Ex ample: Computational Geometry

Closest $P_{\text {air }}$ (in the plane) Given $n$ points in the plane $\mathbb{R}^{2}$.
as $X[1 . n]+Y[1 . n]$. it point located at ( $X[i], Y[i]$ )
Goal: Find pair with smallest Euclidean distance.
focus on returning distance

Obvious solution: Check all $\theta\left(n^{2}\right)_{\text {pairs }}$
Idea: Split points by melian $x$-coordinate + recuse?
Recourse on each sided check pairs spanning the middli.e

$X L[1 . .\lfloor n / 2\rfloor]$ and $Y L[1 . .\lfloor n / 2\rfloor] \leftarrow$ leftmost $\lfloor n / 2\rfloor$ points $\ell \leftarrow \operatorname{ClosestPair}(X L[1 . .\lfloor n / 2\rfloor], Y L[1 . .\lfloor n / 2\rfloor])\langle\langle R e c u r s e!\rangle)$
$X R[1 . .\lceil n / 27]$ and $Y R[1 . .\lceil n / 21] \leftarrow$. $r \leftarrow \operatorname{ClosestPair}(X R[1 . .\lceil n / 2 \mid], Y R[1$.. $\lceil n / 27])\langle\langle R e c u r s e!\rangle)$ $m \leftarrow \infty$ 《/Find closest pair between two halves 〉 $i \leftarrow 1$ to $\lfloor n / 2\rfloor$
for $j \leftarrow 1$ to $\lceil n / 2\rceil$

Distance $(X L[i], Y L[i], X R[j], Y R[j])<m$
$\quad m \leftarrow \operatorname{Distance}(X L[i], Y L[i], X R[j], Y R[j])$

$$
T(n)=2 T(n / 2)+\theta\left(n^{2}\right)=\theta\left(n^{2}\right)
$$



Two facts: $d:=\min \{l, r\}$ So solution is $\leqslant d$. ( $p, q$ ) : closest pair

If $(p, q)$ spans midll. line...

1) $p+q$ arp distance $\subseteq d p^{-}$
from mild le line
2) 


$y$-cor within $d$ of $p$ 's.
$\Rightarrow$ \& lives in a $d \times 2 l$ box vertically centered on $p$ with a side on mild Ip
line
There are fen choices for q!
$W_{0}$ more than 6 .
Proof A is $\leqslant 8$.


$$
\left(\frac{d}{2}\right) \cdot \sqrt{2}=\frac{d}{\sqrt{2}}
$$

Choices for of are distance $\geq d$ apart, so $\leqslant 1$ per square.

ClosestPairFast（X［1 ．．n］，$Y$［1 ．．n］）：
《｜Assumes points come pre－sorted by $y$－coordinate $\rangle$
if $n \leq 3$
solve by brute force
$X L[1 . .\lfloor n / 2\rfloor]$ and $Y L[1 . .\lfloor n / 2\rfloor] \leftarrow$ leftmost $\lfloor n / 2\rfloor$ points
$\ell \leftarrow$ ClosestPairFast（XL［1 ．．$\lfloor n / 2\rfloor], Y L[1$ ．．$\lfloor n / 2\rfloor])\langle$ Recurse！$\rangle\rangle$
$X R[1 . .\lceil n / 2\rceil]$ and $Y R[1 . .\lceil n / 2\rceil] \leftarrow$ rightmost $\lceil n / 2\rceil$ points
$r \leftarrow$ ClosestPairFast（XR［1 ．．［n／27］，YR［1 ．．「n／2］］）《＜Recurse！$\rangle\rangle$
$d \leftarrow \min \{\ell, r\}$
《／Find closest pair between two halves》》
$X L^{\prime}[1 . . k]$ and $Y L^{\prime}[1 . . k] \leftarrow$ subset of leftmost $\lfloor n / 2\rfloor$ points with $x$－coordinate $\geq X$ 禺 $[1 / \sim d$ $X R^{\prime}[1 . . o]$ and $Y R^{\prime}[1 . . o] \leftarrow$ subset of rightmost $\lceil n / 2\rceil$ points with $x$－coordinate $\left.\leq X, 1\right]+d$ $m \leftarrow \infty$
$j \min \leftarrow 1$
for $i \leftarrow 1$ to $k$
while $j \min \leq o$ and $Y R^{\prime}[j \min ]<Y L^{\prime}[i]-d$
$j \min \leftarrow j \min +1$
$j \leftarrow j m i n$
while $j \leq o$ and $Y R^{\prime}[j] \leq Y L^{\prime}[i]+d$
if Distance $\left(X L^{\prime}[i], Y L^{\prime}[i], X R^{\prime}[j], Y R^{\prime}[j]\right)<m$
$m \leftarrow \operatorname{Distance}\left(X L^{\prime}[i], Y L^{\prime}[i], X R^{\prime}[j], Y R^{\prime}[j]\right)$
$j \leftarrow j+1$
return $\min \{\ell, r, m\}$
$T(n)=2 T(n / 2)+\theta(n)$

Fibonacc: Numbers

$$
F_{n}=\left\{\begin{array}{lll}
0 & \text { if } & n=0 \\
1 & \text { if } & n=1 \\
F_{n-1}+F_{n-2} & \text { otherwise (o.w.) }
\end{array}\right.
$$



$$
\begin{aligned}
T(n) & =T(n-1)+T(n-2)+1 \\
& =2 F_{n+1}-1 \\
& =\theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)
\end{aligned}
$$



There are $F_{n}$ leaves of value $F_{1}$
Memoization:
keep a table larray of known values
$(O(n))$


Solves subproblems in order from 0 to $n$...

So lets make it explicit s
ITERFIBO $(n)$ :
$F[0] \leftarrow 0$
$F[1] \leftarrow 1$
for $i \leftarrow 2$ to $n$
$F[i] \leftarrow F[i-1]+F[i-2]$
return $F[n]$
$\sigma(n)$ loperations)
Dynamic Programming:
Solving recursive sabproblens in order using a table to stove answers

Memory?
Only need to ember lest two values so $\sigma(1)$ passible.

Rod Cutting:
Given an integer $n \not t$ an array $P[1 . . n]$ of numbers.

Were handed a rod of length $n$. Can cat it int. smaller pieces lot int long th)
We can sell a piece of length $i$ for $P[i]$ SD. Want to maximize sum of piece prices.

In other words, want a list $c_{i_{1}}, i_{2}, \ldots, i_{k}>. \gamma$ lengths sit. $\sum_{j=1}^{k} i_{j}=n$ sit $\sum_{j=1}^{k} P\left[i_{j}\right]$ is maximized.

$$
E_{x}: P P(1 . . n]=(1,5,8,97
$$

Best option is $\langle 2,2\rangle$.
for $5+5=10$ USS.
If I know the first length $i_{1}$, I want to find
best solution for
remaining $n \cdot i$.
"optimal substruture property"

Backtracking: Guess part of solution, using recursive calls to learn consequences of each choice.


As a recurrence.
Max Revenue (i): max amount from setting a rod of length i,

$$
\operatorname{Max} \operatorname{Revenue}(i)= \begin{cases}0 & \text { if } i=0 \\ \max _{1 \leq j \leq i}\left(P[j]_{+}\right. \\ \operatorname{Max} R_{\text {event }}[ \\ i-j]\end{cases}
$$

next time: memorize it!

