A graph $G=(U, E)$ is a set of vertices V o the set of edges $E . T_{\text {any set }}$

If G is undirected, $E S_{\substack{\text { pairs } \\ \text { unordered }}}$ uv vertices.
own. 6 is directed $+E \subseteq V \times V$.

$$
\begin{aligned}
& u \rightarrow v^{E^{\text {suchecssont }}} \text { head } \\
& \text { predecessor/tail ot } \\
& u \rightarrow v
\end{aligned}
$$

If $u v \in E, u \alpha v$ are $\frac{a d j a e n t}{}$ neigh bors or

For $u \in V$.
Degree of n is ${ }^{\#}$ neigh bors.
If \mathcal{G} is directed indejree: A edges $x \rightarrow u$
out-degree: A edges $w \rightarrow y$
For graph algorithms,
U or E might mean $|V|$ or IE)
ie. $O(V+E)$

Representations
Adjacency matrix
$|V| \times|V| 2 D$ array/matrix
$A[i, j]=1$ if edge $i_{j} \in E$. $A[i, j]=0$ on.
$\theta(1)$ time to check if an edge in E
$\theta\left(V^{2}\right)$ space always $\theta(v)$ time to find all neigh tors of a vertex

Adjacency list:
An array of length $|V|$.
Each entry points to a list of
adjacent vertices
of the curry's vertex
If G is undirected, pack edge appears twice.
uv is v in u 's list α
u in v 's list
If G is directed $u \rightarrow v$ appears as v in u 's list
$\theta(V+E)$ space
$\theta(\operatorname{degrep}(u))$ time to list neighbors of a
$\theta(\operatorname{mon}$ (deg re (u), deg reel $(v)) t_{0}$ check if av exists

Assume adjacency list unless told otherwise.

A walk is a sequence of edges sit. each succesive pair share a vertex

It is a path it it repeats no vertices
A cycle is a path except we do repeat exactly the first + last vertex

A undireoted graph is connected if there is a path from every vertex to every other vertex.
Problem: Given graph Go a vertex s. Also given v, is v reachible from s. i.e. does there exist a path from s to u ?

Breadth-first search (BFS)
BF S $(\mathrm{s}):$
put (\varnothing, s) in a queue while queue is not empty
take (p, v) from quewe if v is unmarked mark v
parent $t(\nu) \leqslant p$
for each edge $V W$ put (v, w) in queue
Facts: 1) Marks every vertex reachible from s exactly once.
2) Edges of the form parent (v) v form a spanning free on the component ot G containing s.
subgraph H if G: Has a subset of 6's vertices α edges
A component of G is a maximal connected subgraph
A spanning tree is a connected acyclic sutgranh containing every no cycles
3) Tree
 contains shortest path from s to every \uparrow reachible vertex min \# edges
Running time: $O(U+E)$
(Fasten if s's component is small)
Cone case of Erickson's
Whatever First Search)
Please use BFS for shortest paths with unit (1) edge weights.

Depth-First Search (DFS):

$O(V+E)$ time

DFSALL $(G):$
clock $\leftarrow 0$
for all vertices v
unmark v
for all vertices v
if v is unmarked
clock $\leftarrow \operatorname{DFS}(v$, clock $)$

Imagine, we pass around a "clock" to time events... v.pre: starting time of v V.post: finishing time
[v.pre, v, post]: active interval of V
Either two active intervals are disjoint or one contains the other.
[u.pre, v.post] c[u,pre, u,post] iff DFS(u) (indivectly) calls DFS (v) implies u can reach v.

Sort by x.pre to get a preorder.
Surt boy yeardif post to get a

Say we run DFS All...
Fix a vertex $v+$ its (future) v.pre $+v$. post values α consider any moment in the algorithm.
v is new if clock < vipre
active if v.presclocksu.poss
finished if v.post \leq clock
Congider an edge $u \rightarrow v$ at the moment DFS (u) begins.

If v is new, a recursive call will mark v
u.pre < v.pre $<v$. post $<u$. post
$u \geqslant v$ is a tree edge if
DFS (v) calls DFS(v) direct
$u \geqslant v$ is a forward edge ow.
If v is active,

$u>v$ is a back edge
If v is finished
v, post $<u, p r \rho<u_{1}$ post
$u \geqslant v a$ cross edge

Thy (for next time)
Graph G has a directed cycle if DFSAll (G) yield at least one bock edge.

