Two problems:
Given directed graph

$$
G=(V, E)
$$

s: source two vertices
t : Target $/ \sin k$

Maximum Flow
An (s, t)-flow is an assignment $f: E \rightarrow \mathbb{R}_{\geq 0}$ that models how material flows through the network.
It must follow the con servation con strain:
for each vertex v (except may be sot)

$$
\begin{gathered}
\sum_{w} f(v \rightarrow w)=\sum_{u} f(u \rightarrow v) \\
\left.\left(w^{\prime}\right) \prime \text { say } f(v \rightarrow w)=0 \text { if } f^{v \rightarrow w} \neq\right)
\end{gathered}
$$

$$
\delta f(v):=\sum_{w} f(v>w)-\sum_{u} f(u>v)
$$

so $\delta f(v)=0$ if $v \notin\{s, t\}$
The value of f is

$$
\begin{aligned}
&|f|:=\delta f(s)=\sum_{w} f(s \rightarrow w)- \\
& \sum_{u} f(u \geqslant s) \\
& C \text { lain: } \delta f(s)=-\delta f^{\prime}(t) \\
& P_{\text {foot }}: \\
& 0=\sum_{v} \delta f(v)=\delta f(s)+\delta f(t)
\end{aligned}
$$

Edges have capacities

$$
c: E \rightarrow \mathbb{R}_{\geq 0}
$$

Flow f is feasible with respect to capacities c if $f(e) \leqslant c(e) \quad \forall e \in E$ Say a flow f...
saturates edge e if

$$
f(e)=c(e)
$$

avoids e if $f(\rho)=0$ G+statc: flow network

maximum flow problem:
find a feasible (s, t)-flow of max value

Minimum Cut
An $(s, t)-c u t$ is a partition of V into disjoint $S+T$.
(so $S \cup T=V+S \wedge T=0$)
where $s t S+t \in T$.
The capacity of cat (S, T)
is the sum of capacities
Jor edges going from $S \pm T$.

$$
\|S, T\|:=\sum_{v \in S} \sum_{v \in T} c\left(v \rightarrow_{w}\right)
$$

(well) say $c(u \geqslant 0)=0$ it $u \geqslant v \notin E)$

minimum cat problem: find an (s, t)-cut of \min capacity

Lemma: The value of any feasible $(s, f) \cdot f$) ow f is at most the capacity of any (s, f)-out

$$
\begin{align*}
|f| & =\partial f(s) \tag{S,T}\\
& =\sum_{v \in S} \partial f(v) \\
& =\sum_{v \in S} \sum_{w} f(v>w)-\sum_{v \in S} \sum_{u} f(u>v) \\
& =\sum_{v \in S} \sum_{w \notin S} f(v>w)-\sum_{v \in S} \sum_{u \neq S} f(u>v) \\
& =\sum_{v \in S} \sum_{w \in T} f(v>w)-\sum_{v \in S} \sum_{n \in T} f(u>v)
\end{align*}
$$

$$
\begin{aligned}
& \leq \sum_{v \in S} \sum_{w \in T} f\left(v \rightarrow_{w}\right) \\
& \leq \sum_{v \in S} \sum_{w \in T} c(v>w) \\
& =\|S, T\|
\end{aligned}
$$

$|f|=\|S T\|$ if we avoid all edges from T to s ot saturate all edges from S to T

Max-Flaw Min-Cut Theorem [Ford + Pal Kerson ' 54]
(pElias, Feinstein, Shannon '56]:
The maximum flow value
$=$ the min cut capacity.
Weill assume G is reduced.
For every pair $u, v \in V$ we have at most one of $u \rightarrow v$ or $v \rightarrow u$.

Can guaratec:

Proof: Let f te an arbitrary feasible (s, t). flow.
Either use can find a bettor flow or $(f)=\| S$, Tl l for some (S, T).

The residual capacity function $c_{f}: V \times V \rightarrow \mathbb{R}$

$$
c_{f}(u>v)=\left\{\begin{array}{cc}
c(u>v)-f(u>v) & \text { if } \\
f(v>u) & \text { if } v \rightarrow u \in u \in E \in \\
0 & 0, w .
\end{array}\right.
$$

$$
f(u>v) \geq 0+f(u>v) \leq_{c}(u>v)
$$

so res, caps are non~neg.
Residual graph $G_{f}=\left(V, E_{f}\right)$

$$
E_{f} \text { : all } u \geqslant v \text { sit } c_{f}(u>v)>0
$$

G

G_{f}

Either there is a path p from s to $t_{i n}$ or there is'....

Suppose P exists...
Cull it an $\frac{\text { aumenting }}{\text { path }}$

$$
\text { Let } F:=\min _{u \rightarrow v \in p} c_{f}(u \rightarrow v)
$$

Weiss "push" $F_{\text {units }}$ of flow along P.
Define a new flow $f^{\prime}: E \rightarrow \mathbb{R}$ where $f^{\prime}(u \rightarrow v)=$

$$
\left\{\begin{array}{lc}
f(u>v)+F & \text { if } u \neq v \in p \\
f(u \rightarrow v)-F & \text { if } v \rightarrow u \in P \\
f(u \neq v) & 0, w .
\end{array}\right.
$$

Facts: f^{\prime} is feasible.

$$
\left|f^{\prime}\right|=|\delta|+F
$$

So f was not max value.

Suppose P does not exist.
S : vertices reachible from s in G_{f}

$$
\begin{aligned}
& T:=\vee \backslash S . \\
& (S, T) \text { is an }(s, f)-c u t . \\
& F_{\text {or all } u \in S}+v \in T . \\
& u \rightarrow v \notin E_{f} \\
& \text { If } u \rightarrow v \in E, 0=c_{f}(u>v) \\
& =c(u>v)-f(u \rightarrow v)) \\
& \text { so } u \geqslant v \text { is saturated }
\end{aligned}
$$

If $v \rightarrow_{u} \in E, 0=c_{f}(u \geqslant v)$

$$
=f(v \rightarrow w)
$$

$$
\text { so } v \rightarrow u \text { is }
$$

avoided
f saturates all $S \rightarrow T$ edges + avoids all $T \rightarrow S$ elves
So $|f|=\|S, J\|$.
So f is max value t (S, T) is min capacity.

