Edge -Disjoint Paths
Given directed graph

$$
\begin{aligned}
& G=(V, E)+\text { two vertices } \\
& \text { sot. }
\end{aligned}
$$

Want a max site set of (s, t)-paths that don't share any edges.

Alg:
Give each elge a capacity of 1 .

Compute a max (s, t)-flow.
P :any set of k edge -disjoint paths
Claim: There exists a flow f sit. $|f|=k$.
$f(e)=1$ if e is in some path of P $f(e)=0$ ow.

$$
f^{ \pm}: \max f t_{o w}
$$

capacities are integers, so we can assume f^{∞} is integral
Claim: There is a set of $\left|\delta^{*}\right|$ edge-disjoint paths.

There is a path-crycle decomposition of $f *$. Each path has weight/ value 1 .
So there are $\left|f^{*}\right|$ of them.
t they are edge-disjoint. ow, wed have flow ≥ 2 on an edge
So if k^{∞} is max ${ }^{A}$ paths $\left|f^{\star}\right| \geq k^{\infty}+$ we can grab k paths from it, so $k^{*} \geq 18^{\circ}$)

$$
\Rightarrow \quad k^{\circ}=\left|\delta^{\infty}\right|
$$

Time: Orin: $O(V E)+O(K E)$ If G is $\operatorname{simp}\left(\rho_{j}\left|8^{*}\right| \leq|V|-1\right.$

So just use Ford-Fulkerso

$$
\begin{gathered}
\text { in } \sigma\left(E\left|S^{\star}\right|\right)=\sigma(V E) \\
\|\left(k^{*} E\right)
\end{gathered}
$$

Bibartite Matching
Given an undirected bipartite graph

$$
G=(L \cup R, E)
$$

(so no $L-L$ or $R-R$ edges)
A matching $M \subseteq E$ has no two edges of M sharing an endpoint. lie. a sabgraph where an
vertices have degroe i)

Maybe L is mel stadentst R is internships.
Goal: Find a matching of max size.
Alg: Create G' from G 6 :

1) orient edges from L to R
2) add vertices $s+f$
3) ale edge $s \rightarrow V$ for all $v \in L$
4) add elge $u \rightarrow+$ for all $w \in R$
5) Assign capacity 1 to all edges.

Claim: For any matching M in G_{j} there is a feasible f_{m} in G^{\prime} st. (s,). flow

$$
\left|f_{m}\right|=|m|
$$

For each edge $u v \in M$, set $f(s \rightarrow a)=f(u \rightarrow 1)=f(u>f):=1$

Any edges we missed get flow 0 . f^{*} : max flow-asscemed integral M^{*} : max matching
we know $\left|f^{*}\right| \geq\left|M^{\infty}\right|$
Claim: There is a matching M^{\prime} sit. $\left|M^{\prime}\right|=\left|f^{\star}\right|$.

Take all $u v \in G$ sit.

$$
f^{\theta}(u \rightarrow v)=1
$$

Time with FF: $O\left(18^{*} \mid E\right)=$ $O(V E)$

Could change A times
we use the edges or vertices by changing capacities.

Assignment Problems

Project Selection
Given a directed acyclic graph $\mathcal{G}^{-(V, E)}$.
V : the projects
edge $u \rightarrow v$ whenever u depends upon V profits $\| V \rightarrow \mathbb{R}$

Blu) profit if we complete negative prosit \equiv cost

Goal: Select $X \leq V$ that includes dependencies for all $x \in X$.
Want to max $\varepsilon_{x \in X} g(x)$

Think of finding a cut (S, T) if Selected Turned down projects.

Turn G into a flow network G'

1) Add source sa target
2) For exch v sit. $\$(v)>0$ add $s \rightarrow v$.
For each w sit. $\Delta(u)<0$, add $u \rightarrow t$.
3)

$$
\begin{aligned}
& c(s \rightarrow v):=\mathbb{Z}(v) \quad \forall \mathbb{J}(v)>0 \\
& c(u>f):=-\|(u) \quad \forall I(u)=0 \\
& c(u \geqslant v):=\infty \quad \forall u \geqslant v \in G
\end{aligned}
$$

Let (S, T) be any finite capacity (s, f) cut, we wont have $a \in S, v \in T$ if $u \rightarrow v \in G$, so
$X: S$-s is a feasible solution to our problem.

$$
\begin{aligned}
& P:=\varepsilon_{v} \max \{0, D(v)\}=\sum_{s(v) \geqslant 0} \rrbracket(v) \\
& \text { For any } x \leq v, 10 t \\
& \cos t(x):=\sum_{u \in X}-D(u)=\sum_{u \in X}(u s t) \\
& A(u)<0 \\
& \text { yield }(X):=\sum_{\substack{v \in X \\
b(v)>0}} d(v)=\sum_{v \in X} d(s \rightarrow v)
\end{aligned}
$$

$$
\operatorname{profit}(x):=\sum_{v \in X} \oiint(v)=\underset{c}{y i e l d}(x)
$$

By def., $P=$ yeild (V)

$$
=\text { yield }(S)+\text { yield }(T)
$$

Assuming $\|S, T\|$ is finite

$$
\begin{aligned}
\|S, T\| & =\cos t(S)+\text { yield }(T) \\
\operatorname{profit}(S) & =\text { yield }(S)-\operatorname{cost}(S) \\
& =P-y_{i e l d}(T)-\cos (S) \\
& =P-\|S, T\|
\end{aligned}
$$

So compute min cut to maximize profit.

Time: Orlin in $O(V E)$

