
der entering and following a “pooling” preemptive
bidding strategy of always bidding 0 (e.g., p4v15= 0
for all v1 ∈ 60117). On the other hand, a completely
revealing preemptive bid strategy (e.g., p4v15 is an
increasing continuous function of v1) is not tenable
since low-valuing first bidders would want to mimic
high-valuing bidders who can discourage competi-
tion from the second bidder; the second bidder would
never enter if she knew the first bidder’s value was
greater than 1 −

√
2c. Therefore, the equilibrium pre-

emptive bidding strategy is of a “partially pool-
ing” nature where low-valuing bidders bid 0 and all

8 If 1
3 ≤ c < 1

2 , there are multiple equilibria where only one bidder
enters and the other does not, resulting in a revenue of 0 for the
seller. In this case, there is also a mixed-strategy equilibrium. Bulow
and Klemperer (2009) and we do not consider this case explicitly.

others bid a common preemptive bid. Bulow and
Klemperer (2009) show that in the unique perfect
sequential equilibrium (under a standard refinement
on out-of-equilibrium beliefs), the first bidder selects
a preemptive bid of 0 if her value is below the cut-
off value vs (called the deterring value), and p∗ other-
wise. In equilibrium, the preemptive bid p∗ is chosen
in a way that makes the second bidder indifferent
between not entering and paying c to compete against
a bidder whose value is above vs . At the same time,
p∗ is selected such that a first bidder with a value
of vs is indifferent between competing in the auction
against the second bidder whose value if uniformly
distributed on 60117, or winning the auction outright
with the bid of p∗.

Formally, the equilibrium preemptive bid has the
following form:

p4v5=

{

0 v < vs1

p∗ v ≥ vs1
(1)

where p∗ ≤ vs ensures individual rationality for the
first bidder. Given this preemptive bid strategy, the
second bidder can calculate her expected auction
profits (denoted �a

2 ) for each preemptive bid observed
in equilibrium:9

�a
2 4p5=















4vs5
2

6
+

1 − vs

2
p = 01

41 − vs5
2

6
p = p∗0

(2)

To make preemptive bidding worthwhile, the second
bidder must be induced to not enter whenever p∗ is
observed. Assuming that the bidder will decide not to
enter when she is indifferent between entry and not,
we must have �a

2 4p
∗5− c = 0, or

41 − vs5
2

6
= c0 (3)

Note that since p∗ ≤ vs , the second bidder’s expected
auction profits only depends on the cutoff value vs ,
so solving for vs yields

vs = 1 − 46c51/20 (4)

When the second bidder enters the auction, the first
bidder’s (interim) auction profits depends on the cho-
sen level of the preemptive bid and is given by

�a
1 4p1v15=

v2
1 − p2

2
0 (5)

9 More generally, the second bidder’s expected auction profits from
competition against a bidder whose values lie uniformly in the
subinterval of the original distribution given by 6v1 v̄7 is �a

2 =

4v̄− v52/6 + 441 − v541 − v̄55/2.
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Table 2 Experimental Predictions

Actual draws Theory

Treatment Auction Seqmech Auction Seqmech

Lowcost (c = 3)
Seller revenue 33005 30054 33033 30079
First-bidder profit 14023 16015 13067 16021
Second-bidder profit 13080 13045 13067 13067
Deterring value, vs — 57057 — 57057
Preemptive bid, p∗ — 41000 — 41000
Efficiency 10000 00919 10000

Highcost (c = 10)
Seller revenue 33056 17098 33033 17084
First-bidder profit 6072 22029 6067 22016
Second-bidder profit 7000 6080 6067 6067
Deterring value, vs — 22054 — 22054
Preemptive bid, p∗ — 20000 — 20000
Efficiency 10000 00678 10000

The equilibrium is therefore found by selecting a p∗

that ensures that low-valuing first bidders (those with
values below vs) prefer a preemptive bid of 0 to p∗.
Since Equation (5) is an increasing function of v1, this
is found by finding the p∗ such that �a

1 401vs5= vs −p∗,
where the right-hand side is the certain profit from
bidding a preemptive bid of p∗ and therefore deter-
ring entry by the second bidder. Given the value of vs

from Equation (4), the preemptive bid p∗ is given by

p∗
=

1
2 − 3c (6)

whenever c < 1
6 . Given the enhanced profitability of

this preemptive bidding strategy, the first bidder will
always enter (�1 = 1).

Expected profits of both the bidders and the sell-
ers can be calculated given the equilibrium and
our parameterizations. Table 2 summarizes predicted
seller revenue, bidder profits (net endowments),
deterring values, preemptive bids, and efficiency for
our experimental parameters. We define efficiency as
the proportion of time the bidder with the highest
valuation wins the item.10

Note that the Bulow and Klemperer (2009) theory
predicts that the seller revenue is higher in the auc-
tion, and bidder expected profit (particularly the first
bidder’s profit) is higher under the sequential mech-
anism. Furthermore, the difference in seller revenue
between the two mechanisms should be increasing
in c; we intentionally selected the cost parameters
such that the expected differences between the two

10 In the data, we have access to all potential values, regardless
of whether or not a bidder enters. Therefore, in a particular auc-
tion, if only one bidder enters, but this bidder happens to have the
larger of the two potential values, this auction would be marked as
efficient.

Table 3 Summary of the Data

Treatment Auction Seqmech

Lowcost (c = 3)
Seller revenue 31057 (0.85) 34025 (1.30)
First-bidder profit 14058 (1.09) 11056 (1.50)
Second-bidder profit 14000 (1.27) 12059 (1.27)
Preemptive bid — 7097 (1.37)
First-bidder-entry proportion 00959 (0.013) 00983 (0.009)
Second-bidder-entry proportion 00967 (0.015) 00937 (0.022)
Efficiency 00888 (0.018) 00900 (0.017)

Highcost (c = 10)
Seller revenue 26061 (0.76) 30030 (1.39)
First-bidder profit 8015 (1.01) 7036 (1.08)
Second-bidder profit 9033 (1.18) 9024 (1.46)
Preemptive bid — 10024 (1.12)
First-bidder-entry proportion 00843 (0.032) 00928 (0.025)
Second-bidder-entry proportion 00907 (0.020) 00862 (0.034)
Efficiency 00823 (0.018) 00841 (0.022)

Note. Standard errors in parentheses.

mechanisms was quite high in the Highcost treat-
ment, whereas the difference was smaller in the Low-
cost treatment. Finally, the predicted deterring value
and optimal preemptive bid are both decreasing in c.

3. Results
Table 3 summarizes average seller revenue, bid-
der profits, preemptive bids, and entry rates in the
experiment.11

We can see from Table 3 that in both cost condi-
tions, the sequential mechanism generates higher rev-
enue for the seller compared to the auction. Using
the cohort average as the main statistical unit of anal-
ysis (we follow this approach for all statistical tests
in this section), we find that a one-sided t-test com-
paring the Auction and Seqmech revenue results in
p = 000158 in Highcost and p = 000507 in Lowcost.12

This is counter to the predictions of the Bulow and
Klemperer (2009) model, which predicts that the auc-
tion should generate higher seller revenues in both
cost treatments. We also observe that the sequential
mechanism has a slightly higher efficiency than the
auction, although the differences are not significant
for either cost condition.

Comparing Tables 2 and 3, we can also see that the
auction, particularly in the Highcost treatment, gen-
erates seller revenue that is slightly below theoret-
ical predictions (two-sided t-test Highcost p < 00001
and Lowcost p = 001153). In our data, we see that
bidders in the auction do play the dominant strategy

11 We provide cohort-level data for revenue in Appendix C.
12 A more conservative Mann–Whitney test results in p = 000413 in
Highcost and p = 001304 in Lowcost.
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Figure 2 Proportion of Preemptive Bids Equalling Zero in Data (a) and in Theory (b)
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of bidding up to their values, so lower than pre-
dicted auction revenues are due to entry behavior.13

Bidders enter the auction only 96.28% of the time
in the Lowcost treatment, and 87.46% of the time
in the Highcost treatment. Lower than 100% entry
rates account for the auction’s revenues being slightly
below the predicted values, along with lower efficien-
cies, and suggest that bidders respond to the mag-
nitude of the entry cost when making their entry
decisions. We explore alternative models for this entry
behavior in later sections.

Turning to the bidders’ profits, the first bidders
should fare better in the sequential mechanism than in
the auction, because it provides them with the oppor-
tunity to set a preemptive jump bid, potentially deter-
ring the second bidders from entering the auction.
On the other hand, if the first bidders act optimally,
second bidders earn the same average profits under
the two mechanisms.

In the auction, both first- and second-bidder profits
are largely in line with the predicted values. (There
is a slight increase in bidder profits in our data due
to the entry decisions mentioned previously; how-
ever, this does not cause any of these differences to
be statistically significant.) In the sequential mecha-
nism, second-bidder profits are also not statistically
different from theoretical predictions. However, first-
bidder profits in the sequential mechanism are far
below theoretical predictions (two-sided t-test leads
to p < 000001 in Highcost and p < 000136 in Lowcost).
This last finding also results in the first bidders’ aver-
age profits being roughly the same between the auc-
tion and the sequential mechanism.

Thus far, we have shown that the sequential mecha-
nism results in higher seller revenues than an auction,

13 The second-lowest value less the winning bid was, on average,
−0011 across all observations in all four treatments.

which is contrary to the Bulow and Klemperer (2009)
model. This higher revenue for the seller is achieved
primarily at the expense of the first bidder. Next,
we examine both bidders’ decisions in comparison to
the equilibrium predictions of Bulow and Klemperer
(2009) to better understand the potential causes of
these findings.

We begin by examining how first bidders set
preemptive bids. In the Bulow and Klemperer (2009)
model, first bidders follow a threshold strategy, as
shown in Figure 2(b): first bidders should set the
preemptive bid equal to 0 if their value is below vs ,
and when their value is above vs , they should set
the preemptive bid equal to p∗. Figure 2(a) shows the
proportion of preemptive bids set to 0 in our data,
as a function of value.14 It is clear from Figure 2
that bidders do not follow the threshold strategy, but
instead, their probability of setting a preemptive bid
of 0 decreases in value up to some point, and then
levels off, never reaching a probability of 0.

Next we examine the magnitude of preemptive
bids. The preemptive bids should follow a threshold
strategy, as shown in Figure 3(b), specifically, preemp-
tive bids should be constant when v ≥ vs , and posi-
tive preemptive bids should be different for the two
cost conditions. However, in our data, summarized
in Figure 3(a), we see that the magnitude of posi-
tive preemptive bids increases in v linearly, and more-
over, there is no discernible difference in the two cost
conditions. We confirmed this formally with a ran-
dom effect regression with the preemptive bid as the
dependent variable: the coefficient on v is positive
and significant, the coefficient on HIGHCOST is not

14 For all figures, we removed any observation where bidder 1
entered and set a preemptive bid equal to or above their value; this
occurred 19 times out of all 1,890 decisions by first bidders.
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Figure 3 Magnitude of Positive Preemptive Bids in Data (a) and in Theory (b)
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significant, and neither is the coefficient on the inter-
action variable v×HIGHCOST.

Our conclusions about the behavior of first bid-
ders in the sequential mechanism are summarized
as follows: First bidders enter the auctions less than
100% of the time. When they do enter, they do not
follow the threshold strategy in regards to either their
decision to place a positive preemptive bid, or to the
magnitude of the preemptive bid. For low v’s, first
bidders’ probability of entering a positive preemptive
bid increases in value, and for high v’s, these prob-
abilities reach a constant level, that is, significantly
below 100%. Therefore, first bidders are more likely to
place preemptive bids when their v’s are low, and are
not likely enough to place positive preemptive bids
when their v’s are high. The size of the preemptive
bid itself increases in v and does not depend on the
entry cost.

Moving on to the second bidder’s behavior, as
shown in Figure 4(b), according to the theory, sec-
ond bidders should always enter as long as the

Figure 4 Entry Proportion of Second Bidders in Response to the Preemptive Bid in Data (a) and in Theory (b)
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preemptive bid is below p∗, and should never enter
as long as the preemptive bid is above p∗. The criti-
cal difference between how our second bidders enter
and how the Bulow and Klemperer (2009) model
says they should enter is that they enter too often
following high preemptive bids. Specifically, second
bidders in the c = 10 condition should never enter
when preemptive bids are above 20, and second bid-
ders in the c = 3 condition should never enter when
preemptive bids are above 41. However, as we can
see from Figure 4(a), second bidders enter quite fre-
quently when faced with preemptive bids exceeding
20 and 41. The expected profitability of entry depends
on the beliefs of the second bidder about the first bid-
der’s value given the observed preemptive bid. Since
we know first bidders are not placing preemptive bids
in accordance with the theory, it may not be irrational
that second bidders are entering. Even under the most
optimistic beliefs about the first bidder’s value given
a preemptive bid that p = v1 − c, in the Highcost con-
dition the second bidder would not want to enter after
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observing a preemptive bid of greater than 45.15 As is
evidenced by Figure 4(a), the entry rate for preemp-
tive bids between 45 and 60 is quite high. We can also
demonstrate overentry by second bidders empirically.
In the Highcost (Lowcost) treatment, second bidders
make losses, on average, whenever they enter follow-
ing a preemptive bid of 19 (31), yet they continue to
enter frequently after observing such preemptive bids
(62.87% Highcost, 61.25% Lowcost).16 Second bidders
also sometimes fail to enter for low preemptive bids,
but this effect is not very large.17

In sum, our data suggest that the sequential mech-
anism generates the same or higher revenue to sellers
when compared to the auction, and roughly the same
profits to bidders. These results stem from three sys-
tematic behavioral deviations from the theory: (1) in
the auction, subjects do not enter quite enough, espe-
cially when entry costs are high; (2) in the sequential
mechanisms, first bidders do not follow the threshold
strategy in setting preemptive bids, and as a result
they end up not setting preemptive bids frequently
enough, and when they do set them, the size of the
preemptive bid is positively correlated with the first
bidder’s value; and (3) in the sequential mechanism,
second bidders enter even when first bidders set high
preemptive bids.

3.1. Risk-Aversion Analysis
Risk aversion has often been cited as a potential
cause of deviations in observed auction behavior from
that of the standard theory where risk neutrality
is typically assumed (Cox et al. 1982). In this sec-
tion, we attempt to determine whether the observed
behavior in our experiments is driven by risk aver-
sion. We examine the issue both theoretically and
experimentally.

First note that, since it is a weakly dominant strat-
egy for a bidder to bid up to her value in an English
auction, behavior in the auction-bidding stage should
be unaffected by risk aversion. Now consider the
potential impact of risk aversion on preauction behav-
ior in the sequential mechanism. We consider constant
relative risk-aversion (CRRA) preferences, which have

15 The belief that p = v1 − c is the most optimistic second-bidder
belief, under the assumption that first bidders do not place
preemptive bids that guarantee losses. Under the Lowcost con-
dition, the preemptive bid would have to be 72, which is rarely
observed.
16 Even in the second half of the 30 experimental periods, second-
bidder entry following these preemptive bids is common at 61.26%
(Highcost) and 71.43% (Lowcost).
17 It is worth noting that the number of observations across values
in Figures 2 and 3 is quite constant. However, in Figure 4, the num-
ber of observations is right skewed, so that the number of preemp-
tive bids that were above 50, for example, only occurred roughly
1% and 2% of the time in Lowcost and Highcost, respectively.

been used extensively to study risk aversion in both
laboratory settings and empirical studies (Binswanger
1980, Chen and Plott 1998, Campo et al. 2011). CRRA
utility functions are given by u4x5 = x1−�, where
0 ≤ � < 1 is the measure of relative risk aversion.
Given this specification, the calculation of the equilib-
rium described by Equations (1)–(6) can be replicated
assuming risk aversion.18 The impact of risk aversion
on the equilibrium preemptive bid p∗, deterring value
vs , and expected revenue is depicted in Figure 5. Since
�= 0 is a risk-neutral decision maker, it is clear to see
that both the deterring value and preemptive bid are
decreasing as players become more risk averse, driv-
ing expected revenue down. For sufficiently high lev-
els of risk aversion, the equilibrium-deterring values
fall to 0. At those levels of risk aversion it is sufficient
for the first bidder to enter (and place a preemptive
bid of 0) to deter entry by the second bidder. For even
higher levels of risk aversion, the first bidder may
prefer nonentry, but for the level of entry costs con-
sidered, a very high level of risk aversion (e.g., �> 1)
is required. Previous studies have shown estimates
for the level of risk aversion (�) to be between 0.45
and 0.67 and to vary depending on the setting (Cox
and Oaxaca 1996, Goeree et al. 2002, Goeree and
Holt 2004). Note that for those values of risk aver-
sion under the Highcost condition, the equilibrium-
deterring value is 0, meaning that simple entry by the
first bidder (without a preemptive bid) results in zero
revenue for the seller. The observed behavior under
the sequential mechanism is obviously substantially
different than that predicted by risk aversion.

Turning to the auction, as mentioned earlier, bid-
ders failed to enter 100% of the time under the auc-
tion mechanism. Although under risk neutrality it is
a dominant strategy for both bidders to enter, it is
possible that such behavior may be the result of risk
aversion. If players are sufficiently risk averse, there
will exist two pure-strategy Nash equilibria where
one bidder enters and the other does not (since suffi-
ciently risk-averse bidders may prefer the certain pay-
off of 0 for nonentry versus the risky but positive
expected payoff of participating in the auction versus
another bidder). If this is the case, there will also be a
mixed-strategy equilibrium where both bidders enter
with some probability. Although this may rationalize
behavior in the auction, these levels of risk aversion,
however, contradict behavior in the sequential mech-
anism. If bidders are sufficiently risk averse to induce
a mixed strategy in the auction, it also means that the

18 In Appendix A, we provide a specification of the equivalent
equilibrium conditions under risk aversion. Analyses show that
under most specifications of risk-averse preferences (such as con-
stant abolute risk-aversion utility), expected revenue is decreasing
with increases in risk aversion.
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Figure 5 Equilibrium Preemptive Bid (Dashed Line), Deterring Value (Solid Line), and Expected Revenue (Bold Line) as a Function of � in
CRRA Utility
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equilibrium in the sequential mechanism will involve
the first bidder entering and the second bidder being
deterred simply by knowledge that another bidder
entered. (See Appendix A for a formal proof.) In other
words, under the assumption of CRRA preferences,
the level of risk aversion must fall into the range of
risk aversion where the deterring value is 0 (e.g., to
the right of the curves in Figure 5). Considering the
empirically observed mean frequency of entry of 0.963
for the Lowcost treatment and 0.875 for the High-
cost treatment, the value of the risk-aversion param-
eter for CRRA preferences that would rationalize this
level of entry as a mixed strategy would be � = 0070
(Lowcost) and � = 0050 (Highcost). Although these
numbers are not too far from those observed in other
experiments, it is clear that behavior in the sequential
mechanism is inconsistent with that observed in the
our experiments.19

As mentioned in §2, in some of our treatments, we
had subjects complete a second stage of the exper-
iment where we administered the Holt and Laury
(2002) risk-aversion elicitation exercise. In this exer-
cise, subjects were required to select their preference
between 10 lottery pairs. In each pair, the “safe”
option, A, resulted in a payoff of either $2.00 or $1.60,
and the “risky” option, B, resulted in either $3.85
or $0.10. In the first pair listed, the chance of the
higher payoff of both options ($2.00 and $3.85) was
10%. In the second pair, the chance of the higher
payoff was 20%, in the third pair, it was 30%, and
so on.

For each subject that completed the risk-aversion
elicitation exercise, we calculated the number of times

19 It is possible that a model of heterogeneity of risk aversion may
generate results that are qualitatively similar to the model that we
develop in §4, but the parameter estimation suggests that at least
some bidders would have to be assumed to be risk loving.

Table 4 Logit Regressions Examining Whether Risk Aversion Is
Related to Entry by Second Bidders in the Sequential
Mechanism

Variable Description Lowcost Highcost

Constant Intercept 20169 40039∗∗∗

6108117 6100007
SumA Total number of “safe” 00393 −00040

options selected 6002837 6001747
Period Decision period −00006 00017

6000177 6000157
Jump Preemptive bid −00088∗∗∗ −00089∗∗∗

6000127 6000107

∗∗∗p < 0001.

they selected option A. We use this as a proxy for
risk aversion, where more selections of option A are
linked to higher levels of risk aversion. We report logit
regressions (with random effects) for the sequential
mechanism with second-bidder entry as the depen-
dent variable in Table 4.20

In Table 4 we observe that the coefficient SumA is
insignificant in both cost conditions.21 However, note
that the coefficient on Jump is negative and significant
in both regressions. Combining this with our previ-
ous entry observations, it appears that subjects were
somewhat deterred by higher preemptive bids, but
not enough to coincide with the standard theoreti-
cal predictions. Therefore, considering that risk aver-
sion is not a key driver in explaining second-bidder-
entry decisions in the sequential mechanism, we now
turn to a more formal model that may explain this
behavior.

20 For these regressions, we excluded those observations where the
first bidder failed to enter.
21 We ran a variety of different regressions on second-bidder entry.
In no regression was the coefficient on SumA significant.
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4. Modeling Bidding Behavior
The objective of this section is to develop a parsimo-
nious and plausible model of bidder behavior that
matches, at least qualitatively, the features of bidder
behavior identified in §3. Primarily, we are asking
the following question: Is there a model that deviates
from the standard theory of Bulow and Klemperer
(2009) in a realistic and minimal way that better orga-
nizes the experimental data?

As is typical with such an exercise, we could
have varied the model in a number of (potentially
complementary) ways. We considered three possi-
ble types of changes to the theory of Bulow and
Klemperer (2009). First, Bulow and Klemperer (2009)
assume that bidders play a particular perfect sequen-
tial signaling equilibrium that is uniquely identified
via a standard equilibrium refinement.22 Without this
refinement, there are a continuum of potential per-
fect sequential equilibria. One possibility in our data
might be that player behavior is more closely approx-
imated by some other equilibrium. There is a substan-
tial literature examining whether signaling equilibria
develop experimentally and the efficacy of various
equilibrium refinements. For example, in the context
of limit pricing, Cooper et al. (1997b) find that signal-
ing equilibrium behavior will often develop. On the
other hand, in the same context, equilibrium selec-
tions predicted by seemingly plausible refinements do
not always present themselves in the data (Cooper
et al. 1997a). In these experiments, the signaling envi-
ronment is typically more simple than the one stud-
ied here due to finiteness of both the type space and
strategy spaces of the players. The complexity of the
type and strategy spaces in the sequential mechanism
and the ensuing continuum of potential other equilib-
ria makes our experiment not amenable to a rigorous
examination of whether other equilibria are chosen.

A second approach might be to abandon the per-
fect sequential equilibrium approach altogether in
favor of another equilibrium concept that allows for,
potentially, more realistic behavior. Some possibili-
ties might include an adaptive-learning-type model
proposed by Cooper et al. (1997b) or the increas-
ingly popular quantal-response-equilibrium model of
McKelvey and Palfrey (1995) and extended to exten-
sive form games with the agent quantal-response-
equilibrium (AQRE) model in McKelvey and Palfrey
(1998). Although these models have proven remark-
ably successful in explaining experimental data and,
as we discuss below, there is a similarity between our
proposed model and a simplified AQRE model, a full
model of either adaptive learning or quantal response
across all stages of the game has not proven to be

22 See footnote 11 in Bulow and Klemperer (2009) for a description
of the equilibrium refinement utilized.

readily tractable. In addition, an equilibrium concept
that allows for noisy behavior in all stages of the
game would, therefore, predict noisy behavior in the
auction-bidding phase, whereas our data indicate that
bidding behavior in the auction stage is remarkably
consistent with standard theory.

The third approach, which we ultimately selected,
is to propose changes to the underlying payoffs
or structure of the game and to retain the perfect
sequential equilibrium concept (with a similar refine-
ment). This is a common approach taken by many
behavioral models that seek to explain experimental
data. For example, models of equity and reciprocity
(Bolton and Ockenfels 2000) have proven successful
at explaining behavior in ultimatum, public good,
and dictator games, among others. Models that allow
for regret (Engelbrecht-Wiggans and Katok 2008) are
also consistent with experimentally observed bid-
ding behavior in first-price auctions. In this con-
text, Roberts and Sweeting (2013) demonstrate that
a model that retains the same equilibrium concepts
but assumes that players get a noisy signal of their
valuation prior to entry is sufficient to substantially
change predicted bidder behavior away from the par-
tially pooling equilibrium identified by Bulow and
Klemperer (2009) in favor an equilibrium where the
preemptive bid function reveals the first bidder’s val-
uation. The theory model we develop here shares a
number of similarities with the approach concurrently
developed by Roberts and Sweeting (2013).

The fact that we have chosen this third approach
is not meant to exclude the other two approaches
as potential explanations of our data. Indeed, as is
shown by Goeree et al. (2002), it is often the case
that many different modeling approaches can arrive
at similar conclusions. It is also possible that a hybrid
model that includes features such as learning would
better organize our experimental data. However, the
exercise here is not to identify the exact model of
behavior but to look for a simple and tractable model
that generates the observed behavior. The fact that
so many models might arrive at similar conclusions
further highlights the fragility of the Bulow and
Klemperer (2009) normative result.

4.1. The Model
We develop a model of noisy bidder-entry decisions.
In particular, we assume that in addition to paying a
cost c to enter and learn their values, each bidder (i)
perceives an additional benefit/cost of �i for entry
into the mechanism where �i is privately known by
the bidder at the time of entry. We assume that �i is
drawn independently from the normal distribution
N4�1�5. As is the case of the entry cost c, we assume
the additional cost factor �i to be sunk at the time
of entry decision so that it does not directly impact
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future decisions such as auction-bidding strategies
(for both bidders) or preemptive bidding strategies
(for bidder 1).23

There are a number of justifications for the inclu-
sion of such a term. Formally, these errors might
be generated as some type of idiosyncratic cost or
benefit element. In practice, we feel it is reasonable
that in high-value auctions, of the type where this
model is probably most appropriate, such as merg-
ers and acquisitions and procurement settings, that, in
addition to the commonly known cost element, there
might be idiosyncratic cost or benefit elements that
are not known by the other participants. For exam-
ple, a firm considering bidding on a procurement
contract might decide not to spend the consider-
able effort required to put together a cost estimate
(e.g., decide not to enter) because of internal issues
within the firm. In the laboratory setting, this idiosyn-
cratic cost element might come from more psychic
benefits or costs perceived by the experimental sub-
jects. For example, a subject might prefer to avoid
the cognitively difficult task of determining a proper
bid and therefore decide not to enter the auction.
On the other hand, a subject might perceive some
benefit from “getting in the game” and decide to
enter despite potentially negative monetary rewards.
Previous work by Katok and Kwasnica (2008) and
Kwasnica and Katok (2007) has shown that bidders
in auctions will often respond to other costs/benefits
not directly induced via monetary incentives. Model-
ing noise as a random cost or benefit element may
serve as a useful approximation to capture other
behavioral issues, such as regret, social preferences,
or errors in calculations of expected profitability.
While these models might invite somewhat different
function formulations, exploratory attempts to for-
mally model these behavior yielded largely consis-
tent results. The advantage of the approach we chose
here is the fact that the additional cost term �i enters
into the bidders’ calculations in an additively separa-
ble manner that makes the theory substantially more
tractable. The fact that the term is sunk at the time
of bidding meant that auction stage behavior would
conform to theory as it does in the experiment.

We continue to assume that values are distributed
uniformly on 0 to 1. Since the payoff from nonentry
is 0, a bidder will decide to enter only if

�a
i − c+ �i ≥ 01

23 Our model can also be considered to be a restricted AQRE
model of McKelvey and Palfrey (1998) where the noisy behavior
is restricted to only occur in the entry decisions and not in the
other stages of the game, and the random unobserved error term
is normally distributed. Although most implementations of QRE
models assume a logistic distribution of the error term, the general
theory allows for many error distributions, including the normal
distribution.

where �a
i is bidder i’s expected profits from the auc-

tion. This, of course, means that a bidder will only
enter if this extra term is sufficiently large where
�∗
i = c−�a

i represents the cutoff between entry and
not. The (ex ante) entry probability for a bidder is
then given by

�i = Pr4�i ≥ �∗

i 5= 1 − Pr4�i ≤ �∗

i 5= 1 −ê

(

�∗
i −�

�

)

1 (7)

where ê4 · 5 is the cumulative distribution function
(cdf) of the standard normal distribution.

Let us first consider the impact of a noisy cost of
entry on the equilibrium entry decisions of both play-
ers in the auction. Because both players are now enter-
ing with less than probability 1, each bidder must
consider the fact that they may be the sole entrant
into the auction and, therefore, obtain a greater profit.
Given the (ex ante) entry probability of the other bid-
der �j , bidder i’s expected payoff from the auction is

�a
i = �j

1
6 + 41 −�j5

1
2 (8)

=
1
2 −�j

1
31 (9)

where the first term in Equation (8) is the expected
profits to a bidder in a two-person auction, and the
second term is the expected profits in the event of
nonentry by the other bidder so that the auction price
is 0. Since the payoff from nonentry is 0, bidder i will
enter only if

1
2 −�j

1
3 − c+ �i ≥ 0

or
�i ≥ �j

1
3 + c−

1
21

which results in the following entry probability:

�i = 1 −ê

( 1
3�j + c−

1
2 −�

�

)

0 (10)

In a symmetric equilibrium in the auction, each bid-
der will enter if �i ≥

1
3�

∗ + c−
1
2 , resulting in expected

entry probability �∗ = �1 = �2 that is the solution to
the previous equation for both bidders.

Next, consider the sequential mechanism. The key
strategic variable is now the preemptive bid. We pro-
ceed by characterizing the necessary conditions
for a revealing equilibrium with noisy entry deci-
sions. In Appendix B, we show, following a simi-
lar approach to Roberts and Sweeting (2013), that
the equilibrium identified is indeed the unique per-
fect sequential equilibrium under the D1 refinement
(Banks and Sobel 1987, Cho and Kreps 1987), which
is a common restriction placed on out-of-equilibrium
beliefs in signaling games. Let us suppose there
exists a revealing preemptive bid function p4v15 with
p4v15≤ v1 for all v1. Suppose that the bid function
is differentiable and increasing everywhere so that
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p′4v15 > 0. The boundary condition is that p405 =

0. Let v−14p5 be the inverse preemptive bid func-
tion. Then, the second bidder’s expected profit from
the auction having observed a preemptive bid p is
given by

�a
2 4p5=

41 − v−14p552

2
0

The cutoff value for entry is therefore given by �∗
24p5=

c−�a
2 4p5, and the ex ante entry probability of the sec-

ond bidder, denoted now by �24p5, is given by Equa-
tion (7), with this expected term substituted into the
equation. The first bidder’s expected profit from the
auction contingent upon entry by the second bidder is
still given by Equation (5). The first bidder’s expected
profits from a particular preemptive bid level is there-
fore given by24

�14p1v15 = �24p5�
a
1 4p1v15+ 41 −�24p554v1 − p5 (11)

= �a
1 4p1v15+ê

(

6c−�a
2 4p57−�

�

)

· 6v1 − p−�a
1 4p1v1570 (12)

For the preemptive bid strategy to be an equilibrium,
it must be that the prescribed preemptive bid maxi-
mizes expected profits for a first bidder with that val-
uation. The necessary first-order condition is given by

¡�14p1v15

¡p
= 01 (13)

¡�a
1 4p1v15

¡p
−�4�4p55

¡�a
2 4p5/¡p

�
6v1 − p−�a

1 4p1v157

−ê4�4p55

(

1 +
¡�a

1 4p1v15

¡p

)

= 01 (14)

where �4p5= 4�∗
2 −�5/� .

Since

¡�a
2 4p5

¡p
= −41 − v−14p55

¡v−14p5

¡p

and
¡�a

1 4p1v15

¡p
= −p1

Equation (14) can be rewritten as follows:

−p+�4�4p55
41 − v−14p554¡v−14p5/¡p5

�

· 6v1 − p−�a
1 4p1v157−ê4�4p5541 − p5= 00

If this is in equilibrium, then it must be that v−14p5=

v1, utilizing the fact that ¡v−14p5/¡p = 1/p′4v15, and

24 Note that the c and �1 terms are dropped from these equations
because they are sunk at the time of preemptive bid decision mak-
ing. This is primarily done for notational simplicity when consid-
ering the first-bidder-entry decision.

solving for p′4v15, we arrive at the following differen-
tial equation:

p′4v15

=
�4�4p4v155541/�541 − v1564v1 − p4v15541 − 4v1 + p4v155/257

p4v15+ê4�4p4v155541 − p4v155
0 (15)

Although this differential equation does not readily
admit an analytic solution, it can be solved for numer-
ically. Let p∗4v15 be the solution to the differential
Equation (15). Given this solution, we can now move
to the earlier stage, where bidder one makes her
entry decision. To treat both players symmetrically,
we assume this decision to be noisy as well. Therefore,
the first bidder’s expected payoff from entry (e1) is
given by

�14e15=

∫ 1

0
�14p

∗4v151v15 dv1 − c+ �11

where �14p1v5 is given by Equation (12).
Because the payoff from nonentry is 0, bidder one

will decide to enter only if

∫ 1

0
�14p

∗4v151v15 dv1 − c+ �1 ≥ 00

This, of course, means that bidder one will only
enter if

�1 ≥ c−

∫ 1

0
�14p

∗4v151v15 dv10

The (ex ante) entry probability for bidder one is then
given by

�1 = Pr
(

�1 ≥ c−

∫ 1

0
�14p

∗4v151v15 dv1

)

= 1 −ê

(

6c−
∫ 1

0 �14p
∗4v151v15 dv17−�

�

)

0 (16)

The entry probabilities of the two bidders �1 Equa-
tion (16) and �2 Equation (7) given the preemptive bid
p∗4v15 characterize the equilibrium under noisy costly
entry and can be utilized to calculate expected rev-
enue and profit results for the seller and both bidders.

Note that this is in contrast to the result of the stan-
dard theory of Bulow and Klemperer (2009) where
there exists a partially pooling equilibria. The reason
that such an equilibrium fails to exist in our setting
is that increases in the preemptive bid by the first
bidder will always have a measurable impact on the
likelihood of entry by the second bidder (by changing
the cutoff level �∗

2). This provides sufficient incentive
for high-valuing first bidders to attempt to differen-
tiate themselves by placing a higher preemptive bid.
In contrast, under the standard theory, any increase of
bids beyond the one specified in the equilibrium will
only have a negative impact for first bidders since the
second bidder is already not entering for sure, so a
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higher preemptive bid only increases the price that
the first bidder will pay.

The model of noisy bidder cost of entry repli-
cates many of the features observed in the exper-
imental data. In the auction, bidders fail to enter
all the time due to high idiosyncratic cost draws in
our model. In the sequential mechanism, first bidders
place preemptive bids that are positively correlated
with their own value, and second bidders, having
observed any preemptive bid, still enter with a posi-
tive (ex ante) probability. Next, we proceed by using
maximum-likelihood estimation to identify parame-
ters (distributions of �i) that best fit the observed
experimental data.

4.2. Parameter Estimation
In this section, we estimate the parameters that define
the distribution of �, (�1�), that best fit our exper-
imental data. We use maximum-likelihood estima-
tion (MLE) for this purpose. We take a progressive
approach to the estimation process, first fitting a com-
mon set of (�1�) across both institutions, the auc-
tion and the sequential mechanism, and then allowing
(�1�) to vary between the auction and the sequential
mechanism. Then we allow for the noise terms for the
two bidders to come from different distributions. One
could argue that the first bidder’s entry decision is
simpler than the second bidder’s, because he does not
have to think about the preemptive bid, so that the
first bidder’s term may come from a distribution with
� closer to 0, and a smaller � . In contrast, the second
bidder must interpret the first bidder’s preemptive
bid, and this complexity may cause the second bid-
der’s � to be large. Knowing that failure to enter is
sure to result in the first bidder earning higher profit
may trigger some inequality aversion, and �> 0 may
be a reasonable approximation for modeling it.25

Let t denote a single decision period, t = 11 0 0 0 1T,
where T represents the total number of entry decision
periods. If we assume a common (�1�) across insti-
tutions, then the joint likelihood function is given by

L4�1�5=
∏

t∈T

4�
e2t
2 41 −�25

41−e2t 554�
e1t
1 41 −�15

41−e1t 551

where

eit =

{

1 if bidder i enters in decision t1

0 otherwise0

25 Huck et al. (2001) report results of Stackelberg duopolies exper-
iments to the literature survey. They find that leaders behave less
aggressively and followers behave more aggressively than they
should, and attribute it to aversion to disadvantageous inequality.
It is not clear how the fact that our more complex setting affects
these results, but it is likely that the presence of private information
dampens down disadvantageous inequality aversion. Nevertheless,
modeling social preferences is beyond the scope of this paper.

Table 5 MLE and LL Results for the Noisy Entry Model

Likelihood-
Treatment MLEs (�1 � ) LL ratio test

Both institutions 4004051003605 −21017 �2 = 114
p < 00001

Auction 4−000311000665 −11986 �2 = 52
Seqmech 4004901004055 p < 00001
Auction 4−000311000665 −11960 —
Seqmech: First bidder 4001021001155
Seqmech: Second bidder 4005901005325

Table 5 presents the MLE and log-likelihood (LL)
results for our noisy entry model when � and �
are fixed across both institutions, and when they are
allowed to vary between the two mechanisms and
first and second bidders. We have also provided the
results from likelihood-ratio tests against the model
with the most free parameters in an effort to identify
the most efficient fit.

As one can see from the likelihood-ratio tests in
Table 5, the estimation allowing parameters to vary
between bidders is the best fit. For this estimation,
starting from the bottom, we see that � and � are
quite large for the second bidder, agreeing with our
data that second bidders overenter with considerable
noise. The first bidder, however, has a relatively low �
and � , indicating a smaller benefit of entry along with
less variability. This too matches up with our data,
where first bidders consistently entered (and standard
theory assumes an entry rate of 100%). The MLEs for
the auction also seem to coincide with our data, where
the fixed benefit of entry is actually slightly nega-
tive, � = −00031, with � = 00066 accounting for the
noise we see, pushing entry rates slightly below 100%.
In short, the MLEs, overall, agree with our experimen-
tal results.

We show the predicted seller revenue levels, based
on the MLEs that vary between bidders, for the noisy
entry model in Table 6. We also show what the corre-
sponding preemptive bid function looks like for these
same estimates in Figures 6(a) and 6(b).

We see that the predicted revenues from our model
closely match our data and that the preemptive bids
fit reasonably well, certainly an improvement over the
predictions of the Bulow and Klemperer (2009) model.
The predicted revenues are not only close to the actual
revenues in terms of the point predictions but also
in terms of the qualitative comparison between the
two institutions. Specifically, in line with our data
and contrary to the Bulow and Klemperer (2009) the-
ory, the bidder behavior model predicts higher rev-
enues under the sequential mechanism than under
the auction.
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Figure 6 Predicted Preemptive Bids for �= 00102 and � = 00115 and Average Preemptive Bids
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Table 6 Comparison of Institution Revenue Between the
Experimental Data and MLE Predictions for the Noisy Entry
Model, Where the MLEs Are Allowed to Vary Across Bidders

Actual Predicted

Auction Seqmech Auction Seqmech

Lowcost 31057 34025 30090 32023
Highcost 26061 30030 25063 31007

5. Conclusion
To the best of our knowledge, our paper is the first
to compare the performance of an auction and a
sequential mechanism in a controlled laboratory set-
ting. We design our experiments to closely match
the Bulow and Klemperer (2009) model. We find that
the average seller revenue in the auction is slightly
lower than what the theory predicts, and the average
sequential mechanism revenue is significantly higher,
especially in the treatment with high entry costs. More
importantly, when comparing the two institutions to
each other, these results generate seller revenue that is
higher in the sequential mechanism than the auction,
contrary to standard theory.

Our experiments also demonstrate that individ-
ual behavior can vary significantly from the strong
predictions of standard game theory. Although indi-
vidual variations from theoretical predictions are
certainly not surprising, especially given results
reported in prior experimental literature on signaling,
we demonstrate that those variations can be sufficient
to reverse the normative prescriptions of the theory.

The behavior we observe in our experiment dif-
fers from the model predictions in three ways. First,
bidders do not enter the auction 100% of the time,
causing auction revenues to be somewhat lower than
predicted by the model. Second, in the sequential
mechanism, we find that the first bidders do not
set preemptive bids according to the threshold strat-
egy. Instead, both the probabilities of setting positive
preemptive bids and the magnitudes of these bids

increase with the first bidders’ values. Third, second
bidders in the sequential mechanism tend to over-
enter in response to high preemptive first-bidder bids.

Our main contribution is a new model we devel-
oped that incorporates the noisy entry behavior and
uses MLE techniques to estimate model parameters
for our data. We find that the model organizes our
data reasonably well, in that it matches revenues
fairly closely. Although our model is quite consistent
with the data, we recognize that there might be other
behavioral factors that we have not accounted for
(such as limited rationality regarding the informa-
tional content of the preemptive bid) that might also
be playing a role in the experiments. Rather, our
results are a warning that a mechanism designer might
want to consider the robustness of their results to
many possible behavioral phenomena. The formal
incorporation of nonstandard behavior into the design
and selection of mechanism is, in our opinion, an excit-
ing and challenging avenue for future research.

One limitation of our study is that it does not
directly incorporate reserve prices (which was done to
closely follow the Bulow and Klemperer 2009 model).
Davis et al. (2011) show that subjects in auctions
do not set reserve prices correctly in the labora-
tory; however, our experimental findings do high-
light the potential importance of reserve prices in
auctions. Specifically, in our setting, less than full
entry in the auction means that the seller may receive
zero revenue without a reserve price, whereas in the
sequential mechanism, any irrational behavior by a
first bidder results in a reserve price in essence.

The main managerial implication that comes from
our study is that sequential mechanisms may well
represent a viable alternative to auctions for a vari-
ety of applications. Not only do bidders prefer them,
but they may actually be better for the sellers as
well. Therefore, for powerful sellers, sequential mech-
anisms may well represent a viable alternative to
auctions, one that both sellers and bidders prefer.
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Additionally, in a setting with costly entry, sequen-
tial mechanisms are also more efficient than auc-
tions, because fewer potential bidders end up paying
the entry fees unnecessarily. Thus, further theoretical
and empirical work is called for to better understand
sequential mechanisms.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2013.1800.
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Appendix A. Risk Aversion
In this section, we provide a number of results related to
the incorporation of risk aversion to the standard model of
behavior in both the sequential mechanism and the auction.
For notational simplicity, we refer to random variables with
capital letters so that the bidder’s values can be described
as Vi, which is assumed to be distributed uniformly on
the support 60117. Importantly, a bidder’s profit in the auc-
tion can be expressed as a random variable denoted by ça

i ,
which is defined based on V1 and V2 as follows:

ça
i =

{

vi − vj vi >vj1

0 vi ≤ vj 0

Also, we assume that bidders have common Bernoulli util-
ity functions denoted by u, where u is assumed to be strictly
increasing u′ > 0 and concave u′′ ≤ 0. Since expected utility
functions are unique up to an affine transformation, we set
u4−c5= 0 without loss of generality.

The equilibrium conditions for the sequential mechanism
expressed in §2.1 can be similarly expressed for risk-averse
preferences. The deterring value is determined by the
amount that makes the second bidder indifferent between
entry or not:

Eu4ça
2 − c � V1 ≥ vs5= u4050 (A1)

Given this deterring value, the equilibrium preemptive bid
is the amount that makes a first bidder with a value of vs

indifferent between placing a preemptive bid or not, or

Eu4ça
1 − c � V1 = vs5= u4vs − p∗

− c50 (A2)

Note that, since the right-hand side of both these equations
represents certain amounts, an examination of varying risk
preferences boils down to an examination of differing cer-
tainty equivalents.

Under the auction mechanism, consider the simultane-
ous entry game originally depicted in Figure 1 and mod-
ified in Figure A.1 to allow for risk aversion. Since Vi − c

Figure A.1 Payoff Table from Auction Entry Stage with Risk-Averse
Preferences

Bidder 2
Enter Not enter

Bidder 1
Enter Eu4ça

1 − c51 Eu4ça
2 − c5 Eu4V1 − c51 u405

Not enter u4051 Eu4V2 − c5 u4051 u405

first-order stochastically dominates ça
i − c, then for all risk-

averse preferences we know that Eu4Vi − c5 ≥ Eu4ça
i − c5.

If Eu4Vi − c5≥ Eu4ça
i − c5 > u405, then, as in the risk-neutral

case, it is a dominant strategy for each player to enter the
auction, and, therefore, revenue is unaffected by risk aver-
sion. If u405 > Eu4Vi − c5 ≥ Eu4ça

i − c5, then each player
has a dominant strategy to not enter and auction revenue
is 0. Only if Eu4Vi − c5≥ u405≥ Eu4ça

i − c5 can there exist a
purely mixed strategy between entry and not. In this case,
there are two pure-strategy Nash equilibria where one bid-
der enters and the other does not.

Since in any mixed-strategy equilibrium, each of the pure
strategies in the support of the mixed strategy must be a
best response to the mixed strategy of the other player, it
must be in this case that

u405= q Eu4ça
i − c5+ 41 − q5Eu4Vi − c51

where q > 0 is the probability the other bidder enters. This
implies a symmetric mixed-strategy equilibrium is given by
solving for q above to yield

q =
u405− Eu4Vi − c5

Eu4ça
i − c5− Eu4Vi − c5

1

which is only satisfied by q > 0 if Eu4Vi − c5 > u405 >
Eu4ça

i − c50
To see that this implies a deterring value of vs = 0 in

the sequential mechanism, note that u405 > Eu4ça
i − c5 obvi-

ously implies u405 > Eu4ça
2 −c � V1 ≥ vs5 for all vs so that the

second bidder would prefer to not enter under the sequen-
tial mechanism upon knowing that first bidder had entered.
In turn, the first bidder would have no incentive to place a
preemptive bid.

Changes in the relative value of the zero payoff needed
to induce this behavior can easily be accomplished by
increases in risk aversion, as defined by Pratt (1964).
Let ce4X3u5 be the certainty equivalent for the gamble
described by the random variable X for a player with
risk-averse utility function u, or the amount such that
Eu4X5 = u4ce4X3u55. If another risk-averse utility function
v is “more risk averse” than u, then we know that for
all X ce4X3v5≤ ce4X3u5, or certainty equivalents shift down
as risk aversion increases. Since all the shifts are relative
to the certain amount of 0, increases in risk aversion will
accomplish changes in the relevant inequalities as expressed
above.

Appendix B. Uniqueness of Equilibrium
In this section, we proceed as do Roberts and Sweeting
(2013), and use existing results on sequential equilibria of
signaling games to verify that the revealing equilibrium
identified in the §4.1 is indeed the unique perfect sequen-
tial equilibrium under the D1 refinement concerning out of
equilibrium beliefs.
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Proposition 1. There exists a unique equilibrium preemptive
bid function and cutoff values in the sequential mechanism under
the D1 refinement.

To prove this proposition, consider the four main
“stages” of the described equilibrium.

Stage 1. The first bidder arrives and observes her private
cost of entry �1 and decides to enter or not.

Stage 2. The first bidder learns her private value (v1) and
may place preemptive bid p, which might reveal informa-
tion about v1.

Stage 3. The second bidder arrives and observes the
preemptive bid (p) and his private cost of entry �2 and
decides to enter or not.

Stage 4. If the second bidder enters, he learns his value
(v2) and bids in an English auction with a starting price of p.
Note that it is only the actions in Stages 2 and 3 that may
be impacted by the signaling nature of the game. However,
the other stage strategies must obviously satisfy sequential
rationality. Therefore, we work backward to establish our
equilibrium result.

In Stage 4, given that each player has a dominant strategy
to bid his or her value, the payoffs from the auction are
determined accordingly. Namely, the ex post auction profits
in equilibrium are given by

�a
i 4p1vi1vj5=











vi − vj vi ≥ vj ≥ p1

vi − p vi ≥ p > vj1

0 otherwise0

In Stage 3, given a revealing preemptive bid equilibrium
(or any beliefs that the second bidder has about the first
bidder’s value as a result of Stage 2), the second bid-
der’s expected utility from entry is given by �a

2 + �2 − c,
which is strictly increasing in �2 so a cutoff strategy will be
the unique equilibrium given beliefs about auction profits
defined by �a

2 .
In Stage 2, we need to show that given the cutoff strategy

of the second bidder in Stage 3 and dominant strategy bid-
ding strategies in Stage 4, the differential equation defined
by Equation (15) is the unique sequentially rational equi-
librium bid function satisfying the D1 refinement. We uti-
lize the results of Mailath and von Thadden (2013), which
generalizes the earlier results of Mailath (1987) to the situa-
tion examined in this paper. Namely, they provide sufficient
conditions for the incentive-compatible, separating strat-
egy (e.g., preemptive bid function) to be differentiable and
therefore characterized by the differential equation. In par-
ticular, they examine the case where both the private infor-
mation type space and domain of the strategy space are
compact, as is the case in our situation since the private
information types space is the values of the first bidder and
is the given by the unit interval 60117 and the set of admis-
sible preemptive bids is also the unit interval 60117.

We redefine the interim expected profit function (Equa-
tion (12)) of the first bidder to be given by

ç14p1v11 v̂15 = �a
1 4p1v15+ê

(

�a
2 4v̂15−�

�

)

· 6v1 − p−�a
1 4p1v1571 (B1)

where v1 is the bidder’s actual value, v̂1 is the value the
second bidder believes the first bidder to have, and p is the
preemptive bid. As defined in Equation (5), we have

�a
1 4p1v15=

v2
1 − p2

2
and

�a
2 4v̂15=

41 − v̂15
2

2
0

The function ç1 defined by Equation (B1) is obviously twice
continuous and differentiable in each argument. We begin
by checking that the two assumptions of Mailath and von
Thadden (2013) are satisfied in our problem.

1. The first-best (full-information) contracting problem
has a unique solution. In our case, if the second bidder is
fully informed of v1, then it is always optimal for the first
bidder to place a preemptive bid of 0 so that the unique
solution is p4v15= 0 for all v1 ∈ 60117.

2. The second-order condition is satisfied, or

¡2ç1

¡p2
< 0

for all v1 evaluated at the first-best optimal solution. To see
that this is true, note that

¡ç1

¡p
=

¡�a
1 4p1v15

¡p
+ê

(

�a
2 4v̂15−�

�

)[

−1 −
¡�a

1 4p1v15

¡p

]

= −p+ê

(

�a
2 4v̂15−�

�

)

6p− 17

= p

(

ê

(

�a
2 4v̂15−�

�

)

− 1
)

−ê

(

�a
2 4v̂15−�

�

)

1 (B2)

so the second partial derivative is given by

¡2ç1

¡p2
=ê

(

�a
2 4v̂15−�

�

)

− 11

which is strictly negative for any value of v̂1 since ê4 · 5 < 1
for all values because it is the cdf of the standard normal
distribution.

Given that the assumption of Mailath and von Thadden
(2013) are satisfied, we can then apply Theorem 3 for a
sufficient condition for differentiability of p4v15. In partic-
ular, we need that ¡ç14p1v11v15/¡p 6= 0 for all p ∈ 60117.
Examining Equation (B2), this is clearly satisfied for all
p since this value is strictly negative. Since p4v15 is dif-
ferentiable, it is continuous. Theorem 6 of Mailath and
von Thadden (2013) shows that a standard single-crossing
property implies incentive compatibility. In particular, since
p′4v15 > 0 and ¡ç1/¡v̂1 ≤ 0, for all v1 ∈ 40115 and v̂1 ∈ 40115,
it must be that

¡

¡v1

{

4¡ç14p4v̂151v11 v̂155/¡p

4¡ç14p4v̂151v11 v̂155/¡v̂1

}

≤ 00

Note that
¡ç14p4v̂151v11 v̂15

¡v̂1

= −
1
�
�

(

�a
2 4v̂15−�

�

)

6v1 − p−�a
1 4p1v15741 − v̂15

so that
¡2ç14p4v̂151v11 v̂15

¡v̂1¡v1
= −

1
�
�

(

�a
2 4v̂15−�

�

)

41 − v1541 − v̂151
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which is strictly negative since �4 · 5 is the strictly positive
density of the normal distribution. Also, note from Equa-
tion (B2) that this derivative is not a function of v1, so
¡2ç14p4v̂151v11 v̂15/¡p¡v1 = 0. Taking these results together,
we have that

¡

¡v1

{

¡ç14p4v̂151v11 v̂15/¡p

¡ç14p4v̂151v11 v̂15/¡v̂1

}

=
−44¡ç14p4v̂151v11 v̂15/¡p54¡

2ç14p4v̂151v11 v̂15/¡v̂1¡v155

4¡ç14p4v̂151v11 v̂15/¡v̂15
2

1

which is strictly negative.
Although this result has established that the separating

equilibrium characterized by the differential equation is the
unique separating equilibrium to this problem, we have
not ruled out the possible coexistence of pooling equilib-
ria. Ramey (1996) shows that all equilibria satisfying the
D1 refinement will be separating equilibria as long as two
conditions are satisfied. The first is that the single-crossing
property established above is satisfied. The second is that no
first bidder can want to play the highest possible preemp-
tive bid. It is clear in our case that no bidder would want to
place a preemptive bid of 1 since it guarantees payoffs of 0
(or less). Thus, it follows that the revealing preemptive bid-
ding strategy described is the unique equilibrium strategy
satisfying the D1 requirement at this stage.

Finally, in Stage 1, The expected profit from entry for the
first bidder is given by

�14e15=

∫ 1

0
�14p

∗4v151v15 dv1 − c+ �11

which is strictly increasing in �1 so the cutoff strategy
described will be the unique equilibrium of this stage.

Thus, we have identified a unique perfect sequential
equilibrium under the D1 refinement.

Appendix C. Cohort-Level Results for Revenue

Treatment Cohort Auction Seqmech

Lowcost (c= 3) 1 33.63 29.86
2 32.07 35.72
3 29.99 36.31
4 32.19 29.97
5 34.18 39.98
6 30.64 36.02
7 25.27 38.53
8 34.66 36.02
9 30.87 27.30
10 32.18 32.78

Average 31.57 34.25

Highcost (c= 10) 1 25.65 30.73
2 27.83 36.84
3 25.61 34.78
4 30.20 27.87
5 26.38 22.99
6 23.78 32.12
7 30.70 28.14
8 24.90 29.51
9 23.90 25.39
10 27.17 34.64

Average 26.61 30.30
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