Please solve the following 4 problems, some of which have multiple parts.

1. Let $G = (V, E)$ be a directed acyclic graph whose vertices have labels from some fixed alphabet, and let $A[1 .. ℓ]$ be a string over the same alphabet. Any directed path in G has a label, which is a string obtained by concatenating the labels of its vertices.

 (a) Describe and analyze an algorithm that either finds a path in G whose label is A or correctly reports that there is no such path.

 (b) Describe and analyze an algorithm to find a path in G whose label has minimum edit distance from A.

2. Consider a path between two vertices s and t in an undirected edge-weighted graph $G = (V, E)$. The width of this path is the minimum weight of any edge in the path. The bottleneck distance between s and t is the width of the widest path from s to t. (If there are no paths from s to t, the bottleneck distance is $-∞$; on the other hand, the bottleneck distance from s to itself is $∞$.) See Figure 1.

(a) Prove that the maximum spanning tree of G contains widest paths between every pair of vertices.

(b) Describe an algorithm to solve the following problem in $O(V + E)$ time: Given an undirected weighted graph $G = (V, E)$, two vertices s and t, and a weight W, is the bottleneck distance between s and t at least W?

(c) Suppose B is the bottleneck distance between s and t.

 i. Prove that deleting any edge with weight less than B does not change the bottleneck distance between s and t.
ii. Many graph algorithms use an operation called **edge contraction**. To contract the edge \(uv \), we insert a new node, redirecting any edge incident to \(u \) or \(v \) (except \(uv \)) to this new node, and then delete \(u \) and \(v \). After contraction, there may be multiple parallel edges between the new node and other nodes in the graph; we then (for the sake of this problem) remove all but the **heaviest** edge between any two nodes. See Figure 2.

![Figure 2: Contracting an edge and removing redundant parallel edges.](image)

Prove that contracting any edge with weight greater than \(B \) does not change the bottleneck distance between \(s \) and \(t \).

(d) Describe an algorithm to compute a minimum-bottleneck path between \(s \) and \(t \) in \(O(V + E) \) time. You may assume that given any subset of edges \(E' \subseteq E \), it is possible to contract every edge in \(E' \) in \(O(V + E) \) time total.

[Hint: Start by finding the median-weight edge in \(G \). Use the observations in part (c) to reduce the size of the graph.]

3. Suppose we are given a directed graph \(G = (V, E) \) with edge weights \(w : E \to \mathbb{R} \) and two vertices \(s \) and \(t \). You may assume \(G \) has no negative weight cycles.

(a) Describe and analyze an algorithm to find the shortest path from \(s \) to \(t \) when exactly one edge in \(G \) has negative weight. [Hint: Modify Dijkstra’s algorithm. Or don’t.]

(b) Describe and analyze an algorithm to find the shortest path from \(s \) to \(t \) when exactly \(k \) edges in \(G \) have negative weight. Any \(O(f(k)E \log V) \) time algorithm where \(f \) is a function of \(k \) is worth full credit, but an \(O(kE \log V) \) time algorithm may be faster and easier to analyze than those with worse dependency on \(k \). [Hint: Modify Bellman-Ford so it sometimes calls a variant of Dijkstra’s algorithm in the subgraph of non-negative weight edges.]
4. In this problem, we will discover how you, yes you, can be employed by Wall Street to cause a major economic collapse! The arbitrage business is a money-making scheme that takes advantage of differences in currency exchange. In particular, suppose 1 US dollar buys 120 Japanese yen, 1 yen buys 0.01 euros, and 1 euro buys 1.2 US dollars. Then, a trader starting with $1 can convert their money from dollars to yen, then from yen to euros, and finally from euros back to dollars, ending with $1.44! The cycle of currencies \rightarrow ¥ \rightarrow € \rightarrow $ is called an arbitrage cycle. Of course, finding and exploiting arbitrage cycles before the prices are corrected requires extremely fast algorithms.

Suppose n different currencies are traded in your currency market. You are given a matrix $\text{Exch}[1..n,1..n]$ of exchange rates between every pair of currencies; for each i and j, one unit of currency i can be traded for $\text{Exch}[i,j]$ units of currency j. (Do not assume that $\text{Exch}[i,j] \cdot \text{Exch}[j,i] = 1$.)

(a) Describe and analyze an algorithm that returns a matrix $\text{MaxAmt}[1..n,1..n]$, where $\text{MaxAmt}[i,j]$ is the maximum amount of currency j that you can obtain by trading, starting with one unit of currency i, assuming there are no arbitrage cycles.

[Hint: Reduce to APSP. How can you turn a problem about maximizing a product into one about minimizing a sum?]

(b) Describe and analyze an algorithm to determine whether the given matrix of currency exchange rates creates an arbitrage cycle.