

$$
\text { So } \begin{aligned}
T(n) & \sum_{(\cdot n}+(n-1)+(n-2)+\ldots \\
& =\Omega\left(n^{2}\right)
\end{aligned}
$$

worst case really is i. $\theta\left(n^{2}\right)$
Usually, things are better.
Subproblems are \sim same site + recurrence is more like

$$
T(n) \leq T(n / 3)+T(2 n / 3)+\theta(n)
$$

$$
\begin{aligned}
& \text { (evpls } \subseteq \log _{\frac{3}{2}} n=O(\log n) \\
& T(n) \leq O\left(n \log _{n}\right) \\
& \left.\# f_{n}\right) \prime \text { lovels } \geq \log _{p} n=\Omega(\log n) \\
& T(n) \geq \Omega(n \log n) \\
& \Rightarrow T(n)=\theta(n \log n)
\end{aligned}
$$

Median Selection
(in this class) median: the clement at index $[n / 2\rceil$ after sorting
Hare '61: (same paper as quicksort)

need recursive coils to accept a rank as a paranter
Selection (formally):

Given A[1..n] + K, return
loment of rank k

$$
\text { (lies in position } k \text { in }
$$

sorted order)
QuickSelect(A[1..n],k):
if $n=1$
return A [1]
else
Choose a pivot element $A[p]$

$$
\gg \leftarrow \operatorname{Partition}(A[1 . . n], p)
$$

hank if $k<r$
of pivot return QuickSelect $(A[1 . . r-1], k)$ return QuickSelect $(A[r+1 . . n], k-r)$
else return $A[r]$
worst-ease

$$
\begin{aligned}
& T(n)=\max _{1 \leq l \leq n-1} T(l)+\theta(n) \\
& T(n)=\theta\left(n^{2}\right)
\end{aligned}
$$

each tine
(1.2)

Suppose $l \leq \alpha \cdot n$ for some constant $a<l$

$$
T(n) \subseteq T(\alpha n)+\theta(n)
$$

decreasing geometric...

$$
T(n)=\theta(n)
$$

Median of Medians BFPRT 170s

Divide input into $[n / 5]$
blocks of 5 elements each. (assume nl)
Find median of each flock.
Find median of these medians (mom) using our algorithm recursively.
Use mom as the pivot.

Mom Select $(A[1, n] k)$ ：
moves rank k element to position k a returns it
$\frac{\operatorname{MomSeLECT}(A[1 . . n], k):}{\text { if } n \leq 25\langle\langle o r \text { whatever }\rangle}$
else use brute force
$m \leftarrow\lceil n / 5\rceil$
for $i \leftarrow 1$ to m
MedianOfFive（［A［5i－4 ．． $5 i])$ Moves median to index $5 i-2$ 》
$\operatorname{swap} A[i] \leftrightarrow A[5 i-2]$
$\operatorname{MomSelect}(A[1 . . m],\lceil m / 2\rceil)$ 《 Recursion！Also，moves mom to index $\lceil m / 2\rceil$ ．》》
$\leftarrow \operatorname{Partition}(A[1 . . n],[m / 2\rceil)$
if $k<r$

return $\operatorname{MomSelect}(A[r+1 . . n], k-r)\langle$ Recursion！$\rangle\rangle$

else \quad return $A[r]$

Analysis
imagine...
Lay out A as a $S \times[n / s]$
grid.
Each column is one of the flocles of S.
Sort each column smallest biggest

Sort collection of columns by their medians.
mom $>[[n / s] / 2\rceil \star$ flock medians
3 elements \leq to each bloch median within a block
$\Rightarrow>\frac{3 n}{10}$ elements $<$ mom
$\Rightarrow<\frac{7 n}{10}$ elements $>$ mom
by symmetry, $\frac{<7 n}{10}$ elements mom

So second call on $\subseteq \frac{7 n}{10}$ elements.

Why 5 ?
S is odd
so.. 3?
the second call would have size ${ }^{c}$

$$
\begin{aligned}
& n-(2 \cdot(n / 3) / 2) \\
& =2 n / 3 \\
& T(n) \leq T(n / 3)+T(2 n / 3) \\
& =\theta(n \log n)
\end{aligned}
$$

Don't ase Mom Select!
Pick a pisot anifarmly at random.

For 6oth Quisk Sorto Select.
Expected time is $O(n \log n)$

