polynomial time: $O\left(n^{c}\right)$ for some constant c

Given a Godean circuit with n input gates x_{1}, \ldots, x_{n} Connected as a DAG with AND, OR, + NOT gates.
Circuit has loutpat wire.
Can we set inputs to Truelfalse so output is True?

Circuit satisfiability Cirunit SAT

Algorithm: For each setting of input, compute output

$$
O\left(2^{n} n\right) \text { time }
$$

Nobody knows how to do letter!
But we can check a single input suggestion in $O(n)$ time.

Decision Problems:
Output is True or False. (Yes or N_{0})
(main)
Three classes of decision problems
P : Can solve in polynomial time.
E_{x} : Decision version of min spanning tree (given $G \not a$ a number k does MST of 6 cost at most k ?)

NP: Decision problem where if answer is True, there exists a proof you can verify or dismiss in polynomial time.
$E_{x}:$ Circuit SAT
co-NP: If answer is False, There is a proof you can check in poly time.

$$
\begin{aligned}
& \text { Ext: Prime: Given a } n-6 i t \\
& \text { integer } w \text { is w prime? }
\end{aligned}
$$

Np : Non-deterministic polynomial (time)
(not the same as quantum)

Big Question: $P \stackrel{?}{f} N P$
tram scranton) Most think $P \neq N P$.

$$
\begin{aligned}
& F_{\text {ac, }} P \subseteq N P \text { (use empty, } \\
& P \subseteq c_{c o-N P ~ p r o o t . ~ " V e r i s, " ~}^{\text {P }} \\
& \text { by solving }
\end{aligned}
$$

Clay Mathematics Institute 7 Millennium Prize Problems $\$ 1,000,000$ to prove or disprove $P=N P$.

Another problem: $N P=$ co -NP The World?

Proben B (decision or not) is NP-hard if for every problem $A \in N P$ we can reduce A to B in polynomial (IAD) time.
\Rightarrow A poly time alg for B would imply a poly time alg for all $A \in N P$.
\Rightarrow a poly time alg for B implies $P=N P$.
$\approx>$ B probably has no poly tinter

If $B \subseteq N P+B$ is $N P$-hand, we say B is (is in) NP-complope.
The World?

Th ${ }_{m}\left[C_{\text {cook' }}\right.$ '7 ILevin' 73$]:$ CircuitSAT $\in N P$-complete Sketaly Proof:

Let $A \in N P$ be any problem in $N P$,
$A \in N P$ implies we can build a little proust verification machine

Reduce A to Circuit SAt Given jest input
Buy a whole bunch of chips, Replace CPU Clock with passing info from clip

$$
\text { in a } D A G
$$

Machine is now a DAG
Is an instance of Circuitsat.
of size $m=O\left(n^{c}\right)$
Reduction took $O\left(n^{6}\right)$ time.
Return Circuit SAT answer in $O\left(m^{\prime}\right)$ time.to
get an $O\left(\left(n^{c}\right)^{c^{\prime}}\right)$ time alg for $A, \quad O\left(n^{c} c^{\prime}\right)$
So CircuitSAT is NP -hard. Also Circuit SAT ENP.
So CircuitSAT $\in N P$-complete.

To prove a problem B is NP -hard, do a polynomial time reduction from some NP. hard problem A to B.

Formula Satisfiability (SAT):
Given a boolean formula
like $(a \cup b u c \cup \bar{d}) \mapsto((b=c)$) obs...)
Can you set the variables so the formula evaluates
to Trees?
$S A T \in N P$
Th m: SAT $\in N P$-complete
Proof by reduction from Circuit SAT...

