Given directed $G=(V, E, N)$ $w: E \rightarrow \mathbb{R}$.
Shortest gath from $s \in V$ to $t \in V$ is the st.path P minimizes $w(P)=\sum_{a \neq v e p} w(u>v)$.
$\min w(P)$ is the distance from s to t
Most shortest paths algs find shortest paths from s to all vertices v
Single. Source Shortest Paths
shortest paths contain shortest paths

Can assume short est paths follow a tree rooted at S.
Single -source shortest paths Tree

MST \neq ISP
For undirected graphs, replace each edge with Goth of its orientations.

to make graph directed.

Weights may be negative!
We don't know how to fire actually
shortest paths.
We can find shortest walks.

Shortest walks lon't exist if there is a negative weight cycle.
oW some shortest walk is a path α SSSP tree exists

Ford, Dantzig, Minty...
Maintain a pessimistic guess on distance to each vertex.

Two mutable variable per vertex v :

- dist (J): upper bound on distance from s to v.
dist (s) starts at 0 dist (v) starts at $+\infty . \forall v \neq s$ pred (J): predecessor of v on some s to v walk. $\operatorname{pred}(v)$ starts at $N_{u} l l$

Call an edge $u \rightarrow v$ tense if $\operatorname{dist}(u)+w(u \geqslant v)=\operatorname{dist}(v)$ implies dist (j) is too high, so relax it

The "one" algorithm:
$\frac{\text { FordSSSP(s): }}{\text { InitSSSP(} s \text {) }}$

Claims: Eventually terminates is no negative cycles.
When it does dist $(J)=$ distance to $v \forall v$, $\operatorname{pred}(s)=\operatorname{pred}$ vertex on shortest path
if dist $(v)=\infty$ is not reach flo from s
But...
if any neg, weight cycle is reachitle from, we ill never terminate

Lemma: At all times, for any vertex v, dist (v) is either ∞ or the length of some s,v-walk that ends with $\operatorname{pred}(v) \rightarrow v$.
Proof: Induction on $A_{\text {relaxation }}$ Suppose dist $(v) \neq \infty$ \& the last change was Relax $(a \rightarrow v)$.

$$
W \cdot \operatorname{dist}(v) \in \operatorname{dist}(u)+w(u \rightarrow v)
$$

$$
\partial \operatorname{pred}(v)<u .
$$

dist (u) was last set at an earlier relaxation.

So there is a walk W from s to n sit, $w(W)=$

We just set dist (v) to be the length of $W \cdot u>r$ which ends with $u \geqslant v=\operatorname{pred}(s)>$

Cori \Rightarrow dist (v) is al way
\geq distance from stove.

Never a $B_{a d}$ Idea:
Bellman -Ford

$\frac{\text { BELLMANFORD }(s)}{\operatorname{InITSSSP}(s)}$
while there is at least one tense edge
for every edge $u \rightarrow v$
if $u \rightarrow v$ is tense
$\operatorname{ReLAx}(u \rightarrow v)$

Relax ALL the edges!
(over ard over)
Imagine Forldssf. distr) is

First time we relax $v \rightarrow W$ after setting dist (u), were lowe

First time we relax $w \rightarrow x$ after we relax $v \rightarrow w$ after we relax $s \geqslant v$, $\operatorname{dist}(x)$ is correct.
dist (v) : length of shortest walk from s to V that uses at most i edges.

$$
\begin{aligned}
& -\operatorname{dist}_{\leq 0}(s)=0 \\
& -\operatorname{dist}_{\leq 0}(v)=\infty \quad \forall v \neq s \\
& \text { if the shortest walk from } \\
& \text { s to v uses } k \text { edges, } \\
& \operatorname{dist}_{\leq i}(v)>\text { distance if ick } \\
& \operatorname{dist}_{\leq j}(v)=\text { distance if } j \geq k
\end{aligned}
$$

Lemma: For every vertex $v a$ non-neg i, after is iterations of outer while loop,

$$
\begin{aligned}
& \quad \operatorname{dist}^{\prime}(v)=\text { dist }_{\leq i}(v) . \\
& \text { Proof: If } i=0, \operatorname{dist}(s)=\operatorname{dist}_{\leq v}(s)_{i} \\
& \operatorname{dist}(v)=\infty=\operatorname{dist}_{s 0}(v)
\end{aligned}
$$

Suppose $i>0$.
Let W be a shortest walk from s to v using \leqslant_{i} edges. By def. W has length $\operatorname{dist}_{=i}(v)$
If $W=\emptyset$, then $v=s+$

$$
\operatorname{diss}_{\epsilon j}(v)=0 .
$$

$$
\operatorname{dist}(v)=\operatorname{dist}(s) \leq 0=\operatorname{dis}_{i \leq} t_{i}(v)
$$

ow. Let $u \geqslant v$ be the last edge of W.

By ind unction, dist (u) s
distivi-l (u) after
ie l iterations.
During iteration is we check $u \geqslant r$. At that moment

$$
\text { a) } \begin{aligned}
\operatorname{dist}(v) & \leq \operatorname{dist}(u) \\
& \operatorname{tw}_{w}(u \rightarrow v)
\end{aligned}
$$

$-\Delta r-6) \operatorname{dist}(v)>\operatorname{dist}(u)+w(u \div v)$
$\Rightarrow u>_{v}$ is tense
\Rightarrow we relax if so now

$$
d \text { is }(v)=\operatorname{dist}(u)+w(u \rightarrow v)
$$

dist (v) does n 't rise, so when iteration is ends,

$$
\begin{aligned}
\operatorname{dist}(v) & \leq d^{\operatorname{sit}}(u)+w(u>v) \\
& \leq d_{i s t_{\leq i-1}}(u)+w(u>v) \\
& =d i s t_{c_{i}}(v)
\end{aligned}
$$

Proot works even with neg.

Suppose no neg cycles...
Shortest wallss/paths have $\leq|V|-1$ edges.
\Rightarrow dist $(v) \leq$ distance after IVI-I iterations
(we know dist $(v) \geq$ dist ane for.)
$\Rightarrow \operatorname{dist}(v)=$ dist once
$O(E)$ per iteration, so

$$
O(V E) \text { time }
$$

$F_{\text {ail sate }}$ version:
$\frac{\text { BELLMANFORD }(s)}{\operatorname{InITSSSP}(s)}$
repeat $V-1$ times
for every edge $u \rightarrow v$
ReLax $(u \rightarrow v)$
for every edge $u \rightarrow v$
if $u \rightarrow v$ is $u \rightarrow v$ is tense
return "Negative cycle!"
still $O(V E)$ time.

