Proofs b_{y} ind action:

1) Write a (good) template.

2) T Mink big. Use arbitrary (possibly large) values of n. Reduce to a smaller value if you can.
3) Look for holes (base cases).
4) Rewrite everything so its easier to read follow.

Don't:

- assume only for $k=n-1$
- just assume n a prove for $n+$)

Recursion:
Reduce large instances of some problem A to smaller instances of the same problem A
If you cant reduce, solve the base case directly. (don't need to le too clever, usually)

Mergesort vo Seaman '45

Input: A_{n} array $A[1,1 n]$ ot things to sort by pairwise comparisons (integers, characters, etc.)

Goal: Rearrange A 's elements so $A C 1] \leq A[2] \leq \ldots \leq A[n]$

1) Divide array int. two subarrays of roughly equal size.
2) Recursively mergesort the two subarrays. (magic)
3) Merge the two sorted subarrays quickly.

If $n \leqslant 1$, do nothing instead.

Merge:
) Use smaller first member of the $t_{\text {wo }} h^{\prime}$ la les sorted!
2) Recursively sort what remains of the subarrays. - fever elements total soc this works (by induction) assumes

Correctness:
Thm: Assuming that Merge $(B[1 . . l], k)$ sorts B if $B[1, k]+B(k+1 . . l)]$ are sorted, MergeSort $(A(1, \ldots n)$ sorts A.
(notation note: $([n+1$ in $n]$ is empty)
Proof: Assume MergeS ort (D[1...0]) sorts D whenever $0<n$ if $n \in 1, A$ is sorted oW, $m<n+n-(m+1)+1<n$ otherwise

By assumption (IH),
Merge Sort (A $(1 . \ldots m) J_{+}$
mange $S_{\text {ort }}(A(m+1 . . n))_{\text {sort }}$
Merge does merge the now-sante sub arrays.

Quicksont
Hare's 9

1) Choose a pivot element from the array.
2) Partion array into 3 subarrays stowed in this order:
3) Elements smaller than pivot.
4) Just the pivot
5) Elements larger than pivot
6) Recursively sort 1) + 3).

takes old inflex of pivot + retarns new	

Divide - and - conquer
1"Divide" given instance to create one or more inde pendent smaller instances of the same problem.
2) Delegate smaller instances to Recursion Fairy.
3) Combine solutions for smaller instances.
If instance cannot be divide e solve as a base case.

