NP → Circuit SAT → SAT → 3SAT → IndSet → Clique, VertexCover
proper k-coloring of undirected

\[G = (V, E) \] is a function \(C : V \to \{1, 2, \ldots, k\} \) assigning one of \(k \) "colors" to the vertices of \(G \) such that \(C(u) \neq C(v) \) for any edge \(uv \in E \).

3Color: Given graph \(G = (V, E) \), does it have a proper 3-coloring?

3Color \(\in \text{NP} \): What is \(C \)?
Claim: 3Color is in NP-complete.

Proof: Reduce from 3SAT.

We're given a 3CNF Φ.

We'll build some gadgets.

1) Truth gadget:
 A triangle:
 Any proper coloring uses different colors, True, False, and other.

2) Variable gadget:
 $a \quad \rightarrow \quad \overline{a}$
3) Clause gadget: Use the literal vertices from step 2 and vertex T.

$(a \lor b \lor \overline{c}) \Rightarrow$ unique to the clause

Any proper 3-color of the gadget assigns T's color to one or more of a, b, or \overline{c}, + vice versa.
That's G.

Claim: G is sat. iff G has a proper 3-coloring.

Proof: Use the literals colored as T to sat. \overline{I}
True literals get T color & False ones get F color. Color clause gadget as needed.

For any \(k \geq 3 \), \(k\text{-Color} \) is NP-complete. Min Color is NP-hard.
A Hamiltonian cycle in a graph visits each vertex exactly once.

(Visit each edge exactly once for an Eulerian Tour)

Directed Hamiltonian cycle: Given directed $G = (V, E)$. Does G contain a Hamiltonian cycle?

In NP.

Also NP-complete. (Eulerian Tour is in P)
Reduce from Vertex Cover.

Given undirected G and an integer k. Is there a vertex cover of size k?

Build graph H. ...
Edge gadget:

\(u \rightarrow v \in G \Rightarrow \)

Four vertices in \(H \)

\((u, v, \text{in})\), \((u, v, \text{out})\), \((v, u, \text{in})\), \((v, u, \text{out})\)

+ six edges in \(H \)

\((u, v, \text{in}) \rightarrow (u, v, \text{out})\)

\((u, v, \text{in}) \rightarrow (v, u, \text{in})\)

\((v, u, \text{in}) \rightarrow (v, u, \text{out})\)

\((u, v, \text{out}) \leftarrow (v, u, \text{out})\)
Ways through describes how to cover \(uv \).

Vertex gadget.

Vertex \(u \) in \(G \) \(\Rightarrow \)

Say \(u \) has \(d \) neighbors \(V_1, V_2, \ldots, V_d \).

Add edge \((u, V_{i-1}, \text{out})\) in \(H \) \(\Rightarrow \) \((u, V_i, \text{in})\) for all \(2 \leq i \leq d \).
Called a vertex chain.

Add k cover vertices $X_0, X_1, \ldots, X_{k-1}$ and edges $X_i \Rightarrow (u, v, \text{in})$ for all vertices $u, (u, v, \text{out}) \Rightarrow x_i$.
Suppose there is a vertex cover \(u_0, u_1, \ldots, u_{k-1} \).

There is cycle ...

For each \(u \in \{0, \ldots, k-1\} \):

\[x \rightarrow (w_i, v_j, \text{in}) \rightarrow \ldots \]

\[\ldots \rightarrow (w_i, v_d, \text{out}) \rightarrow x \]

Suppose \(\exists \) a Hamilton cycle \(C \).

Undirected Hamilton Cycle \(\in \text{NP-complete} \)

(Undirected) Hamilton Path \(\in \text{NP-complete} \)
Longest (Simple) Path is \(\text{NP-hard} \)
Subset Sum: Given a set X of positive integers and an integer T. Is there a subset of X summing to T?

in NP

in NP-complete...

Reduce from Vertex Cover.
Given undirected graph $G = (V, E)$ and integer k.
Edge gadgets: Number edges from 0 to $|E|-1$. X gets $b_i := 4^i$.

Vertex gadgets:
For each vertex v
X gets $a_v := 4^{|E|} + \sum_{\omega \in \Delta(v)} 4^i$.

$T := k \cdot 4^{|E|} + \sum_{i=0}^{1|E|-1} 2 \cdot 4^i$.

$O(E^2)$ time reduction.
Suppose G has a vertex cover C of size k.

$X_c := a_v$ for each $v \in V$

$+ b_i$ for each edge u covered exactly once

$$T = \overline{222222}$$

$a_u := 111000_4 = 1344$ \quad $b_{uv} := 010000_4 = 256$

$a_v := 110110_4 = 1300$ \quad $b_{uw} := 001000_4 = 64$

$a_w := 101101_4 = 1105$ \quad $b_{yw} := 000100_4 = 16$

$a_x := 100011_4 = 1029$ \quad $b_{yx} := 000010_4 = 4$

$b_{wx} := 000001_4 = 1$
Other direction

But there's a $O(n^t)$ time alg?

pseudo-poly time.

Subset Sum is weakly-

NP-hard.

Uses exponentially large

numbers.

Other examples were strongly

NP-hard.
CS 6382: Theory of Computation

CS 6319: Computational Geometry