0

0	0	0
	0	0

Minimum Spanning Tree Given undirected graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{R}$. (can ${ }^{\uparrow}$ be negative)

Want a minimum spanning tree.
tree: acyclic (sub) graph connected
spanning: contains all vertices of G

MST
(3) spanning trees T (Assuming G is isp connected. Other y no spanning trees)

Will assume $w(e) \neq w\left(e^{\prime}\right)$ if $e \neq e^{\prime}$
Otherwise there could be mu triple min spanning trees.

Let T be the min spanning tree (we want this!) Weill iteratiply add one or more edges we know belong $t_{1} T$
Say were mid way through: $F \subseteq T$: the intermediate spanning forest of elges picked so far acyclic; may have several) components

Initially, F is just IV) isolated vertices.
Stop when F is connected (it $\mid \mathrm{VI}-\mathrm{I}$ edges).
Two kinds of edges e with respect to F.

1) Useless: Fu\{e\} ~ h a s ~ a cycle.
T has no useless edges!
2)

$q_{0} g_{0} F$

For any component of F its sate edge is the lightest edge with exactly one endpoint in the component.
e is sate if it is sate for at least one endpoint's component
Lemma (Prim'57): Min spanning tree T contains every sate edge writ $F \subseteq T$.

Proof: Will show' For any subset SCV -t vertices, the lightest edge with exactly one endpoint in S belongs $f_{0} T$.
Let T be a (the) min spanning tree.
Let e be the lightest edge leaving S.
If $e \in T$, were done.
Suppose otherwise...

Let $u v=e$.
There is a path $p^{i n}$ from u to v.
Some edge e^{\prime} of P goes from Les to S
T - e^{\prime} has no $u-v$ path so $T^{\prime}=T-e^{\prime}+e$ is a spanning
e is sate for S so

$$
\begin{aligned}
& w(e)<w\left(e^{\prime}\right) \\
& w\left(T^{\prime}\right)<w(T)
\end{aligned}
$$

τ mast contain e after all!

Alg idea: Start with no edges in F.
Repeatedly add one or more sate edges until we have a spanning Tree.

Kraskal '56:
Scan edges in increasing weight order. If edge is sate add it to F.

Use disjoint set.
Make Set(J) : creates a set containing only v.

Find (J): Returns the name of a vertex in v's component.

Find $(u)=$ Find (v) iff $u \not t v$ are in same component.
Union (u, v): Tells data structure more combining $u \sigma v$'s components.

$$
O(E \log E)=O\left(E \log _{\log ^{2}}\right)=O(E \log V
$$

sons

O(V) Make Set + Union O(F) Find

Simple answer: $O(\log V)$ time per operations so $O(E \log V)$ total.

Disjoint sets with path compression structure:

$$
O\left(E_{\alpha}(V)\right)={ }_{0}(E \log V) \text { time }
$$

total very very small inverse Ackermann function $V(V) \leq 4$ for any $V \leq{ }^{*}$ stars

But ne hod to sort :r

$$
O(E \log V) t_{0} t_{a} l
$$

$$
\begin{aligned}
& \text { Jarnik'29: } \\
& \text { Prim'57: }
\end{aligned}
$$

F has one non-trivial component.
Allay add sate edge for that ane component.

One implementation:
keep a priority queue of edges leaving the component ked elis laving same venter: Repeat until queue is empty
Deblenlin uv from queue
If either end point unmarked
Mark both endpoints
Add uv to F
Add outgoing edges it newly marked
Return $F^{\text {vertex }}$
Binary Heap gives $O(\log E)=O(\log V)$
time per operation

$$
\partial(E \log V) t_{0} t_{a}
$$

Weill make this faster next week.

Borivka'26:
Add all sate edges t repeat.

O(E) time to compute components of $F+$ find their sate edges.
Yon') ${ }^{\text {a }}$ have at most half
the \# components each iteration.
$\Rightarrow O(\log v)$ iterations
$\Rightarrow O(E \log V)$ time total

A variant runs in $O(V)$ time for certain nice types of graphs (planar).

