

back edge u>v v.pre < u.pre < u.post < v.post

=7 u > v is a back edge ift u.post = v.post

Detecting Cycles

Lemma: Directed graph G has a cycle iff DFSAll(G)

yields at least me back

edge,

Proof: Suppose a > v is a

back edge. There is a path P of tree edges from v to u

u)

Poutvis Of a cycle.

Suppose 6 has a cycle C. Let v le the first vertex of C we explore during DFSKII C U immediate During call DFS(v), we n'ill reach every unmarked vertex reach: 610 from V, We call DFS(u). utvis a back edge

Kycle Detection Algo: Run DFSAII(G) to tind a postorder. Return true its 7

an edge a zv s.t. u.postc

O(V+E) time

Lopological Sort

Given directed graph G=(UF)

ce topological ordering

ot its vertices is a total

ordering of the vertices

whore u c v if a g v e E.

you can draw graph so

· .

edges only go lett to vight.

ordering.

Æ

Directed acyclic graph (DAG)

if directed + no cycles.

Every DAG has a top. order!

u >v,

Proof: Run DFSAll,

No back edges. => for all edges

V. post = u. post.

Consider the <u>reversed</u> postorder. u c v for each edge u zv, so it is

a top. order.

Alg: Run DFSAII. Return reversed post order. O(V+E) time

 $\frac{\text{TOPOLOGICALSORT}(G):}{\text{for all vertices } v}$ $v.status \leftarrow \text{New}$ $clock \leftarrow V$ for all vertices v if v.status = New $clock \leftarrow \text{TOPSORTDFS}(v, clock)$ return S[1..V]

 $\frac{\text{TopSortDFS}(v, clock):}{v.status \leftarrow \text{Active}}$ for each edge $v \rightarrow w$ if w.status = New $clock \leftarrow \text{TopSortDFS}(w, clock)$ else if w.status = Activefail gracefully $v.status \leftarrow \text{Finished}$ $S[clock] \leftarrow v$ $clock \leftarrow clock - 1$

return clock

Dynamic Programming

Suppose we have a recurrence.

The dependency graph

has the subproblems

as its vertices t edges X > y Sor each direct C.all For a subproblem y from a subproblem X.

Cyllp => infinite loop of

re cursive calls.

So good recurrences have DAGs as dependency graphs. root \mathbf{v}_{-} IS we do recursion with basic Memoization, were doing a depth-first search. So the subproflems are solved in post order.

The dynamic programming algorithms are really solving each subproblem in postorder.

(usually we just say what

the postorder is)

Longest Path problem Given: A DAG G=(V,E) With edge neights &: E > K Want length of langest path

from jisen s to given t.

LLP(v): length of longest path from v to t or -00

if no v-t path exists,

If v=t, LLP(v)=0.

Ο,W.

for LLP.

LLP(v) = (0)t=v 6 Zmax {e (v=w)+ v=weel LLP(w)3

0, W,

(max over nothing = - or)

Gis the dependency graph

LONGESTPATH(s, t): for each node v in postorder if v = t $v.LLP \leftarrow 0$ else $v.LLP \leftarrow -\infty$ for each edge $v \rightarrow w$ $v.LLP \leftarrow \max \{v.LLP, \ell(v \rightarrow w) + w.LLP\}$ return s.LLP

O(V+E) time

Shortest Path in DAG.

max -> m:n

-00 -> +00

O(V + E) time