$$
\begin{aligned}
& \hline \frac{\operatorname{INITSSSP}(s):}{\operatorname{dist}(s) \leftarrow 0} \\
& \operatorname{pred}(s) \leftarrow \text { NuLL } \\
& \text { for all vertices } v \neq s \\
& \operatorname{dist}(v) \leftarrow \infty \\
& \quad \operatorname{pred}(v) \leftarrow \text { NuLL } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { Edge } u \geqslant v \text { is tense ;f } \\
& d_{\text {is }} t(u)+w(u>v)<d \text { is } f(v)
\end{aligned}
$$

```
RELAX(u->v):
    dist}(v)\leftarrow\operatorname{dist}(u)+w(u->v
    pred(v)\leftarrowu
```

FORDSSSP(s):
InitSSSP(s)
while there is at least one tense edge Relax any tense edge

Finds slantist paths if no cycle has negative weight,

$$
O(V E) \text { time }
$$

No Negative Weight Edges: Dijkstra's
Observations

1) $u \geqslant v$ can only become tense if deist (u) decreases
2) If you relax $u \rightarrow v$, you'll $\operatorname{dist}(v) \geq d$ is (u)

$$
(\text { if } w(u>v) \geq 0)
$$

Keep a priority queue of tail vertices with key

$$
=\operatorname{dist}(u)
$$

```
DIJKSTRA(s):
    InITSSSP(s)
    Insert(s,0)
while the priority queue is not empty
\(u \leftarrow\) Extract Min()
for all edges \(u \rightarrow v\)
if \(u \rightarrow v\) is tense
\(\operatorname{Relax}(u \rightarrow v)\)
if \(v\) is in the priority queue DecreaseKey \((v, \operatorname{dist}(v))\)
                else
                    InSERT(v,dist(v))
```

This is FordSSSP with
Observation 1 so it's
correct!

Analysis (assuming no neg. weights)
$w_{i}:$ vertex returned b_{y} it call to Extract Min (so $w_{1}=s$)
$d_{i}:=d_{i s t}\left(u_{i}\right)$ at the moment we do the with Extract Min
(so $d_{1}=0$)
Fou all we know so far, $u_{i}=u_{j}$ for some $i<j$.

Lemma: For all icj, wp have $d_{j} \geq d_{i}$.
Proof:
Fix i. Well show $d_{i+1} \geq d_{i}$.
Suppose we relax $u_{i} \rightarrow u_{i+1}$ during it round.
Immediately after

$$
\begin{aligned}
\operatorname{dist}\left(u_{i+1}\right) & =d i s t\left(u_{i}\right)+w\left(u_{i} \rightarrow_{u}\right) \\
& \geq d i s t\left(u_{j}\right) .
\end{aligned}
$$

Otherwise u_{i+1} was already in quene. But we didnJ Extract
it, so dist $\left(u_{i}\right) \leq \operatorname{dist}\left(u_{i+1}\right)$.
Lemma: Each vertex is extracted at most once.
Proof: Suppose $v=u_{i}=u_{j}$ for some $j>i$.
We pulled it out, 6 ut put it back, so $d_{j}<d_{i}$
But we just argued that never happens!

Lemma: When Dijkstra ends, for all v dist (v) is the distance fo v.
$L_{\text {et }}=v_{0} \rightarrow v_{1} \rightarrow \ldots \rightarrow v_{l}=v \quad$ be the shortest path to v.
Let $L_{\text {; }}$ be the length of $V_{0} \rightarrow \cdots \rightarrow V_{j}, \quad W_{e}$ 'll prove by induction on j that $\operatorname{dist}\left(v_{j}\right)$ s L_{j}

$$
\operatorname{dist}\left(v_{0}\right)=\operatorname{dist}(s)=0=L_{0} .
$$

Suppose $j>0 . B_{y}$ induction we can ass ume we Extract $v_{j-1}+\operatorname{dist}\left(v_{j-1}\right) \leq l_{j-1}$ at that time.
At that moment, either

$$
\operatorname{dist}\left(v_{j}\right) \leq \operatorname{dist}\left(v_{j_{j-1}}\right)+w\left(v_{j-1} \rightarrow v_{j}\right)
$$

or we set $\operatorname{dist}\left(v_{j}\right)=$

$$
d_{i s}+\left(v_{j, 1}\right)+\omega\left(v_{i, 1}+v_{j}\right)
$$

when we look at $V_{j-1} \rightarrow V_{j}$.
Either way, $\operatorname{dist}\left(v_{j}\right) \leq \operatorname{dist}\left(v_{j-1}\right)+w\left(v_{j-1} \rightarrow=\right.$

$$
\begin{aligned}
& \leq L_{j-1}+w\left(v_{j-1} \rightarrow v_{j}\right) \\
& =L_{j}
\end{aligned}
$$

In particular $\operatorname{dist}(v)=$

$$
\begin{aligned}
& \operatorname{dist}\left(v_{l}\right)= \\
& L_{\ell}= \\
& \text { distance tov }
\end{aligned}
$$

So, we do at most one Insert $\circ E_{x}$ tract Min per vertex at most one Decreasekey per edge
With a binary heap, $O(\log V)$ per op.
$O(E \log V)$ time total

Still correct with negative weight edges.
Still fast with very few negative weight edges...
But with many negative edges it may take exponential time.
$O(v)$ Insert a Extracting
O(E) Decrease Keys
Binary Heap: $O\left(Y_{o j}\right.$ V) time per op
Fibonacci Heap:
O(1) time (on average) Insert + Decrease key $O(\log V)$ time (on average) Extract Min $O(E+V(0, V)$
Dikstra with Fib. Heaps: total

O(Elog V) with binary heaps $O(E+V \log V)$ with Fit heaps (Don') do this in practice. Stick to binary heaps.)
$E d_{\text {ge }}$ Weights =1 (want to minimize A edges on a path)
Use breadth first search
\square

$$
O(V+E) \text { time }
$$

Directed -Acyclic Graphs

$$
\operatorname{dist}(v)= \begin{cases}0 & \text { if } v=s \\ \min _{u \rightarrow v}(\operatorname{dist}(u)+w(u \rightarrow v)) & \text { otherwise }\end{cases}
$$

No (negative) cycles.

DAGSSSP(s):
for all vertices v in topological order

```
        if \(v=s\)
            \(\operatorname{dist}(v) \leftarrow 0\)
        else
            \(\operatorname{dist}(v) \leftarrow \infty\)
            for all edges \(u \rightarrow v\)
                if \(\operatorname{dist}(v)>\operatorname{dist}(u)+w(u \rightarrow v)\)
                \(\operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v)\)
```

 \(\langle\langle i f u \rightarrow v\) is tense \(\rangle\rangle\)
 \(\langle\langle\) relax \(u \rightarrow v\rangle\rangle\)
 PUSHDAGSSSP(s):
InitSSSP(s)
for all vertices u in topological order
for all outgoing edges $u \rightarrow v$
if $u \rightarrow v$ is tense
$\operatorname{Relax}(u \rightarrow v)$

All- Pairs Shortest Paths Want to compute list (u, v) for all $u, v \in V$ i distance from a to v. $\theta\left(V^{2}\right)$ values to compute

Unweighted or DAG:

$$
V \cdot O(E)=O(V E)=O\left(V^{3}\right) \text { time }
$$

Non-Negutive Weights:

$$
V \cdot O(E+V \log V)=O\left(V E+V^{2} \log V\right)
$$

$$
=O\left(V^{3}\right)
$$

(o($\left.v^{3} \log v\right)$ with binary heaps)
Otherwise:

$$
V \cdot O(V E)=O\left(V^{2} E\right)=O\left(V^{4}\right)
$$

Can we get $O\left(V^{3}\right)$ even with negative length odes?

