Ginary code: mapping from some alphabet to strings of $O_{s}+1 s$.
one is prefix dree it nu code word is a prefix of any other
$E_{x}:$ V. bit ASCII is $^{\text {b }}$ prefix free
Morse code: characters to sequences ot lots α dashes $E: \cdot(0) \quad s: \cdots(000)$
can visualize prefix froe codes as a binary tree with characters stored in loaves

not (necessanily) a binary search tree

Given an array $\delta[1, n]$ of Frequencies where $f[i]$ is A time character i appears.

Goal: Find a prefix free code/binary tree to minimize

$$
\sum_{i=1}^{n} f[i] \cdot \operatorname{depth}(i)
$$

need not be a BST! characters at leaves!

Observation: Optimal tree is full. Every node has 0 or 2 children

\Rightarrow Max depth nodes are leaves with lat siblings.
If wo pluck of sibling loaves, We get a smaller, full free!

Idea: Guess sibling leaves, Treat parent as a character with free.
= sum of lea vies' frequenciest recurs.
merging
$H_{a f f}^{\text {man }} 5$ S:

- Sot least frequent two characters as siblings.

Merge the two siblings int a q single character α recourse.

Cis $n=1$ just place the root ouse empty codeword)

THISSENTENCECONTAINSTHREEASTHREECSTWODSTWENTYSIXESFIVEFST HREEGSEIGHTHSTHIRTEENISTWOLSSIXTEENNSNINEOSSIXRSTWENTYSEV ENSSTWENTYTWOTSTWOUSFIVEVSEIGHTWSFOURXSFIVEYSANDONLYONEZ ${ }^{6}$

A	C	H	E	F	G	H	I	U	N	0	R	S	T	U	V	W	X	Y	PZ
3	3	2	26	5	3	8	13	2	16	9	6	27	22	2	5	8	4	5	1

Optimal encoding has 649 bits

Lemma Let $x+y$ be the two least frequent characters (break ties arbitrarily) There is an options code tree in which x ty are siblings (of max depth). Proof: Let x be the least frequent char a y second. (ot T te an optima) code tree od be its depth.
t is $f a l l$ so its has sibling leaves $a+b$ at depth d.

Suppose $x \notin\{a, b\}_{1}^{x}$
Swap $x+$ a to create tree T^{\prime}.

$$
\begin{aligned}
& \operatorname{cost}\left(T^{\prime}\right)= \operatorname{cost}(T) \\
& f f[x] \cdot\left(\operatorname{depth}_{T}(a)-\right. \\
&\left.\quad \operatorname{depth}_{T}(x)\right) \\
&-f[a] \cdot\left(\operatorname{depth}_{T}(a)-\right. \\
&=(f[x]-f[a]) \cdot \\
&\left(\operatorname{dopth} h_{T}(x)\right) \\
&=\operatorname{cost}(T)(a)-\operatorname{dopth}(x))
\end{aligned}
$$

If $y \neq 6$, swap $y+6$. Cost goes down farther,
T^{\prime} is the tree we wanted.

Thm: Huffman codes are optimal prefix- free codes.

If $n=1$, then yes.
otherwise, well say characters Io 2 are least frequent,
Let T be a code tree with $1+2$ as siblings.
Let $T^{\prime}=T \backslash\{1,2\}$.
Treat parent of $1+2$ as a new character $n+1$ whose $f[n+1]=f[1]+f[2]$
T^{\prime} is a code tree for 3. $n+1$.

$$
\begin{aligned}
& \cos t(T)=\sum_{i=1}^{n} f[i] \cdot d_{e} p h_{T}(i) \\
& =\sum_{i=3}^{n+1} f[i] \cdot \operatorname{de\rho th}_{T}(i) \\
& +\delta(1] \cdot \operatorname{depth}_{T}(1) \\
& +f[2] \cdot \operatorname{dep}^{T} h_{T}(2) \\
& -f[n+1] \cdot d_{\rho p}+h_{T}(n+1) \\
& =\cos t\left(T^{\prime}\right) \\
& +\delta(1] \text { depth }_{T}(1) \\
& +f[2] \cdot \text { dept }_{T}(1) \\
& -f[n+1] \cdot(\operatorname{dopth}(1)-1)
\end{aligned}
$$

$$
\begin{aligned}
&=\operatorname{cost}\left(T^{\prime}\right)+ f[1]+f[2] \\
&+(f[1]+f(2]-f(n+1)) . \\
&\left(\operatorname{dept} h_{\tau}(1)-1\right) \\
&=\cos t\left(T^{\prime}\right)+f[1]+f[2]
\end{aligned}
$$

Best T with siblings $1 \sigma 2$ found by minimizing $\operatorname{cost}\left(T^{\prime}\right)$. Gives optimal answer by prev. lemma.

Use a priority quepere with two operations
Insert (e, k): insert object
e with Key (priority) k
Extract Min: Removes α
returns element of smallest key,

Builds arrays
L[1..2n-1]: left children
$R[1 . .2 n-1]$: right children
$P(1,2 n-1]$: parents
root gets label $2 n$ l

$$
\begin{aligned}
& \text { BuildHuffman }(f[1 \text {.. } n]) \text { : } \\
& \text { for } i \leftarrow 1 \text { to } n \text { leaves have no } \\
& L[i] \leftarrow 0 ; R[i] \leftarrow 0 \\
& \text { children } \\
& \operatorname{Insert}(i, f[i]) \\
& \text { for } i \leftarrow n+1 \text { to } 2 n-1 \\
& x \leftarrow \operatorname{ExtractMin}() \text { Find two rarest characters }\rangle \\
& y \leftarrow \operatorname{ExtractMin}() \\
& f[i] \leftarrow f[x]+f[y] \quad \text { eMerge into a new character }\rangle\rangle \\
& \text { Insert }(i, f[i]) \\
& L[i] \leftarrow x ; P[x] \leftarrow i \quad \text { Update tree pointers }\rangle \\
& R[i] \leftarrow y ; P[y] \leftarrow i \\
& P[2 n-1] \leftarrow 0
\end{aligned}
$$

$\uparrow_{\text {root has no parana }}$

$$
O(n) \cdot O(\log n)=O(n \log n) \text { time }
$$

HUFFMANENCODE(A[1..k]):
$m \leftarrow 1$
for $i \leftarrow 1$ to k HuffmanEncodeOne(A[i])

HuffmanEncodeOne (x) :
if $x<2 n-1$
HuffmanEncodeOne $(P[x])$
if $x=L[P[x]]$ $B[m] \leftarrow 0$
else

$$
B[m] \leftarrow 1
$$

$$
m \leftarrow m+1
$$

$O(m)$ time each
$k \leftarrow 1$
$v \leftarrow 2 n-1$
for $i \leftarrow 1$ to m
if $B[i]=0$

$$
v \leftarrow L[v]
$$

else

$$
v \leftarrow R[v]
$$

if $L[v]=0$
$A[k] \leftarrow v$
$k \leftarrow k+1$
$v \leftarrow 2 n-1$
each

