

Finds shortist paths if

ney ative no cycle has weight.

O(VE) time

No Negative Weight Edges: Dijkstra's

Observations Duzv can only become tense if slist(u) decreases

DIf you volax usv, you'll dist(v) = distlu)

 $(:f w(u \neq v) \neq 0)$

Keep a priority queare of tail vertices with key = dist(u)

This is Ford SSSP with Observation 1, so it's correct!

Änalysis (assuming no neg. weights)

W: vertex returned by ith call to Extract Min (so a, =s) $d_{i} := d_{i} t(u_{i}) at the$ moment up do the ith Ex tract Min (so d, = 0)

For all we know so far

U;=U. For some i=j.

Lemma: For all ú^c, wp

have dizdi.

Proof: Fix i. Well show $d_{i+1} = d_{i}$.

Suppose we relax $u_i > u_{i+1}$ during ith round.

Immediately aster

$d_{i}st(u_{i+1}) = d_{i}st(u_{i}) + w(u_{i} \neq u_{i+1})$ $= dist(u_i).$

Otherwise units was already in quene. But we didn't Extract

it, so $d_{ist}(u_{i}) \in d_{ist}(u_{it})$.

Lemma: Each verter is

extracted at most once.

Proof: Suppose V=u=u

for some j=i.

We pulled it out, but put it back, so d. c d.

But we just argued that

never happens!

Lemma: When Dijkstra ends, for all v, dist (1) is the distance to v.

Let $s = V_0 \rightarrow V_1 \rightarrow \dots \rightarrow V = V$ le the shortest path to V. Let L. be the longth of V, >.. >V, We'll prove by

induction on ; that dist(v,)=

 $d_{ist}(v_{o}) = d_{ist}(s) = 0 = L_{o}$

Suppose ;= 0. By induction, we can assume we Extract V_{j-1} tdist(V_{j-1}) = L_{j-1} at that time. At that moment, either $d_ist(v_i) \in d_ist(v_i) tw(v_i) \neq v_i$ or we set dist(v.)= when we look at $V_{j-1} \rightarrow V_{j-1}$. Fither way, $dist(v_j) \in dist(v_j_j) + w(v_j_j)$ $\leq L_{j-1} \neq w(v_{j-1} \neq v_{j})$ = L_j

In particular dist(v) = $dist(v_e) =$ $L_e =$ distance to v

So, we do at most one Insert & Extract Min per vertex

at most one Decrease key

per edge

With a binary heap, Ollog V) per op.

O(ElogV) time total

Still correct with negative weight edges. Still fact with your few

Still fast with very few negative weight edges...

But with many negative edges it may take exponential

time.

O(V) Insert & Extract Mins O(E) Decrease Keys

Binary Heap : O(log V) tine per op

Fibonacci Heap: O(D) Time (on average) Insert + Decrease Key Ollog V) time (on average) Extract Min O(E+Vlog) Dikstra with Fib. Heaps: Jota)

Edge Weights = 1 (mant to minimize Aedges on a path)

Use breadth-first sparch.

 $\begin{array}{c|c}
\underline{BFS(s):} \\
INITSSSP(s) \\
PUSH(s) \\
while the queue is not empty \\
u \leftarrow PULL() \\
for all edges u \rightarrow v \\
if dist(v) > dist(u) + 1 \\
dist(v) \leftarrow dist(u) + 1 \\
pred(v) \leftarrow u \\
PUSH(v)
\end{array}$

$O(V_{+}E)$ time

Directed Acyclic Graphs

(negative) cycles.

No

All-Pairs Shortest Paths

Want to compute list(u, v)

for all not V: distance

Srom u to v.

$\Theta(V^2)$ values to compute

 $\frac{OBVIOUSAPSP(V, E, w):}{for every vertex s}$ $dist[s, \cdot] \leftarrow SSSP(V, E, w, s)$

Unweighted or DAG:

 $V \cdot O(E) = O(VE) = O(V^3)$ time Non-Negative Weights: $V \cdot O(E + V \log V) = O(VE + V^2 \log V)$

= O(V3) (O(V3 logV) with 6:nary heaps)

Con we get O(V3) even with negative length odges?