
properk-coloving of undivected
$G=(V, E)$ is a function
$C: U \rightarrow\{1,2, \ldots, k\}$ assigning one of k "colors" to the vertices of G
sit. $C(u) \neq C(v)$ for any edge $u v \in E$.
3 Color: Given graph $\mathcal{G}=\left(V_{j} E\right)$ does it have a proper 3 -

$$
3 C \text { dolor } \in N P: \text { What is C? }
$$

Claim: $3 C_{0}$ or is in $N P$-complete. Proof: Reduce from 3SAT.
Were given a $3 C N F \Phi$
Weill build some gadgets.

1) Truth gadget:

A triangle:
Any proper coloring uses different

colors, True, False, +Other.
2) Variable gadget:
$a \rightarrow$

3) Clause gadget: Use the

Any proper 3-color of the gadet assign's T 's color to one or more of a, 6 , or \bar{c}. α vice versa

That's \mathcal{O}.
Claim: Φ is sat. iff G has a proper 3-coloring Proof: Use the literals colored as T to sat. Ф
\Rightarrow True literals get T color \& $F_{\text {also }}$ ones got F color. Color clause gadgets as needed.

For any $k \geq 3, k$ Color is NP -complete. Min Color is NP-hard,

A Hamiltonian ic yo in a graph visits each vertex exactly once.
(Visit each edge exactly once for an Ealerian Tour)
Directed HamCycle: Given directed $\mathcal{O}=(V, E)$. Does
O contain a Hamiltonian cycle?
In NP.
Also $N P$-complete.
(Ealerjon Tour $\in P$)

Reduce from Vertex Cover. Given undirected $G+$ an integer k. Is there a vertex cover of size k ?
Build graph H...

Edge gadgot:

$$
u v \in G \rightarrow
$$

four vertices in H

$$
\begin{aligned}
& (u, v, \text { in }),(u, v, o u t), \\
& (v, u, \text { in }),(v, u, o u t)
\end{aligned}
$$

o six edges in H

$$
\begin{aligned}
& (u, v, \text { in }) \rightarrow(u, v, o u t) \\
& (u, v, \text { in }) \leftrightarrows(v, u, \text { in }) \\
& (v, w, \text { in }) \rightarrow(v, u, o u t) \\
& (u, v, o u t) \leftrightarrows(v, u, o u t)
\end{aligned}
$$

Way(athrough describes how to cover uv.

Vortex gadget
Vertex u in $6 \rightarrow$
Say u has d neighbors

$$
V_{1}, V_{2}, \ldots V_{d}
$$

Add edge $\quad\left(u, v_{i-1}\right.$, out $) \rightarrow$
in H $\left(u, v_{i}\right.$, in $)$ for all

Called a vertex chain.
Add k cover vertices $x_{0}, x_{1}, \ldots, x_{k-1}{ }^{\circ}$ edges
$x_{i} \rightarrow\left(u, v_{1}\right.$, in $)$ for all vertices u.

$$
(u, v \ell, \circ u t) \Rightarrow x_{i}
$$

G

Suppose there is a vertex cover $u_{0}, u_{1}, \ldots, u_{k-1}$
There is cycle...
For each is $\in\{0, \ldots, k-1\}$

$$
\begin{aligned}
& x_{i} \rightarrow\left(u_{i}, v_{i}, i n\right) \rightarrow \ldots \\
& \cdots \rightarrow\left(u_{i}, v_{d}, o u t\right) \rightarrow x_{i}
\end{aligned}
$$

Suppose \exists a Ham ayclo C...
Undirected HamCycle
G NP-complete
$\left(u_{n}\right)$ directed Ham Path $\in \underset{\text { No mp }}{ }$ comp

$$
\begin{gathered}
\Rightarrow \text { Longest }(\text { simple) Path } \\
\text { is NP-hard }
\end{gathered}
$$

SubsetSum Given a set
X of positive integers α
a an integer T. Is there
a subset of X summing
to T?
in NP
in NP-complete...
Reduce from Vertex Cover.
Given undirected $G=(U, E)$ α integer k.

Edge gadgets: Number - does from 0 to $|E|-1$.
x gets $6_{i}:=4^{i}$
Vertex gadgets:
For each vertex V

$T:=k \cdot \psi^{|E|}+\sum_{i=0}^{\text {IE -I }} 2 \cdot 4^{i+}$. $O\left(E^{2}\right)$ time reduction

$b_{u v}:=010000_{4}=256$
$b_{u w}:=001000_{4}=64$
$a_{w}:=101101_{4}=1105$
$b_{v w}:=000100_{4}$
$\begin{array}{ll}b_{v x}:=000010_{4}= & 4 \\ b_{w x}:=000001_{4}= & 1\end{array}$

$$
T=222222_{4}
$$

Suppose G has a vertex cover C of site k
$X_{c}:=a_{v}$ for each $v \in V$
+6 for each edge covered exactly
once

Other direction
But there's a

$$
O(n T) \text { time alg? }
$$

pseudo-poly time
Subset Sum is weakly-NP-hard
Uses exponentially large numbers.
Other examples were strongly
IVP-hard

CS 6382: Theory of Computation

CS 6317: Comput a tional Geometry

