$$
\begin{aligned}
& \text { CS 6363.003.235 } \\
& \text { Algorithms } \\
& H_{i}, I_{n}^{\prime} \text { Kyle! } \\
& \text { (he/him) }
\end{aligned}
$$

Office Hours

$$
\begin{aligned}
& \text { Tues days } 3-4 \text { (not today) } \\
& \text { Wed, } 10-11 \text { am }
\end{aligned}
$$

Reading
"Required": Algorithms Erickson
Recommended: Corm en petal, Intro to Algorithms (CURS)
Ill never malay you buy the book.
30% homework
(5 assignments)
Consider LaTeX
Two midterms 20% each Final exam 30%
cumulative
closed notes / book

Homework:
Groups of ≤ 2

- Turn in ane copy on
learning
Still get fall credit
with out side sources
if you cited
write in your own words
- Automatic 24-hour dead lino extension if you email me.

Algorithms:
algorithm: explicit, precise,
un ambiguous, mechanically-
execat able sequence of
elementary instructions
Sing " n bottles of beer for any int $n \geq 0$ "
$\frac{\text { BottlesOfBeer }(n) \text { : }}{\text { For } i \leftarrow n \text { down to } 1}$
Sing " i bottles of beer on the wall, i bottles of beer,"
Sing "Take one down, pass it around, $i-1$ bottles of beer on the wall." Sing "No bottles of beer on the wall, no bottles of beer," Sing "Go to the store, buy some more, n bottles of beer on the wall."

Lattice multiplication: Given two non-negative int

$$
\begin{aligned}
& x+y \text { as } \\
& X[0 \ldots m-1]+Y[0, n-1]
\end{aligned}
$$

where

$$
\begin{aligned}
& x=\sum_{i=0}^{m-1} X[i] \cdot 10^{i} \\
& y=\sum_{j=0}^{n-1} Y[j] \cdot 10^{j}
\end{aligned}
$$

want $z=x \cdot y$ as
$Z\left[0 \cdot \cdot m_{m+n}^{m+n}-1\right]$ where

$$
z=x \cdot y=\sum_{k=0}^{m+n} z[k] \cdot 10^{k}
$$

```
FibONACCiMUltiply(X[0..m-1],Y[0..n-1]):
    hold}\leftarrow
    for }k\leftarrow0\mathrm{ to }n+m-
        for all i and j such that i+j=k
            hold }\leftarrow\mathrm{ hold +X[i].Y[j]
        Z k]}\leftarrowhold mod 1
        hold}\leftarrow\lfloorhold/10
    return Z[0..m+n-1]
```

A standard CS student should be able to code up the aldo you describe.

Describing an Algorithm:
What: Specify the input, output what it accomplishes
How: Precise description of the algorithm.
Why: Argue correctness (a proof!)
How fast: Big Oh notation

Know your audience! use pseudocodet precise English descriptions "skeptical novice"

What: Specify the exact (mathy) problem yours being asked to solve.
Specify: input tout put variables, types, etc.
How: Pseado code is nice Gut not strictly necessary.

Why: Prove it works for any input

How fast...

Analysis:
Only ware about 6 ig inputs.
Constants $d_{\text {on }}{ }^{\prime}$) matter
(mach)
Big oh notation.

$$
\begin{aligned}
& f(n): \mathbb{N} \rightarrow \mathbb{R}^{+} \\
& \lambda_{\text {naturals }}^{\uparrow_{\text {rents }}} \\
& g(n): \mathbb{N} \rightarrow \mathbb{R}^{+}
\end{aligned}
$$

$$
\delta(n) \in O(g(n)) \text { if } f(n)
$$

grows no quicker than $g(n)$ "up to const ant factors"

$$
O(g(n))=\{f(n) \text { : there exist }
$$

pos constants c nn_{0} such that $j \leq f(n) \leq c g(n)$ for ell $\left.n \geq n_{0}\right\}$

constant $c \in O(1)$ for any $c>0$
"loose upper bound"

$$
\begin{aligned}
& 256 n \in O(n) \\
& 256 n \in O\left(n^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Suppose } f_{1}(n) \in O\left(g_{1}(n)\right) \\
f_{2}(n) \in O\left(g_{2}(n)\right) \\
C \cdot f_{1}(n) \in O(f(n)) f_{\text {or any }} \\
\text { constant } \begin{array}{c}
\text { sequence } \\
f_{1}(n)+f_{2}(n) \in \gamma\left(g_{1}(n)+g_{2}(n)\right)^{2} \\
f_{1}(n)+f_{2}(n) \in O\left(\max f_{g_{1}}(n)\right. \\
\left.g_{2}(n) 3\right) \\
f_{1}(n) \cdot f_{2}(n) \in O\left(g_{1}(n) \cdot g_{2}(n)\right) \\
\lambda \\
\text { loping }
\end{array}
\end{gathered}
$$

Often write

$$
f(n)=O(g(n))
$$

