A graph \(G = (V, E) \) is a set of vertices \(V \) and the set of edges \(E \). If \(G \) is undirected, \(E \) consists of pairs of vertices, unordered. o.w. \(G \) is directed, and \(E \subseteq V \times V \).

If \(uv \in E \), \(u \) and \(v \) are adjacent or neighbors.
For $u \in V$,

Degree of u is $\# \text{neighbors}$.

If G is directed,

- in-degree: $\# \text{edges} \ x \rightarrow u$
- out-degree: $\# \text{edges} \ w \rightarrow y$

For graph algorithms,

V or E might mean $|V|$ or $|E|$

i.e. $O(V + E)$
Representations Adjacency matrix.

$|V|\times|V|$ 2D array/matrix

$A[i,j]=1$ if edge $ij \in E$.

$A[i,j]=0$ otherwise.

$\Theta(1)$ time to check if an edge in E

$\Theta(V^2)$ space always

$\Theta(V)$ time to find all neighbors of a vertex
Adjacency list:

An array of length |V|.

Each entry points to a list of adjacent vertices of the entry’s vertex.

If G is undirected, each edge appears twice.

uv is v in u’s list.

If G is directed, u→v appears as v in u’s list only.
\(\Theta (V + E) \) space

\(\Theta (\text{degree}(u)) \) time to list neighbors of \(u \)

\(\Theta (\min\{\text{degree}(u), \text{degree}(v)\}) \) to check if \(uv \) exists

Assume adjacency list unless told otherwise.
A walk is a sequence of edges s.t. each successive pair share a vertex.

![Diagram](image)

It is a path if it repeats no vertices.

A cycle is a path except we do repeat exactly the first & last vertex.
A undirected graph is connected if there is a path from every vertex to every other vertex.

Problem: Given graph G and a vertex s. Also given v, is v reachable from s? i.e. does there exist a path from s to v?
Breadth-first search (BFS) :

\[\text{BFS}(s) : \]

1. put \((\emptyset, s)\) in a queue
2. while queue is not empty:
 1. take \((p, v)\) from queue
 2. if \(v\) is unmarked:
 1. mark \(v\)
 2. parent \((v) \leftarrow p\)
 3. for each edge \(vw\):
 1. put \((v, w)\) in queue

Facts:
1) Marks every vertex reachable from \(s\) exactly once.
2) Edges of the form $\text{parent}(v) v$ form a spanning tree on the component of G containing s.

Subgraph H of G: Has a subset of G's vertices and edges.

A component of G is a maximal connected subgraph.

A spanning tree is a connected acyclic subgraph containing every vertex with no cycles.
3) The tree contains the shortest path from `s` to every reachable vertex.

Running time: \(O(V + E)\)

(Faster if `s`'s component is small.)

Please use BFS for shortest paths with unit (1) edge weights.
Depth-First Search (DFS):

\[
\text{DFS}(v):
\begin{align*}
&\text{mark } v \\
&\text{PREVISIT}(v) \\
&\text{for each edge } vw \\
&\quad \text{if } w \text{ is unmarked} \\
&\quad \quad \text{parent}(w) \leftarrow v \\
&\quad \text{DFS}(w) \\
&\text{POSTVISIT}(v)
\end{align*}
\]

\[
\text{DFSALL}(G):
\begin{align*}
&\text{PREPROCESS}(G) \\
&\text{for all vertices } v \\
&\quad \text{unmark } v \\
&\text{for all vertices } v \\
&\quad \text{if } v \text{ is unmarked} \\
&\quad \quad \text{DFS}(v)
\end{align*}
\]

\[O(V + E) \text{ Time}\]
Imagine we pass around a "clock" to time events...

* v.pre: starting time of v
* v.post: finishing time
* [v.pre, v.post]: active interval of v

Either two active intervals are disjoint or one contains the other.

DFSAll(G):
- $\text{clock} \leftarrow 0$
- for all vertices v
 - unmark v
- for all vertices v
 - if v is unmarked
 - $\text{clock} \leftarrow \text{DFS}(v, \text{clock})$

DFS(v, clock):
- mark v
- $\text{clock} \leftarrow \text{clock} + 1; \ v.\text{pre} \leftarrow \text{clock}$
- for each edge $v \rightarrow w$
 - if w is unmarked
 - $w.\text{parent} \leftarrow v$
 - $\text{clock} \leftarrow \text{DFS}(w, \text{clock})$
- $\text{clock} \leftarrow \text{clock} + 1; \ v.\text{post} \leftarrow \text{clock}$
- return clock
\[\{ v \text{.pre}, v \text{.post} \} \subseteq \{ u \text{.pre}, u \text{.post} \} \quad \text{iff} \quad \text{DFS}(u) \text{ (indirectly)} \text{ calls } \text{DFS}(v) \]
implies \(u \) can reach \(v \).

Sort by \(x \text{.pre} \) to get a \underline{preorder}.
Sort by \(x \text{.post} \) to get a \underline{postorder}.
Say we run DFSAll...

Fix a vertex v and its (future) v, pre + v, post values.

Consider any moment in the algorithm.

v is **new** if $\text{clock} < v$.pre

v is **active** if v.pre \leq clock $< v$.post

v is **finished** if v.post \leq clock

Consider an edge u \to v at the moment DFS(u) begins.
If v is new, a recursive call will mark v.

u.pre < v.pre < v.post < u.post

$u \geq v$ is a tree edge if

$\text{DFS}(u)$ calls $\text{DFS}(v)$ directly

$u \geq v$ is a forward edge o.w.

If v is active,

v.pre < u.pre < u.post < v.post

$u \geq v$ is a back edge

If v is finished,

v.post < u.pre < u.post

$u \geq v$ a cross edge
Thm (for next time):

Graph G has a directed cycle iff $DFSAII(G)$ yield at least one back edge.