Given <u>directed</u> G=(V,E,N) $W: E \rightarrow \mathbb{R}$. Shortest path from sev to teV is the streath P minimizes $w(P) = \mathcal{E} u(u \Rightarrow v)$, π a $\Rightarrow v \in P$ min w(P) is the distance from s tit Most shortest paths algs Find shortest paths from s to all vertices v. Single-Source Shortest Paths

shortest paths

5,

Can assume short pst paths Sollow a tree rooted at

Single-source shortest paths tree

For and irected graphs

veplace each edge with

both of its orientations.

Weights may be negative! We dontaknow how to Sird actually

shortest paths.

We can find shortest walks.

Shortest walks don't exist if there is a negative Weight cycle.

o.w. some shortest walk is a path + sssp tree exists

Ford, Dantizig, Minty...

Maintain a pessimistic guess on distance to each vertex.

Two matable variable per vertex v: - dist (1): upper bruik on distance from s to v. dist(s) starts at 0 dist(v) starts at +00. Vv#s - pred (); pre decessor of v on some s to v walk.

pred(v) starts at Null

Chaims: Eventually teminates is no negative cycles. When it does d:st(J) = distance to v V v. pred(J) = pred vertex on shortest path

is dist(v) = ∞, v is not reachible from s

Brt... if any neg. weight cycle is reachible from s, we'll never terminate Cemma: At all times, Sor any vertex v, dist(v) is either ∞ or the length of some s, v - walk that ends with pred(v) $\rightarrow v$.

Proof: Induction on A relaxations

Suppose dist(v) \$ 00 \$ the last change was Relax (u >v).

We dist(v) \in dist(u) $+w(u \rightarrow v)$ + prod(v) $\in u$.

dist(u) was last set at an

earlier relaxation.

So there is a walk W from s to n s.t. w(W): w dist(u) s dist(u)We just set dist(v) to be the length at Windy which ends with nov=pred()> jri =7 dist(1) is alway Z distance from stov. Cori

Never a Bad Idea: Bellman - Ford

 $\frac{\text{BellmanFord}(s)}{\text{INITSSSP}(s)}$ while there is at least one tense edge for every edge $u \rightarrow v$ if $u \rightarrow v$ is tense Relax $(u \rightarrow v)$

Relax ALL the edges!

(over and over)

Imagine Fordsssr. List(1) is Wr Correct Sirst

 $x = \frac{1}{s} \frac{1}{s}$

First time we relax VyW after setting dist(v), were lone, First time we relax $w \ni x$ atter we relax $v \ni w$ after we relax $s \ni v$, dist(x) is correct.

dist (v): length of shortest walk from s to v that uses at most i edges. $- \operatorname{dist}_{\leq 0}(s) = 0 \qquad \forall v \neq s$ $- \operatorname{dist}_{\leq 0}(v) = 0 \qquad \forall v \neq s$ if the shortest walk from s to v uses 12 edges, $dist_{i}(v) > distance$ if i=k dist_j(v) = distance if j ZK

Lemma: For every vertex Vt

non-neg i, atter i iterations of outer while loop,

$dist(v) \in dist_{\in i}(v)$

 $\begin{array}{c} P_{roo}f: If \quad i=0, \quad dist(s)=dist_{go}(s):\\ \quad dist(s)=\infty=dist_{go}(s):\\ \end{array}$

Suppose i = 0. Let W be a shortest walk trom s to v using E i odges. By det. W has longth If $W = \emptyset$, then $V = \mathbf{S} + \mathbf{I}$. $dist_{e,i}(v) = 0$.

Proof works even with neg.

Suppose no neg. cycles ... Shortest walks/paths have E IV)-1 edges. => d.st(n) = d.stance atter IVI-1 iterations (we know dist() = distance too.) = dist(w) = distance O(E) per iteration sd

O(VE) time

Fail sate version:

BELLMANFORD(s)INITSSSP(s)repeat V - 1 timesfor every edge $u \rightarrow v$ if $u \rightarrow v$ is tenseRELAX $(u \rightarrow v)$ for every edge $u \rightarrow v$

if $u \rightarrow v$ is tense return "Negative cycle!"

still O(VE) time.