For mule Satisfinbility (SAT) Given a boolean formula $\phi$. Is there a way to set $\Phi$ 's variable so it ovals to true?
$S A T \in N P$ : How de set the variables?
SAT ; NP-hard (so SAT.
$N P_{\text {cop pa }}$

Reduce CircuitSAT to SAT.
Given a circuit $K$.
Assign each wire a variable.
Write an equations describing each gate, $\mathfrak{b} \Rightarrow-c$

$$
(a \wedge b=c)
$$

1 the equations $\alpha$ the variable $z$ for the rotgut

$\left(y_{5}=\overline{x_{2}}\right) \wedge\left(y_{6}=\overline{x_{5}}\right) \wedge\left(y_{7}=y_{3} \vee y_{5}\right) \wedge\left(z=y_{4} \wedge y_{7} \wedge y_{6}\right) \wedge z$

Lemma: $K$ is sat. if $\phi$ is.
$\Rightarrow$ : Use $k$ 's good retting for $x$ values. $\theta$ set other variables by what their gates do.
All equations are sat, $\alpha z$ is set true, so (1) is true. $\simeq U$ se $\Phi$ 's setting of $x$ values.


$$
\frac{\text { CircuitSat }(K):}{\text { transcribe } K \text { into a boolean formula } \Phi}
$$ return $\operatorname{SAT}(\Phi) \quad\left\langle\left\langle * * \star M A G I C_{\star * *}\right\rangle\right\rangle$

So we have poly time reduction from CircnitSAT to SAT.

So any problem $A \in N P$ reduces to CircuitsAT which reduces to SAT.

$$
=7 \text { SAT is NP-hard. }
$$

A literal is a boolean variable a or its negation $\bar{a}$.

A clause is a disjunction (OR) of several literals.
A boolean formula is in conjunctive normal form if it is the conisuction of several clauses.

A 3CNF formula is a CNF formala with exactly three literals per clause.
3SAT (BCNF SAT):

Given borlean furmula $\Phi$ in 3CNF. Can we set vaviatles to makes I true?

$$
3 S A T \in N P
$$

3SAT ENP-completo.

Reduce from CiruuitSAT. Given cirwit $k$.

1) (hanger all AND $+O R$ gates to a tree taking exactly tho inputs per gate.

2) Assign variables to wires $\alpha$ write equations for gates.
3) Chang equations into 2 on 3 clauses each $a=b \wedge c \longmapsto(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee b) \wedge(\bar{a} \vee c)$ $a=b \vee c \longmapsto(\bar{a} \vee b \vee c) \wedge(a \vee \bar{b}) \wedge(a \vee \bar{c})$ $a=\bar{b} \longmapsto(a \vee b) \wedge(\bar{a} \vee \bar{b})$
4) Replace clauses with 1 or 2 literals with 4 on 2 clauses with 3 literals. (Use a new $x$ dy for each of these trans forms)
$\begin{aligned} a \vee b & \longmapsto(a \vee b \vee x) \wedge(a \vee b \vee \bar{x}) \\ a & \longmapsto(a \vee x \vee y) \wedge(a \vee \bar{x} \vee y) \wedge(a \vee x \vee \bar{y}) \wedge(a \vee \bar{x} \vee \bar{y})\end{aligned}$

$\wedge\left(\overline{y_{3}} \vee \overline{x_{3}} \vee \overline{y_{2}}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee z_{5}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee \overline{z_{5}}\right) \wedge\left(\overline{y_{3}} \vee y_{2} \vee z_{6}\right) \wedge\left(\overline{y_{3}} \vee y_{2} \vee \overline{z_{6}}\right)$
$\wedge\left(y_{6} \vee x_{5} \vee z_{11}\right) \wedge\left(y_{6} \vee x_{5} \vee \overline{z_{11}}\right) \wedge\left(\overline{y_{6}} \vee \overline{x_{5}} \vee z_{12}\right) \wedge\left(\overline{y_{6}} \vee \overline{x_{5}} \vee \overline{z_{12}}\right)$
$\wedge\left(\overline{y_{7}} \vee y_{3} \vee y_{5}\right) \wedge\left(y_{7} \vee \overline{y_{3}} \vee z_{13}\right) \wedge\left(y_{7} \vee \overline{y_{3}} \vee \overline{z_{13}}\right) \wedge\left(y_{7} \vee \overline{y_{5}} \vee z_{14}\right) \wedge\left(y_{7} \vee \overline{y_{5}} \vee \overline{z_{14}}\right)$
$\wedge\left(y_{9} \vee \overline{y_{8}} \vee \overline{y_{6}}\right) \wedge\left(\overline{y_{9}} \vee y_{8} \vee z_{17}\right) \wedge\left(\overline{y_{9}} \vee y_{6} \vee z_{18}\right) \wedge\left(\overline{y_{9}} \vee y_{6} \vee \overline{z_{18}}\right) \wedge\left(\overline{y_{9}} \vee y_{8} \vee \overline{z_{17}}\right)$
Reduction takes $\sigma(n)$ time


So jt's NP-hard

Given undirected graph

$$
\theta=(V, F)
$$

An independent set $S \leq V$ of $G$ hes no edge of 6 between its vertices.
Max IndSet: Find a max size independent set.
Claim; Max Ind Sot is NP-hard.
Reduce From 35AT.

Given 3CNF $\Phi$
Build a graph $G$.
$k \leftarrow \#$ clause in $\Phi$.
$G$ gets $3 k$ vertices, one per literal of $\Phi$
Any pair of literals in a clause get a "triangle" dodge between their vertices.
Any two literals $a+\bar{a}$ get a "negation" edge.


Claim: II is sat. if $G$ has an ind set of size $k$.
$\Rightarrow$ Pick a sat. assignment + one true literal (writ assignment) per clause. $S$ : Vertices of those true literals.

$$
|s|=k
$$

\& Sot variable so each ind set literal is true.

Decision Version: Ind Set Given $G+$ an integer $k$. Does $G$ have an ind set of size $k$ ?
Ind Set $\in N P$.
ENP- complete.

A clique is another name Sou a complete graph. Max Clique: Given $G$, what is the largest clifue sabgraph?
A vertex cover is a subset of vertices where each edge is hit at least once.
Min Vertex Cover: Find a min site vertex cover.


Claim: Both are NP hard. From Max Ind Set:

1) Given G. Take complement $\bar{G}=(v, \bar{E}) . \bar{E}=\{u v: u v \notin E\}$
2) $I$ is an ind. set of $G=(V, E)$ ifs $V \backslash I$ is a vertex cover.


Decision versions hard too $\Rightarrow$ Clique + Vertex Cover $\in N P$-complete

