Optimal Binary Search Trees

Given a sorted array
$A[1, n]$ of keys t an array $f[1, n]$ of access frequencies

Want is to find $\min \operatorname{cost}(T, f(1, n]):=$ BUTs $T \sum_{i=1}^{n} f[i]$. \#ancestors of v_{i} in T

Opt cost (j, k) : optimal cost ot any BST rover $A[i . . k]$ using frequencies $f[i, k]$.

$$
\begin{aligned}
& 0_{p}+\operatorname{Cos} t(i, k)= \\
& \left\{\begin{array}{l}
0 \\
\sum_{j=i}^{k} f[j]+\min _{i \leq n \leq k}\left\{0_{p}+\cos t(i, r-1)+\right. \\
0 \rho+\operatorname{Cos} t(r+1, k)\}
\end{array}\right.
\end{aligned}
$$

ow.
Original goal: compute

$$
F(i, k):=\sum_{j=i}^{k} f[j]
$$

$$
F(i, k)= \begin{cases}0 & \text { if } i>k \\ f[k]+F(i, k-1)\end{cases}
$$

$O\left(n^{2}\right)$ values in $O(i)$ time each $\Rightarrow 0\left(n^{2}\right)$ time

$$
\begin{aligned}
& \frac{\operatorname{INITF}(f[1 . . n]):}{\text { for } i \leftarrow 1 \text { to } n} \\
& \begin{array}{l}
\text { for } i \leftarrow 1 \text { to } n \\
\quad F[i, i-1] \leftarrow 0
\end{array} \\
& \text { for } k \leftarrow i \text { to } n \\
& F[i, k] \leftarrow F[i, k-1]+f[k] \\
& \sigma_{p}+\cos t(i, k)= \\
& \left\{\begin{array}{l}
0 \\
F[i j k] \min _{i \leq n \leq k}\left\{\begin{array}{r}
\text { if } \\
0_{\rho}+\cos t(i, r-1)+ \\
\left.0_{\rho}+\operatorname{Cos} t(r+1, k)\right\}
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

Subpro6lems:

$$
\begin{aligned}
& 1 \leq i \leq n+1 \\
& 0 \leq k \leq n
\end{aligned}
$$

Data structure: 2D array

$$
O_{p} t \cos t[1, n+1,0 \ldots n]
$$

Dependencies:

Eval order:

$$
\begin{aligned}
& \text { Space: } O\left(n^{2}\right) \\
& T_{\text {ime }}: O\left(n^{n}\right) \cdot O(n)=O\left(n^{3}\right)
\end{aligned}
$$

compates astores $\operatorname{Opt} \operatorname{Cost}\left[{\underset{\jmath}{k}}^{k}\right]$

```
COMPUTEOPTCost(i,k):
    OptCost[i,k]}\leftarrow
    for }r\leftarrowi\mathrm{ to }
        tmp}\leftarrowOptCost[i,r-1]+OptCost[r+1,k
        if OptCost[i,k]>tmp
                OptCost[i,k]\leftarrowtmp
    OptCost[i,k]}\leftarrowOptCost[i,k]+F[i,k
```

```
OPTIMALBST2(f[1..n]):
    INITF(f[1..n])
    for i}\leftarrown+1 downto 
        OptCost[i,i-1]}\leftarrow
        for }j\leftarrowi\mathrm{ to }
        ComputeOptCost(i,j)
    return OptCost[1,n]
```

```
OPTIMALBST(f[1..n]):
    \(\operatorname{InitF}(f[1 . . n])\)
    for \(i \leftarrow 1\) to \(n+1\)
        OptCost \([i, i-1] \leftarrow 0\)
    for \(d \leftarrow 0\) to \(n-1\)
        for \(i \leftarrow 1\) to \(n-d \quad\langle\langle\ldots\) or whatever \(\rangle\rangle\)
        ComputeOptCost \((i, i+d)\)
    return OptCost[1, n]
```

Maximum Independent Set on Trees

Given a graph $G=(V, E)$ An independent set is a subset of V sit. no pair in the subset share an edge.
Max Indeporident Set: find an ind set of max size. Really Nard!

But what about on a tree?
Given a rooted tree T on n vertices Want to know size of max ind. set in T.

T is a root t zero or more subtrees not sharing edges.

If we don't take root, subtrees can do whatever

So recursively find their max ind sets.
If we do take root we cant take children so recarse on grandchildren.

MIS (v) : site of max ind. set in the subtree rooted at v.

$$
\begin{aligned}
& M I S(v)=\max \left\{\int_{w d v}^{C} M I S(w)\right. \text {, } \\
& \left.1+\sum_{w w v} \sum_{x v_{w}} \operatorname{MIS}(x)\right\} \\
& \text { (could have written } \\
& \text { as } \sum_{x \downarrow w v} \text {) }
\end{aligned}
$$

Subproblems: vertice v of T Data structure: Store MIS(v)
as V.MIS.
Dependencies: child rent α grandchildren
Eval order: in post order.
Space: $O(n)$
Time: Each nide appears in the summations ≤ 2 times so
$O(n)$

MISyes (v): site max ind set in $v^{\prime} s$ subtree. Yon mast take v.
MIS no (v): Site max ind. set in v^{\prime} s subtree. You must not take v.
Want to return $\max \left\{M I S_{\text {yes }}(r)\right.$
$\left.M I S_{n}(n)\right\}$
where r is root of T.

$$
\begin{array}{r}
\operatorname{MIS} S_{\text {yes }}(v)=1+\sum_{w \downarrow v} M I S_{\text {no }}(w) \\
M I S_{\text {no }}(v)=\sum_{w v w}^{\max \left\{M I S_{\text {yes }}(w)\right.} \begin{aligned}
\left.M I S_{\text {no }}(w)\right\}
\end{aligned}
\end{array}
$$

Nearly the same dynamic programming steps including

$$
\begin{aligned}
& \text { (n) } \\
& \qquad \begin{array}{l}
\text { TreeMIS2 }(v): \\
v . M I S n o \leftarrow 0 \\
v . M I S y e s \\
\text { for } 1 \\
\text { for each child } w \text { of } v \\
v . M I S n o \leftarrow v . M I S n o+\operatorname{TrEEMIS} 2(w) \\
v . M I S y e s \leftarrow v . M I S y e s+w . M I S n o
\end{array} \\
& \text { return max\{v.MISyes, v.MISno }\}
\end{aligned}
$$

Subset Sum
Given set X of positive integers + a int T.
Is there a subset of X that sums to T ?
If $x=\{2,5,8\}+T=10 \mathrm{~V}$
If $+T=11 \times$

If $T=0$, Yes. $\varepsilon_{\varnothing}=0$

$$
\text { If }(T<0) \text { or }(T>0+X=\varnothing)
$$

then no!

In general...
Take any $x \in X$. If subset exists...

- if x not in subset we want answer for $X \backslash \frac{\{x\} t}{T}$
- if x in subset we want answer for $X \backslash\{x\}+$

$$
T-x .
$$

Order X arbitrarily as

$$
x[1, n]
$$

$S S(i, f)$: True ifs a subset
of $x[1, \ldots i]$ sums to t.
Want to know $S S(n, T)$.

$$
\begin{aligned}
& S S(i, t)=\int_{\text {True, }}^{\text {False }} \quad \begin{array}{l}
i f t=0 \\
S S(i-1, t) \\
\text { if } i=0+0, t \neq 0 \\
S S(i-1, t-x[i]) v \\
S S(i-1, t)
\end{array} \\
& 0 \leq i \leq n, \quad 0 \leq t \leq T
\end{aligned}
$$

So store in SS [0..n,0..T]
Do i <0 to n whatever for t Space: $\partial(n T)$. Time: $0\left({ }_{n} T\right)$

```
FASTSUBSETSUM \((X[1 . . n], T)\) :
    for \(i \leftarrow 0\) to \(n\)
    \(S S[i, 0] \leftarrow\) TRUE
    for \(t \leftarrow 1\) to \(T\)
        \(S S[0, t] \leftarrow\) FALSE
    for \(i \leftarrow 1\) to \(n\)
        for \(t \leftarrow 1\) to \(X[i]-1\)
        \(S S[i, t] \leftarrow S S[i-1, t]\)
        for \(t \leftarrow X[i]\) to \(T\)
        \(S S[i, t] \leftarrow S S[i-1, t-X[i]] \vee S S[i-1, t]\)
    return \(S S[n, T]\)
```

