$$
\begin{aligned}
& f_{1}(n) \in O(g(n)) \\
& f_{2}(n) \in O\left(g_{2}(n)\right) \\
& f_{1}(n) \cdot f_{2}(n) \in \sigma\left(g_{1}(n) \cdot g_{2}(n)\right)
\end{aligned}
$$

Total: $\sigma\left(1+n^{2}+1\right) \subseteq \sigma\left(n^{2}\right)$
O : loose upper bound
$\Omega:$ loose lower bound
$\Omega(g(n))=\{f(n)$: exist pas. constants c, n, sat.

$$
\delta \leq c g(n) \leq f(n) \text { for }
$$

all $n \geq n_{0} 3$

$$
F_{i 6} 6 M_{u} \text { It has } \geq n / 2 \in \Omega(n)
$$

values of k sit.
inner loop runs $\geq n / 2 \in \Omega(n)$
times.
\Rightarrow runs in $\Omega\left(n^{2}\right)$ time
big Theta: $\theta(g(n))=O(g(n)) \cap$
$\Omega(g(n))$
F_{i}, M_{n} it tales $\theta\left(n^{2}\right)$ time "asymptotically tight bound"
lite loin
$\sigma(g(n))=\{f(n)$: for all pos. constants c, there exists n, sit
$0 \leqslant f(n)<c g(n)$ for ell $\left.n \geq n_{0}\right\}$
little omega wi tight lower 6 sound

$$
\begin{gathered}
w(g(4 n))=\left\{f(n) \mid \forall c>0 \quad \exists n_{0}>0\right. \\
\text { st. } 0 \leq c g(n)<f(n) \\
\left.\forall n \geq n_{0}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& 5 n^{2}=O\left(n^{2}\right) \\
& 20 n^{2}+O(n)=O\left(n^{2}\right)
\end{aligned}
$$

"Jor all choices of functions in each bit of asymptotic notation on the lest), there exist choices of function for right to make (in)equality true.
$F_{i 6}\left(m_{\omega} \mid t\right.$

$$
\begin{aligned}
& O(1)+\sigma(n) \cdot(\sigma(1)+O(n)+O(1)) \\
& \quad+0(1) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
5_{n}^{2}+1000 n & =5_{n}^{2}+O(n) \\
& =O\left(n^{2}\right) \\
& =O\left(2^{n}\right) \\
& \leq O\left(2^{n}\right)
\end{aligned}
$$

$f(n)$ is polynomially bounded if $f(n)=O\left(n^{k}\right)$ for some constant k

$$
n^{k_{1}}={ }_{0}\left(n^{k_{2}}\right) \text { ifs } k_{1}<k_{2}
$$

most a from this running
times class
expontiel functions
$n^{k}=0\left(a^{n}\right)$ for any constants

$$
k+a>1 .
$$

$a^{n}=0\left(c^{n}\right)$ for any $(>a>)$
polylogorithmically bounded:
$\left(\log _{b} n\right)^{e}=0\left(n^{k}\right)$ for any
con stants $6>1, l, k>0$.

$$
\begin{aligned}
& \lg n:=\log _{2} n \\
& \operatorname{lo}_{n} n=\log _{e} n \\
& \log n:=\log _{12} n
\end{aligned}
$$

$$
\begin{aligned}
& \log _{b} n:=\left(\log _{b} n\right)^{l} \\
& \log _{b} n=\frac{\log _{a} n}{\log _{a} b}=\theta(\log n) \\
&(a+b \operatorname{constants}) \\
& \Rightarrow O(n \lg n)=O(n \log n)
\end{aligned}
$$

WARNING:

$$
S^{\log _{3} n} \epsilon_{0}\left(S^{\lg n}\right)
$$

For running times $O\left(n^{2}\right)$ is better than

$$
\begin{gathered}
25 \cdot \partial\left(n^{2}\right) \\
\text { or } O\left(25 n^{2}\right) \\
\sigma\left(n^{2}\right)+O(n)=O\left(n^{2}\right) \\
O\left(5^{\log _{3} n}\right)=O\left(n^{\log _{3} 5}\right)
\end{gathered}
$$

A reduction from problem X to problem \mathcal{Y} means en algorithm for X that uses an algorithm for Y as "black-6ox"or subroutine.
Alg for X mast be correct for any alg for Y.
(running time might care)
M_{a} atc uses simple theorems called lemmas. Big important prod may reduce to already proven lemmas.

* theorem:

Let n be a pos. integer.
A divisor is a pos. integer p sit. n / p is an integer.
n is prime it has exactly two divisors, $n+1$.
n is composite if it has 72 divisors.

Th m: Every integer $n>$) has a prime divisor.
Proof (?): Suppose there is an $n>$) with no prime divisor
n is its awn divisor, so n is not prime
So there is a divisor d sit. $1<d c_{n}$.
By assumption, d is not prime.
so Jd, is e divisor of d

$$
\begin{aligned}
& \text { cit. } \mid<d_{1}<d . \\
& n / d=(n / d) \cdot(d / d) \text { is an } \\
& \text { integer so } d^{\prime} \text { divides }
\end{aligned}
$$

n.
So d_{1} is not prime...

Try 2: Assume Thy is wrong. (et $n>$) (e the surallest counter example.
n is not prime
So there is a divisor

$$
1<d<n \text {. }
$$

By assumption, d has a prime divisor $1<p \leq d$.

$$
(n / p)=(n / d) \cdot(d / p) \text { is an }
$$

integer, do p is a prime ${ }^{(!)}$

$$
\text { divisor of } n . \perp
$$

Proof: L et $n>1$. Assume
all k sit.) $<k c_{n}$ has
a prime divisor.
Suppose n is prime.
n is its own prime divisor!
Suppose n is not prime.
There is a divisor kaon.
By assumption, l has a prime divisor p.
p is a prime divisor of n.

In all cases, n has a prime divisor.

Proof by induction.

