DFSAll(G):

- clock ← 0
- for all vertices v
- unmark v
- for all vertices v
- if v is unmarked
 - clock ← DFS(v, clock)

DFS(v,clock):

- mark v
- clock ← clock + 1; v.pre ← clock
- for each edge v→w
 - if w is unmarked
 - w.parent ← v
 - clock ← DFS(w, clock)
- clock ← clock + 1; v.post ← clock
- return clock

forward edge u→v

- u.pre < v.pre < v.post < u.post

it isn’t a tree edge

cross edge u→v

- v.pre < v.post < u.pre < u.post
Back edge $u \rightarrow v$

$\forall v, \text{pre} \leq u, \text{pre} < u, \text{post} < v, \text{post}$

$\Rightarrow u \rightarrow v$ is a back edge

iff $u, \text{post} < v, \text{post}$
Detecting Cycles

Lemma: Directed graph G has a cycle if $\text{DFSAll}(G)$ yields at least one back edge.

Proof: Suppose $u \rightarrow v$ is a back edge. There is a path v of tree edges from v to u.
Suppose G has a cycle C. Let v be the first vertex of C we explore during DFS. If u is a back edge, then $u \rightarrow v$ is a back edge immediately before v on C. During call $DFS(v)$, we will reach every unmarked vertex reachable from v. We call $DFS(u)$.
Cycle Detection Algo:
Run DFSAll(G) to find a postorder.
Return true if there exists an edge \(\text{upost}_v \rightarrow \text{post}_v \) in \(E \).
Topological Sort

Given directed graph $G = (V,E)$, a topological ordering of its vertices is a total ordering of the vertices where $u < v$ if $u < v E$, i.e., you can draw the graph so edges only go left to right.

$\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}$
Cycle \Rightarrow no topological ordering.

Directed acyclic graph (DAG) if directed \Rightarrow no cycles.

Every DAG has a top. order!

Proof: Run DFSAll, No back edges \Rightarrow for all edges $u \rightarrow v$,
Consider the reversed postorder. $w = v$ for each edge $u \rightarrow v$, so it is a top order.

Algorithm: Run DFSAI.

Return reversed post order.

$O(V+E)$ time

\begin{verbatim}
TopologicalSort(G):
 for all vertices v
 $v.status$ \leftarrow New
 clock $\leftarrow V$
 for all vertices v
 if $v.status$ = New
 clock \leftarrow TopSortDFS(v, clock)
 return $S[1..V]$
\end{verbatim}

\begin{verbatim}
TopSortDFS(v, clock):
 $v.status$ \leftarrow Active
 for each edge $v \rightarrow w$
 if $w.status$ = New
 clock \leftarrow TopSortDFS(w, clock)
 else if $w.status$ = Active
 fail gracefully
 $v.status$ \leftarrow Finished
 $S[clock] \leftarrow v$
 clock \leftarrow clock $-$ 1
 return clock
\end{verbatim}
Dynamic Programming

Suppose we have a recurrence. The dependency graph has the subproblems as its vertices and edges \(x \rightarrow y \) for each direct call for a subproblem \(y \) from a subproblem \(x \).

Cycle \(\Rightarrow \) infinite loop of recursive calls.
So good recurrences have DAGs as dependency graphs.

If we do recursion with basic memorization, we’re doing a depth-first search.

So the subproblems are solved in post order.
The dynamic programming algorithms are really solving each subproblem in postorder. (usually we just say what the postorder is)
Longest Path problem

Given: A DAG $G = (V, E)$ with edge weights $l : E \to \mathbb{R}$,

Want length of longest path from given s to given t.

$LLP(v):$ length of longest path from v to t or $-\infty$ if no v-t path exists.
If $v = t$, $LLP(v) = 0$.

0.w.

$$L_{LLP}(v) = \begin{cases} 0 & \text{if } v = t \\ \max_{v \to w \in E} \{ \ell(v \to w) + LLP(w) \} & \text{otherwise} \end{cases}$$

(max over nothing $= -\infty$)

G is the dependency graph for LLP.

\begin{algorithm}
\textsc{LongestPath}(s, t):
 for each node v in postorder
 if $v = t$
 $v.LLP \leftarrow 0$
 else
 $v.LLP \leftarrow -\infty$
 for each edge $v \to w$
 $v.LLP \leftarrow \max\{v.LLP, \ell(v \to w) + w.LLP\}$
 return $s.LLP$
\end{algorithm}

$O(V + E)$ time
Shortest Path in DAG.

\[
\begin{align*}
\text{max} & \rightarrow \text{min} \\
-\infty & \rightarrow +\infty \\
O(V + E) & \text{ time}
\end{align*}
\]