
back edge $u \rightarrow v$ $v, p r e<u, p r e<u, p o s t<v . p o s t$
$\Rightarrow u \geqslant v$ is a back edge iff u.post $<v . p o s t$

Detecting Cycles
Lemma: Directed graph G has a cycle ifs DFSAII(G) yields at least one back edge.
Proof: Suppose $a \rightarrow v$ is a back edge. There is a path P of tree edges from v to a
Pou>v is a cycle.

Suppose G has a cycle C. Let ${ }^{\text {a }}$ le the first vertex of C we explore during DFSAll

During call DFS(v), we mil reach every unmarked vertex reachible from V. We call DFS (u). $u \rightarrow v$ is a back edge

Cycle Detection Algo:
Run DFSAll (G) to find
a post order
Return true its \exists
an edge $a \geqslant v$ sit, upostc v. post

$$
O(V+F) \text { time }
$$

Topological Sort
Given directed graph $G=\left(V_{E}\right)$ a topological ordering ot its vertices is a total ordering of the vertices whore $u<v$ if $u \ngtr v \in E$.
ie.
you can dian graph so edges only go left to right,

Cycle \Rightarrow no topological ordering.
Directed acyclic graph (DAG) if directed a no cycles.
Every DAG has a top. oder! Proof: Ran DFSAll. No back edges.
\Rightarrow for all edges $u \geqslant v$,
v. post c u. post.

Consider the reversed postorder. uv for each edge $n \geqslant v$, so it is a top order.

Alg: Ran DFSAII. Return reversed post order.
$O(V+E)$ time

Dynamic Programming
Suppose we have a recurrence.
The dependency graph
has the sabproblems as its vertices + edges $x \rightarrow y$ for each direct call for a sub feroblem y from a subproblem x.

Cycle \Rightarrow infinite loop of recursive calls.

So good recurrences have DAGs as dependency graphs. root

If we do recursion with basic memoization, were doing a depth first search.

So the subprotlems are solved in post order.

The dynamic programming algorithms are ready solving each subproblem in postorder.
Cusually we just say what tho post order is)

Longest Path problem Given: A DA $6 \mathrm{G}=(\mathrm{V} E)$ with edge weights $l: E \rightarrow \mathbb{N}$ Want length of longest path from given s to given t.
$L L P(v)$: length of longest path from v to 4 on $-\infty$ if no vil path exists.

$$
\begin{aligned}
& \text { If } v=t, \operatorname{LLP}(v)=0 . \\
& 0, W \text {. } \\
& \operatorname{LLP}(v)=\left\{\begin{array}{l}
0 \quad \text { if } v=t \\
\max _{v \rightarrow w \in E}\{l(v \rightarrow w)+ \\
\operatorname{LLP}(w)\}
\end{array} \quad\right. \text { ow. } \\
& \quad \text { (max over nothing }=-\infty)
\end{aligned}
$$

G is the dependency graph for LLP.
\square
$O(V+E)$ time

Shortest Path in DAG.

$$
\begin{aligned}
& \max \rightarrow \min \\
& -\infty \rightarrow+\infty \\
& 0(V+E) \text { time }
\end{aligned}
$$

