

 $T_{ofa}: O(1+n^2+1) \subseteq O(n^2)$

t.'wes'

\exists runs in $\Omega(n^2)$ time

6_{ig} -Theta' $\Theta(g(n)) = O(g(n)) \wedge$ $\Omega(g(n))$

$F_{ib}M_{u}$ It takes $\Theta(n^{2})$ time

acymptotically tight 6ound

1:1+ 10-0h

$o(g(n)) = \{f(n): for all pos.$ constants c there exists

$N_{o} s_{i}t_{i}$ $\partial \in S(n) < c_{g}(n) \quad for$ $c \parallel n \geq n_{o} \geq 3$

little omega Witight lower

bound

$w(g(n)) = \{f(n) \mid \forall c=0 \exists n \ge 0 \\ st. 0 \le cg(n) < f(n) \\ \forall n \ge n \ge 3 \}$

$5\eta^2 = o(\eta^2)$

$20n^2 + 0(n) = O(n^2)$

For all choices of functions

in each 6:t of asymptotic notation on the lest,

there exist choices of Function for right to make (in)equality true,

$F_{i} M_{u} I_{j} = O(i) + O$

$5n^{2} + 1000n = 5n^{2} + 0(n)$ = 0(n²) = 0(2⁹) $\leq 0(2^{9})$

S(n) is polynomially

bounded ; f

$f(n) = O(n^k)$ for some constant k.

$n^{k_1} = o(n^{k_2})$; ff $k_1 < k_2$ most π from this running class times

expontion Sunctions

nk=o(an) for any constants k + a 71.

aⁿ=o(cⁿ) for any (?a?),

polylogorithmically bounded: (log n) = o(nk) for any Con stants 6-1, l, + k=0.

 $lg n \stackrel{i=}{:} log_2 n$ $l_{n} n := log_{e} n$ $log_{n} := log_{e} n$

$\log_{6}^{l} n := (\log_{6}^{n})^{l}$

$\log_{b} n = \frac{\log_{a} n}{\log_{a} b} = \Theta(\log n)$

= 7 O(n lg n) = O(n log n)

WARNING:

For running times

6(n2) is letter than

 $25.0(1^2)$ or $0(25n^2)$

$G(n^2) + O(n) = O(n^2)$

$O(5^{\prime\prime})^{g_{3}}) = O(n^{\prime})^{g_{3}})$

A roduction from protlem X to problem Y means en algorithm for X that uses an algorithm Sor Y as a "black - 60x" or Subroutine. Alg for X must be Correct for any alg for Y. (running time might care)

Math uses simple theorems

called lommas. Big important

prood may reduce to already

proven lommas.

* theorem: Let n be a pos integer. A divisor is a pos. integer p s.t. N/p is an integer. n is prime it has exactly two divisors, n+1. n is composite if it has 72 divisors.

Thm: Every integer n >) has

a prime divisor.

Proot (?): Suppose there is an nz) with no prime

- divisor.
 - n is its own divisor so
 - n is not prime
 - So there is a divisor d
 - s.t. | c.d. c.n.
 - By assumption, d is not
 - prime. Sozd, is edivisor of d

c,t, l, d, cd

 $n_{d} = (n_{d}) \cdot (d_{d})$ is an integer so d' divides

n. So d. is not prime...

Try 2: Assume Thm is wrong

(et n=) (e the smallest

counter example.

n is not prime

So there is a divisor

|cd < n|

By assumption, d has

a prime divisor leped.

$\binom{n}{p} = \binom{n}{d} \cdot \binom{d}{p}$ is an

integer, oo pis a prime!!)

divisor of n.

Proof: (et n 71. Assume

all k sit. Icken has

a prime divisor,

Suppose n is prime. N is its own prime divisor!

Suppose n is not prime,

There is a divisor)-den.

By assumption, I has a

prime divisor p.

И.

pis a prime divisor of

In all cases, n has a prime dN: sor.

Proof by induction.