Edit Distance between two strings is ${ }^{\text {min } A}$ insertions, deletions, substitutions of single characters to furn one string into the other.

$$
\begin{aligned}
& \text { FOOD } \rightarrow \text { MOOD } \rightarrow \text { MON } \\
& \rightarrow \text { MONED } \\
& \rightarrow \text { MONEY } \\
& E . D_{1} \leq 4
\end{aligned}
$$

Levenshtein (coding theory), Clam (biological sequences) Vintsyuk (specen recognition)

Input: two string

$$
A[1, m], B[1, n]
$$

Output: Their edit distance.
FOO D Imagine edits by MONEY stacking strings. Each column is an edit.

$$
\left.\begin{array}{llllllllll}
\text { A } & L & G & O & R & & I & & T & H
\end{array}\right]
$$

What should we do for the last column?
Use backtracking to try all options.

The rest of the columns should represent the edit distance of What remains!

So recursive subproblem are prefixes...
encoded as their final indices (i,e, their lengths)
Edit (i, j) : edit dist ance
for $A[1 . . i]+B[1, . j]$.
We want to compute Edit (m, n).

Recurrence:
Suppose $\dot{\omega}>0 j>0$. If our $\begin{gathered}\text { optimal }\end{gathered}$ last column is an...
Insertion:

$$
E \operatorname{dit}(i, j)=1+E \operatorname{dit}(i, j-1)
$$

Deletion:

$$
F_{d i}+(i, j)=1+E_{d i}+(i-1, j)
$$

Substitution (?):

$$
E d_{i}+(i, j)=E d_{i}+(i-1, j-1)+
$$

$$
\begin{aligned}
& {[A[i] \neq B[j]]} \\
& \mu \\
& \text { indicator variable } \\
& =1 \text { if proposition } \\
& \text { is trued } \\
& 0 \text { oik. }
\end{aligned}
$$

$E \operatorname{dit}(i, j)$ uses min of those three expressions.

$$
\begin{aligned}
& E \operatorname{dit}(0, j)=j \\
& E \operatorname{dit}(i, 0)=i \\
& \Rightarrow \operatorname{Edit}(0,0)=0
\end{aligned}
$$

$$
\begin{aligned}
& E \operatorname{dit}(i, j)= \\
& \begin{cases}j & \text { if } i=0 \\
i & \text { if } j=0 \\
\min \{ & \left\{\begin{array}{l}
1+E_{d i t}(i, j-1), \\
\left.1+E_{d}+(i-1) j\right) \\
{[A(i] \neq B[j]]^{\prime}+E_{d i t}(i-1)} \\
j-1)
\end{array}\right.\end{cases}
\end{aligned}
$$

Dynamic Programming
Subproblems: $\sigma \leq i \leq m$

$$
0 \varepsilon j \in n
$$

Data structure: 2D Array

$$
E \operatorname{dit}[0 \ldots m, 0 \ldots n]
$$

Dependencies:

Eval order:
space: $O(m n)$ Time: $O(1) \cdot O(m n)$

```
EditDistance \((A[1 . . m], B[1 . . n]):\)
    for \(j \leftarrow 0\) to \(n\)
        \(\operatorname{Edit}[0, j] \leftarrow j\)
    for \(i \leftarrow 1\) to \(m\)
        \(\operatorname{Edit}[i, 0] \leftarrow i\)
        for \(j \leftarrow 1\) to \(n\)
            ins \(\leftarrow E \operatorname{dit}[i, j-1]+1\)
            \(\operatorname{del} \leftarrow E \operatorname{dit}[i-1, j]+1\)
            if \(A[i]=B[j]\)
                \(r e p \leftarrow E \operatorname{dit}[i-1, j-1]\)
            else
                \(r e p \leftarrow E \operatorname{dit}[i-1, j-1]+1\)
        \(\operatorname{Edit}[i, j] \leftarrow \min \{\) ins, del, rep \(\}\)
    return \(\operatorname{Edit}[m, n]\)
```

Wagner -
Fischer' 74,

Can trace
reasons for
each optimal
choice to see
sequence
of edits in
$O(m+n)$ additio. time.

Optimal Binary Search Trees
Input : Array of keys

$$
\bar{A}[1, n] .
$$

that are sorted
frequencies $f(1 . . n]$
Key $A[i]$ will be sought after fri] times.
How to minimize total search time in a BST over A.
(A is sorted. Not f)

For a given BST T :
$V_{1}, V_{2}, \ldots, V_{n}$ in order
v_{i} store $A[i]$
$\operatorname{Cost}(T, f[1, n]):=$
$\sum_{i=1}^{n} f[i] \cdot A_{\text {ancestors of }} v_{i}$ in T
(root has 1 ancestor, itself)
T has a root, e left subtreeo right sabtree..
$r: \operatorname{root}$ key n

$$
\begin{aligned}
& \operatorname{Cost}(\tau, f)=\sum_{i=1}^{n} f[i]+ \\
& +\sum_{i=1}^{N-1} f[i] \cdot{ }^{-1} \text { ac in lost(c) } \\
& \left.+\sum^{n} f[i]\right]^{H_{a n c} \text { in }} \\
& \text { air }+1 \\
& \text { right }(\tau) \\
& =\sum_{i=1}^{n} f[i]+\operatorname{Cost}(\operatorname{left}(\tau)) \\
& f[1, r-1]) \\
& +\operatorname{Cost}(\operatorname{right}(\tau) \\
& \left.\left.\cos t(T, f[1,0])=0^{f[r+1, n}\right]\right)
\end{aligned}
$$

Idea: Guess root key t recuse on smaller a greater keys.

Recursive subsets ard contiguous!

Opt $\operatorname{Cost}(i, k):$ optimal cost of any tree over

$$
\begin{aligned}
& A[i ., k] \\
& \operatorname{Opt} \operatorname{cost}(i j k)=
\end{aligned}
$$

$$
\begin{aligned}
& \text { cost of coach guess for root key os } \\
& \text { roil over all searches }
\end{aligned}
$$

