
⑧

⑧ 0

&
⑧

-T
-

Minimum Spanning Tree

Given undirected graph
G:CV, E) with edge
weights w:ETIR.

Canbe negative!)

Want a minimum spanning
tree.

tree:acyclic (subgraph
I connected

spanning:contains all vertices
of 6

minimum:min wIT: =Egre
I

over all
MSt spanning trees T
z 2

o-=> Assuming 6 is3 0
SSSP connected. Other, no

spanning troos)

Will assume w(e) Fw(e)
if efe'

Otherwise there could be

multiple min spanning trees.

Lot t 60 the min spanning
tree (we want this!)
Well iteratiplyadd one

or more edges we know

belong to T.

saywere midwaythrough:
Fe?:the intermediate

spanning feetof edges
picked so far
acyclic;may have several

components

Initially, F is just(5)
isolated vertices.

Stop when Iis connected

Cit IIl edges).
Two kinds of edges
with respectto F.

Dess:FUEe3 has
A cycle.

I has no useless edges!
............O ⑧

2) 0
... be--r).......

⑧ d

For any componentof F,
its edge is the
lightestedge with exactly
one endpointin the

component.
· is safe if it is safe

for atleast one endpoint's
component
Comma (Prim'57): Min spawning
treet contains everysate

edgo wrtFIT.
(with respectfol

Proof:Will show.For any
subsetSCU of vertices,
the lightestedge with exactly
one endpointin 5 belongs
to t.

Lot 7 60 a ltho) min spanning
troo.
Let e be the lightestedge
/paring So
If eet, were done.

Suppose otherwise...

W O ⑲
I

...----
O

9
-ae· I-
⑧ 6

⑧! in S

0: in UIS

Let uv=e in T

There is a path prfrom
a to ve

Some edge e'of 0 goes from
VES to S.

T-o has no new path, so
=7 - ete is a spanning

& is safe for S, so

w(0) -w(v)
w(t)) - w(T)
I

I must containe after all!

Alg idea:Startwith no

edges in F.

Repeatedly add one or

more safe edges until
we have a spanning tree.

Kraskal'56:
Scan edges in increasing
weightorder. If edge is safe,
add itto F.

*
-
S i
-

Use disjoint set.
Make Set (v):creates a set

containing onlyvi

Find (r):Returns the name of
a vertex in v's component.

Find (n) =Find(r) if adv
are in same component.

Union (n,r):Tells data
structure wore combining
W tv's components.

*OCElogV)

- Ea(V)

OCE logE) =0 (Elog YY
=0 (Elog,

sort

assuming graph
is simple=>
E =(2) < 12

0 (r) MakoSot& Union

OCE) Find

Simple answer:O(logU) time
per operation, so

OCE log VS total.

Disjointsets with path
compression structure:

OCEx(V)) =0 (ElogV) time
total veryverysmall

inverse Ackermann function
NCV) =4 for any V=* stars

Butno had to sort:

Free)total

Jarnik'29:
Prim'ST:

F has one non-trivial
component.
Alway add sate edge for
thatwe component.

-0

One implementation:
keep a priorityqueue of

edges leaving the component.
Add edges leaving some vertex s.

Repeatuntil queue is empty
PoloteMin ar from queue
If either andpoint unmarked
Mark both endpoints
Add or to F
Add outgoing edges of newlymarket

Return F Vortex

BinaryHeap girs.OClogE) =0 (log V)
time por operation

OCE logU) total

We'll make this faster next
work.

Borirka'26:
Add all safe edges t
repeat.

OCE) time to compute components
of F- find their sate

odges,

You'll have testhalf
the # components each
iteration.
=) OClog V) iterations
=>

e)time total

A variantruns in 0 (r)

time for certain nice

types of graphs (planar).

