
A simple deterministic near-linear time approximation scheme for

transshipment with arbitrary positive edge costs

Emily Fox∗

July 14, 2023

Abstract

We describe a simple deterministic near-linear time approximation scheme for uncapacitated
minimum cost flow in undirected graphs with real edge weights, a problem also known as trans-
shipment. Specifically, our algorithm takes as input a (connected) undirected graph G = (V,E),
vertex demands b ∈ RV such that

∑
v∈V b(v) = 0, positive edge costs c ∈ RE

>0, and a parameter

ε > 0. In O(ε−2m logO(1) n) time, it returns a flow f such that the net flow out of each vertex is
equal to the vertex’s demand and the cost of the flow is within a (1 + ε) factor of optimal. Our
algorithm is combinatorial and has no running time dependency on the demands or edge costs.

With the exception of a recent result presented at STOC 2022 for polynomially bounded
edge weights, all almost- and near-linear time approximation schemes for transshipment relied
on randomization in two main ways: 1) to embed the problem instance into low-dimensional
space and 2) to randomly pick target locations to send flow so nearby opposing demands can
be satisfied. Our algorithm instead deterministically approximates the cost of routing decisions
that would be made if the input were subject to a random tree embedding. To avoid computing
the Ω(n2) vertex-vertex distances that an approximation of this kind suggests, we also limit
the available routing decisions using distances explicitly stored in the well-known Thorup-Zwick
distance oracle.

∗Department of Computer Science, The University of Texas at Dallas; emily.fox@utdallas.edu. Supported in part
by NSF grant CCF-1942597.

emily.fox@utdallas.edu

A simple deterministic near-linear time approximation scheme for transshipment 1

1 Introduction

Let G = (V,E) be an undirected graph with positive edge costs c ∈ RE
>0, and let b ∈ RV be a set

of vertex demands. While we formally define c and b as vectors with components indexed by E
and V , respectively, we use the familiar function application notation c(e) and b(v) for the cost of
an edge e ∈ E and demand for a vertex v ∈ V , respectively. We say b is proper if

∑
v∈V b(v) = 0.

Let E⃗ denote an arbitrary orientation of the edges E. We denote the oriented instance of an

edge e ∈ E as e⃗. Let IG ∈ RV×E⃗ be the vertex-edge incidence matrix for G with IG(v, e⃗) equal
to 1 if v is the tail of e⃗, equal to −1 if v is the head of e⃗, and equal to 0 otherwise. We say a

flow f ∈ RE⃗ routes b if IGf = b. In the (uncapacitated) minimum cost flow problem, one seeks
a flow of minimum cost c(f) =

∑
e∈E c(e)|f(e⃗)| subject to f routing b. In other words, we seek a

minimum cost way to send units of some single commodity throughout the edges of G such that
each vertex u ∈ V with b(u) > 0 sends out b(u) units of commodity into the graph and each vertex
v ∈ V with b(v) < 0 removes −b(v) units from the graph. This special case of minimum cost flow
in an undirected graph without edge capacities is also called transshipment .

Transshipment generalizes various problems that have been studied in their own right such
as shortest paths in undirected graphs, the discrete optimal transport problem [Vil08], and other
assignment problems on metric spaces. In fact, several recent papers studying these more specific
problems have relied on reductions to the more general transshipment [KNP21, FL22, BFKL21,
ASZ20,Li20,ZGY+22,RGH+22,FL23a,FL23b]. The study of new algorithms for transshipment can
provide immediate improvements or simplifications to many of these results along with providing
new insights that may be beneficial to minimum cost and other flow problems in general.

1.1 Recent results

The study of flow problems such as transshipment has a long history going back several decades.
Here, we highlight some of the strongest or more recent closely related results to the current work.
We use n and m to denote the number of vertices and edges, respectively, in the input graph.

As a special case of minimum cost flow, there are several polynomial time algorithms for comput-
ing exact solutions to transshipment. Orlin [Orl93] described a strongly polynomial transshipment
algorithm that runs in O(n log n(m + n log n)) time, and this algorithm remains the fastest algo-
rithm known for real edge costs and vertex demands. There has been a great deal of recent activity
in the design of minimum cost flow and transshipment algorithms that assume integer costs and
capacities or demands in some range [1, U], starting with an O(m3/2 logO(1)(nU)) time algorithm
by Daitch and Spielman [DS08] and culminating in the very recent almost-linear m1+o(1) log2 U
time algorithm of [CKL+22].

The existence of almost-linear time exact algorithms for minimum cost flow was alluded to a
few years earlier by the demonstration of various almost- and near-linear time approximation
schemes for transshipment. Let ε > 0, and let OPT(b) denote the minimum cost of any flow
that routes b. Sherman [She17] described an O(ε−2m1+o(1)) time algorithm that finds a flow f
routing b with total cost c(f) ≤ (1 + ε)OPT(b). Sherman’s main observation was a novel method
for finding solutions to linear systems Ax = d that approximately minimize an arbitrary norm
||x||. His method involved composing solutions from well-known weak approximate solvers by
repeatedly applying the solver to residual vectors d − Ax. The number of iterations needed for
this method to converge is a function of the so-called generalized condition number of A. To
reduce the condition number, he proposed finding a left-cancellable matrix P called a generalized
preconditioner such that PA is well-conditioned and instead working with the system PAx = Pb.
He then expressed transshipment as such a linear system problem and described a preconditioner

2 Emily Fox

P that could be efficiently applied in iterations of his composition algorithm.

Recently, the authors of [Li20] and [ASZ20] proposed independently discovered near-linear
O(ε−2m logO(1)(nU)) time approximation schemes for transshipment. Here, U is best understood
as the aspect ratio of the edge costs found by dividing the largest edge cost by the smallest.
Shortly after, Fox and Lu [FL23a,FL23b] proposed near-linear O(ε−2m logO(1) n) time approxima-
tion schemes without the dependence on the aspect ratio. While the above results were presented
here with sequential running times in mind, there have been several recent approximation schemes
proposed for various models of parallel and distributed computing, including some appearing in a
subset of the work cited above [Li20,ASZ20,BFKL21,RGH+22,ZGY+22].

Perhaps unsurprisingly, the algorithms of [ASZ20] and [FL23a,FL23b] use the aforementioned
framework of Sherman [She17] explicitly but with a more-efficiently evaluated choice for the pre-
conditioner P . However, all of the approximation schemes for transshipment mentioned above rely
on methods for refining loose approximate solutions into stronger ones. Zuzic [Zuz23a, Zuz23b]
recently provided an explanation for this commonality by uniting the approaches of these works
under a single simple boosting framework. In short, all of these works implicitly build approxi-
mately optimal results to the linear programming dual for transshipment and then take advantage
of the newly revealed fact that any black-box dual approximation can be boosted to a (1 + ε)
approximate solution for transshipment.

Another commonality between all of the almost- and near-linear time approximation schemes
cited above, with a single exception, is that they heavily rely on randomization. In particular, they
all compute random Bourgain [Bou85] embeddings of the shortest path metric into low-dimensional
space and then they compute (the cost of) random oblivious flows that are based only on the location
of their sources within that space. The single near-linear time exception to this use of randomization
is a recent paper [RGH+22] describing an O(ε−2m logO(1)(nU)) time deterministic approximation
scheme. However, unlike some of the results mentioned above [She17, FL23a, FL23b], its running
time is still polylogarithmic in the aspect ratio of the edge costs.

1.2 Our results

We present the first deterministic near-linear time approximation scheme for transshipment with a
running time that is not dependent on the aspect ratio of the edge costs. Specifically, our algorithm
computes a flow f that routes b of cost c(f) ≤ (1 + ε)OPT(b) in O(ε−2m logO(1) n) time. It is
also (in our opinion) simpler and likely easier to implement than all previous near-linear time
approximation schemes for transshipment, even ignoring the considerable extra work many of them
require to function in parallel or distributed settings. In fact, other than using the aforementioned
transportation boosting framework of Zuzic [Zuz23a, Zuz23b] and a deterministic construction of
the well-known distance oracle of Thorup and Zwick [TZ05,RTZ05], the entire presentation of our
algorithm and its analysis is self-contained and presented within this 15 page report. Our algorithm
is also combinatorial in that the only operations it performs with the input costs and demands are
comparisons, addition, multiplication, and division.

Linear cost approximators One method of instantiating the transshipment boosting framework
is to design an α-approximate linear cost approximator P ∈ Rk×V based only on the input
graph G = (V,E) and edge costs c with the property that for any set of proper demands b, we
have OPT(b) ≤ ||Pb||1 ≤ αOPT(b). Approximator P need not be computed explicitly. If matrix-
vector multiplications with P and P T can be performed in some time M , then we can compute a
flow f ′ with c(f ′) ≤ (1 + ε/2)OPT(b) and OPT(b − IGf

′) ≤ OPT(b)/n2 in O(ε−2α2M logO(1) n)

A simple deterministic near-linear time approximation scheme for transshipment 3

time [Zuz23b, Corollaries 12 and 16]. We can then route an n-approximate flow for demands b−IGf
′

along a minimum spanning tree to get our desired (1 + ε)-approximate flow that routes b exactly.

Linear cost approximators are almost the same as the generalized preconditioners mentioned
above, and we can look to prior work on how to design one. In particular, the construction we use is
largely motivated by recent work of Fox and Lu [FL23a,FL23b] where they deterministically build
a preconditioner for a special case of transshipment that arises in approximation schemes for the
geometric transportation problem in low-dimensional Euclidean space. Here, the goal is to compute
a weighted matching between several pairs of points of minimum total distance. Recall, most of the
previous approximation schemes for transshipment compute a random Bourgain [Bou85] embedding
of the shortest path metric into low dimensional space. In particular, the authors of [ASZ20] use
the embedding to reduce transshipment to the geometric transportation problem. They then use
randomly shifted grids to provide a hierarchy of subsets of points. Their preconditioner is based on
the cost of greedily matching points within lower levels of the hierarchy before moving to the top,
and the expected cost of the process compares favorably enough to OPT(b) for their approach to
work.

The main insight of Fox and Lu [FL23a, FL23b] in their algorithm for transportation is that
instead of building a hierarchy (or quadtree) based on randomly shifted grids, it suffices to build a
collection of deterministic grids and explicitly compute the net expected amount of demand within
each grid cell, as if they had been randomly shifted. Their preconditioner (modulo appropriate
scaling) simply outputs the diameter of each grid cell times the expected demand it contains.

Instead of using a Bourgain embedding, our approximation scheme skips straight to considering
the hierarchies formed from random embeddings into dominating tree metrics [FRT04] where the
distance between any given pair of vertices is stretched (distorted) by a factor of at most O(log n)
in expectation. Consider the following variation of the tree embedding of [FRT04]. Let r be the
root of our tree. We compute a 2-approximation ∆ of the diameter of G and choose a partition
⟨v1, v2, . . . , vn⟩ of the vertices uniformly at random. We create a sequence of disjoint clusters
⟨C1, C2, . . . , Cn⟩ where Ci ∈ V for all i. Let ∆′ be chosen uniformly at random from [∆/2,∆]. For
each i from 1 to n, we add to Ci all vertices within distance ∆′ that have not already been claimed
for another cluster. We create a child ci of r for each non-empty cluster Ci, connected by an edge
of weight O(∆). Finally, we recursively build a tree for each non-empty Ci rooted at ci. Despite
the low expected stretch, some distances may be distorted by a factor of Ω(n). So while for any
fixed b, the expected cost of an optimal flow routing it in the tree is O(log n) ·OPT(b), there may
be some choices of b for which the cost blows up by that Ω(n) factor. Therefore, we cannot simply
create a linear cost approximator based on the cost of routing different demands within the tree
and expect it to give us good approximate costs relative to G for the large number of b vectors used
in the transshipment boosting framework.

However, the expected costs of routing demand through potential cluster centers is a fixed value
that can be computed accurately. Ignoring running time concerns, we can construct a linear cost
approximator Pb that accurately lists these expected costs up to constant factors. Because the
expected stretch from an actual random tree embedding using the above algorithm is O(log n), the
value ||Pb||1 ≤ O(log n) · c(b) always.

Distance oracles and graph minors That said, we cannot afford to compute the Ω(n2) dis-
tances required to properly compute these expected values. Instead, we perform a deterministic
construction the well-known distance oracle of Thorup and Zwick [TZ05,RTZ05]. Let k ≥ 1 be an
integer. After O(kmn1/k logO(1) n) time preprocessing, their O(kn1+1/k)-space oracle can compute
2k−1-approximate distances between any pair of vertices in O(k) time. By setting k := lg n, we get

4 Emily Fox

an O(log n)-approximate distance oracle with construction time O(m logO(1) n) and size O(n log n).
We never actually use the oracle for its stated purpose, however. Instead, we use the fact that the
deterministic construction stores for each v ∈ V a set of O(log2 n) vertices w ∈ V that suffice as the
possible cluster centers for our expected cost computations. The actual algebra proving we get a
good approximator using the expected costs is, unsurprisingly, very similar to the algebra proving
a random tree embedding has low expected stretch.

There is one thing left to consider in the design of our algorithm. Even using the distance oracle,
we would have to consider all possible distance scales to get correct expected costs for all possible
cluster centers across all possible cluster diameters. Doing so would lead to a polylogarithmic
dependence on the aspect ratio in our running time. To avoid that dependence, we construct a
set of O(n log n) minors of G, each maintaining a constant factor range of possible shortest path
distances up to a constant factor. Edges of higher cost than the range of a minor are discarded,
and those of significantly smaller cost are contracted, so the total size of these minors is O(m log n).
Our construction of the linear cost approximator P simply considers expected costs within each
minor separately. When establishing the approximation ratio of P , we charge against the cost of
individual flow paths in a decomposition of an optimal flow. Fortunately, only O(log n) minors
charge meaningful costs to each flow path, bring the approximation ratio of P to a relatively small
O(log3 n).

Oblivious routing and comparison to [RGH+22] Along with the explanation given above,
the linear cost approximator P can be interpreted as providing constant approximations to the
actual cost of a certain oblivious flow where a unit flow from/to each vertex u to/from an arbitrary
vertex s is chosen without prior knowledge of b and then multiplied by b(u). The description of
the flow is incredibly simple; for each adjacent pair of scales for which we consider how a random
tree embedding might affect u, between each pair of potential cluster centers between those scales,
the unit flow for u sends the product of the probabilities that u would join their clusters. Another
way to think about the flow is that for each scale, we want the demand of u to arrive at various
nearby cluster centers, and using the product of proportions between scales to route flow is the most
natural way to do so. To help make the algorithm as a set of rules to follow easier to understand,
we tend to stick more closely with this oblivious routing/reassignment of demand interpretation
throughout the rest of the paper. We describe this flow in more detail in the analysis of P . That
said, our algorithm never actually computes an oblivous flow, because we merely need applications
of its cost approximator P to use the boosting framework.

This oblivious routing of actual flow interpretation/approach is used much more heavily in the
O(ε−2m logO(1)(nU)) time deterministic approximation scheme of [RGH+22], so it provides a means
by which to compare our work to theirs. Their paper contains the many additional details necessary
for working in parallel and distributed models that are beyond the scope of the current work, so
we focus just on the parts related to approximating transshipment in any model. Similar to how
our approach is inspired by random tree embeddings, theirs is inspired by random low-diameter
decompositions of the input graph at different scales and their deterministic counterparts, the sparse
neighborhood covers. They observe that sending of a vertex u’s demand from cluster center to cluster
center can lead to an oblivious flow having high cost, so they propose sending portions of the demand
to nearby cluster centers proportionally to their distance and then routing flow between scales
based on the product of these proportions. Our expected cost/demand reassignment calculations
also bias sending demand to nearby cluster centers. However, the algorithm of [RGH+22] is made
more complicated by, for example, them only sending flow between centers of nesting clusters. As
a result, their analysis, while similar to ours, appears a fair bit more complicated.

A simple deterministic near-linear time approximation scheme for transshipment 5

Also similar to our work, they build various simplifications of the input graph designed to
efficiently consider clusters of a certain scale. They build O(log(nU)) simplifications to handle all
possible different scales they might need to consider. The analysis of their oblivious routing’s cost
must charge to the full cost of the optimal flow paths once per scale, leading to their obliviously
routed flow having a cost O(logO(1)(nU)) times optimal. This approximation ratio then becomes
part of their algorithm’s running time as in all boosting based approximation schemes. In contrast,
our minors have total size O(m log n) and are designed so each path in an optimal flow will receive
significant charges from only O(log n) of them, leading to a tidy O(log3 n) approximation ratio for
our linear cost approximator.

Organization We proceed as follows. We discuss a few more needed details concerning the
Thorup-Zwick distance oracle in Section 2. We discuss the construction of the minor graphs (there-
after referred to as layers of G) in Section 3. The construction and application of our O(log3 n)-
approximate linear cost approximator P is given in Section 4; the reader merely interested in how
our algorithm works can stop there given the description of the boosting framework available above.
In Section 5, we prove P is an O(log3 n)-approximate linear cost approximator. We briefly wrap
things up in Section 6 with the presentation of a theorem stating our main result.

2 Thorup-Zwick distance oracle

Thorup and Zwick [TZ05] presented a distance oracle that for any integer k ≥ 1 has size
O(kn1+1/k) and can return 2k−1-approximate distances between any two vertices in O(k) time. It
can be constructed deterministically in O(kmn1+1/k logO(1) n) time [RTZ05]. We now discuss some
more details of the oracle relevant to our algorithm.

Let δ(u, v) denote the distance between vertices u to v in G = (V,E) and let δ(u, V ′) =
minv∈V ′ δ(u, v) for any subset V ′ ⊆ V . The distance oracle stores a sequence of vertex subsets
V = A0 ⊇ A1 ⊇ · · · ⊇ Ak = ∅ we refer to as samples. We have Ak−1 ̸= ∅. We assume
distances between any fixed vertex v and the other vertices of G are distinct, breaking ties as
necessary. The oracle also stores, for each vertex v, a bundle B(v) = ∪k−1

j=0B
j(v) of vertices and

their distances from v where each bundle piece Bj(v) =
{
w ∈ Aj | δ(v, w) < δ(v,Aj+1)

}
. In

particular, Bj(v) ⊆ Aj \Aj+1.
The total size of all bundles is O(kn1+1/k). Some bundles may have size larger than the av-

erage size of O(kn1/k). However, a careful examination of the deterministic construction of the
oracle [RTZ05] shows |B(v)| = O(kn1/k log n) for all v ∈ V .

3 Layer graphs

Let G = (V,E) be a connected undirected graph with positive edge costs c ∈ RE
>0, and let n := |V |

and m := |E|. We assume without loss of generality that G contains no isolated (degree 0) vertices,
no loops, and no parallel edges, and that n ≥ 4. Our approximation scheme begins by computing
a sequence ⟨(G0,∆0), (G1,∆1), . . . , (GL,∆L)⟩ of pairs, each consisting of a minor Gi of G, also
referred to as a layer of G, and a reach ∆i such that ∆i ≤ ∆i−1/2 for all i ≥ 1. Each iteration of
the approximate optimization procedure will take time near-linear in the sum of the minors’ sizes,
so we must make sure that each edge of G appears in only O(log n) different minors. Accordingly,
we define each Gi, including for i = 0, to be the graph G after contracting all edges of cost at most
∆i/n, deleting all edges of cost strictly greater than 2∆i, and removing all vertices left isolated
after the edge deletions. We let Vi and Ei denote the vertices and edges, respectively, of each layer

6 Emily Fox

Gi, and let ni := |Vi| and mi := |Ei| denote the cardinality of both sets. Let δi(v, w) and δi(v,W)
denote the distance from v to another vertex or set of vertices within Gi.

Let s be an arbitrary vertex of G, and let x and y be the two vertices farthest from s. Let
∆0 := δ(s, x) + δ(s, y). Reach ∆0 is at least, but no more than twice, the diameter of G. Given
∆i−1, we define ∆i as follows: If Gi−1 is non-empty (contains at least one edge), then ∆i := ∆i−1/2.
Otherwise, let e|| = argmax {e ∈ E | c(e) ≤ ∆i−1/n} be the costliest contracted edge of Gi−1. If e

||

is well-defined, let ∆i := c(e||) · n. If e|| is not well-defined, then (Gi−1,∆i−1) is the final pair in
the sequence and L := i− 1.

For a vertex v in some layer Gi, we let V (v) denote the set of vertices from the input graph G
contracted to form v. Observe that the sets V (·) form a laminar family in that for each pair of
sets, either they are disjoint or one completely contains the other. Accordingly, let i′ be the largest
index such that i′ < i and there exists a vertex v′ ∈ Vi′ such that V (v) ⊆ V (v′). We define the
parent of v to be p(v) := v′.

The ancestors of v ∈ Vi, denoted p∞(v) are all layer graph vertices obtained by repeatedly
applying the parent operation zero or more times starting with v. In particular, pi′(v) for some
i′ ≤ i denotes the ancestor of v in Vi′ if one exists. The children of v are p−1(v) := {v′ | p(v′) = v}.
Vertex v is called a leaf if it has no children. Despite the evocative names, we do not actually
connect the layer graphs using any kind of rooted forest data structures and instead use them
mostly separately when defining our linear cost approximator.

Lemma 3.1. The graphs ⟨G0, G1, . . . , GL⟩ have at most O(m log n) edges and vertices in total.

Proof: Let e ∈ E be any edge of G, and let Gj be the first graph in the sequence to contain e.
Because e is not contracted in Gj , we have ∆j/n ≤ c(e). As stated, ∆i ≤ ∆i−1/2 for all i ≥ 1. For
all i ≥ j + lg n + 2, we have ∆i ≤ ∆j/(4n) < c(e)/2 and e is deleted from Gi. The edge e exists
in at most 1 + lg n graphs in the sequence, implying the sequence of graphs contains O(m log n)
edges in total. The graphs contain no isolated vertices, so the total number of vertices is also
O(m log n). □

Lemma 3.2. The sequence ⟨(G0,∆0), (G1,∆1), . . . , (GL,∆L)⟩ along with their vertices’ parents
and children can be computed in O(m log n) time.

Proof: Reach ∆0 can be computed in O(m log n) time by running Dijkstra’s algorithm [Dij59]
with a binary heap to compute shortest paths. We store each edge of cost at most ∆0/n in a
binary heap keyed by cost, contract these edges, and delete edges of cost more than 2∆0 in O(m)
additional time. We now iteratively compute (Gi,∆i) for each i ≥ 1. Suppose we’ve computed
(Gi−1,∆i−1). We compute ∆i in O(1) time by peeking at the top of the binary heap if necessary.
We repeatedly remove edges from the binary heap that should belong to Gi but not Gi−1. We then
uncontract these edges and delete costly edges from Gi−1 to create Gi in O(mi−1 +mi) time. We
add parent pointers during this time as well. After all layers have been constructed, we loop over
each vertex one more time to add a child pointer from their parent. In total, we spend O(m log n)
time removing edges from the binary heap and O(m log n) time constructing the individual graphs
(Lemma 3.1). □

Lemma 3.3. Let v ∈ Vi for i > 0, and let p(v) ∈ Vi′ . If i′ < i − 1, then the children of p(v) are
exactly the members of the connected component of v in Gi. Further, all edges incident to p(v)
have length strictly greater than ∆i′ , and the diameter in G of V (p(v)) < 2∆i.

A simple deterministic near-linear time approximation scheme for transshipment 7

Proof: Suppose i′ < i − 1. All edges leaving p(v) are deleted in layer i′ + 1, so they have length
strictly greater than 2(∆i′/2) = ∆i′ . Children of p(v) appear only when the reach is small enough
to uncontract some of their edges. No other edges are added except those being uncontracted, so
the entire connected component consists of children of p(v). Finally, each edge of this component
has length at most (2∆i)/n or some would have uncontracted one layer earlier. A shortest path
between any two vertices of the component has length at most (n− 1) · (2∆i)/n < 2∆i. □

Along with each layer Gi, we construct a Thorup-Zwick distance oracle (Section 2) with parame-
ter k := lg n. Let Aj

i , B
j
i (v), and Bi(v) denote the jth sample, jth bunch piece of v, and bunch of v,

respectively, within layer Gi. By Lemma 3.1, the oracles have total size O(log n ·m log n ·n1/ lgn) =
O(m log2 n), and Bi(v) = O(log2 n) for each i, v. They can be constructed in O(m logO(1) n) time
total.

4 A linear cost approximator

In this section, we describe how to implicitly build and efficiently evaluate matrix-vector multi-
plications with an O(log3 n)-approximate linear cost approximator P ∈ R((∪iVi)×(∪iVi))×V , i.e., the
number of rows is |∪iVi|2 and the number of columns is n. Most rows are empty. To simplify the ex-
position, we will actually define three separate matrices P1 ∈ R(∪iVi)×V , P2 ∈ R((∪iVi)×(∪iVi))×(∪iVi),
and P3 ∈ R((∪iVi)×(∪iVi))×((∪iVi)×(∪iVi)) and let P := P3P2P1 be their product. Each of these three
matrices serves a clear purpose in a three-step process of obtaining a cost approximation. Matri-
ces P2 and P3 are sparse and can be built and stored explicitly by our algorithm. On the other
hand, matrix P1 may be dense, so each multiplication with it will be done using a simple dynamic
programming procedure.

4.1 P1: Aggregating demands

Recall, each vertex of each layer graph is formed from the contraction of one or more edges from
G. We define the aggregate demand of a vertex v′ ∈ Vi to be b(v′) :=

∑
v∈V (v′) b(v). Matrix P1

simply computes these aggregate demands. For any i, for any v′ ∈ Vi, and for any input vertex
v ∈ V ,

P1(v
′, v) := [v ∈ V (v′)]

where [Q] denotes the 0, 1-indicator variable for proposition Q. For any demand vector b ∈ RV , we
have (P1b)(v

′) = b(v′).

Lemma 4.1. Let b ∈ RV and b′ ∈ R∪iVi . Vectors P1b and (P1)
T b′ can both be computed in

O(m log n) time.

Proof: Consider any layer graph vertex v′. If V (v′) = {v} for some v ∈ V , then (P1b)(v
′) = b(v).

Otherwise, we have b(v′) =
∑

w∈p−1(v′) b(w). We compute all entries P1b(v) in O(m log n) time by
iterating through vertices in decreasing order of layer graph index.

Let v ∈ V be any input graph vertex, and let v′ be the unique leaf such that V (v′) = {v}.
We have ((P1)

T b′)(v) =
∑

w|v∈V (w) b
′(w) =

∑
w∈p∞(v′) b

′(w). We compute
∑

w′∈p∞(w) b
′(w′) for all

layer graph vertices w in O(m log n) time by iterating through vertices in increasing order of layer
graph index. We then look up the values for the leaves in O(n) additional time. □

8 Emily Fox

4.2 P2: Reassigning aggregate demands

Matrix P2 is meant to capture the probabilistic reassignment of aggregate demands within individual
layers along with the cost of moving the demand between layers. Intuitively, we imagine reassigning
units of aggregate demand from each vertex of a layer to several nearby vertices within the same
layer. The hope is that opposite demands will be reassigned to common vertices, cancelling them
out. Matrix P2 determines the total amount of demand reassigned to each vertex.

Fix index i. Consider any v ∈ Vi. Imagine continuously increasing a distance parameter λ
starting from 0 and ending at ∆i. We wish to reassign the demand b(v) of v to members of Bi(v),
giving precedence to those vertices in Bi(v) that are closer to v. The total fraction of demand
reassigned up to each moment λ will be equal to λ/∆i. Fix a moment λ. There is a maximum
index j such that Bj

i (v) contains at least one vertex of distance at most λ from v. As λ continues

to increase, we will reassign the demand equally among exactly the vertices in Bj
i (v) at distance

at most λ from v. As λ increases, the specific vertices within distance λ and j itself will change.
We need to compute these moments of change in order to figure out how much demand should be
reassigned to various vertices.

We now describe how to compute the total proportion of demand that should be reassigned
to each vertex in Bi(v). Fix any j ∈ {0, . . . k − 1 = lg n− 1}. For any λ ≥ 0, let B̄j

i (v, λ) :={
w ∈ Bj

i (v) | δi(v, w) ≤ λ
}

denote those members of Bj
i (v) that are within distance λ of v. Let

λj+ := min
{
δ(v,Bj+1

i (v)),∆i

}
(we define the distance to an empty set such as Bk

i (v) to be +∞).

We sort the members of B̄j
i (v, λ

j+) in increasing order of distance from v inGi in O(|Bj
i (v)| log log n)

time. Let ⟨w1, w2, . . . , wr⟩ be this sorted sequence of vertices. Finally, for each q ∈ {1, . . . , r}, we
set

P2((wq, wq), v) :=
λj+ − δi(v, wr)

r∆i
+

r−1∑
ℓ=q

δi(v, wℓ+1)− δi(v, wℓ)

(ℓ− q + 1)∆i
.

After sorting, the values P2((wq, wq), v) for a particular i, v, and j can be computed in O(r) =

O(|Bj
i (v)|) time as a running suffix sum.

In addition to recording the proportion of demand that should be reassigned to each vertex, we
record the amount of demand traveling between pairs of vertices in (nearly) adjacent layers. Let
v ∈ Vi. For each w ∈ Bi(v), for each v′ ∈ p−1(v), let v′ ∈ Vi′ . For each w′ ∈ Bi′(v

′), we set

P2((w
′, w), v′) := P2((w

′, w′), v′) · P2((w,w), v).

All members of P2 not defined above are set to 0. Observe for any vertex v ∈ (∪iVi),∑
w∈(∪iVi)

P2((w,w), v) = 1. Again, matrix P2 is sparse, so we explicitly store its O(m log n) +

O(m log n) ·O(log2 n) ·O(log2 n) = O(m log5 n) non-zero entries. Summing over all variables above
and including the time to compute values for pairs w,w′, the total time spent computing P2 is
O(m log5 n).

4.3 P3: Charging for what remains

As suggested above, the reassignment of aggregate demands described by P2 should result in some
cancelling of positive and negative demands. However, the portions of demand that have not been
cancelled must be realized by actual costly flow. As we shall see in the next section, these flows can
follow relatively short paths so that the cost per unit of uncanceled demand within a layer graph
Gi is O(∆i). We define P3 to be a diagonal matrix. For each w′, w with w′ ∈ Vi′ and w ∈ Vi, we

A simple deterministic near-linear time approximation scheme for transshipment 9

do the following. If w′ = w and i = 0, then

P3((w
′, w), (w′, w)) := ∆0.

If w′ ̸= w and
∑

v∈Vi
P2((w

′, w), v) ̸= 0, then

P3((w
′, w), (w′, w)) := 6∆i′ .

All other entries are 0. The number of non-zero entries is O(m log5 n).
Recall, our O(log3 n)-approximate linear cost approximator P := P3P2P1. We can perform

matrix-vector multiplications with P and its transpose by applying Lemma 4.1 when working with
P1 and the standard multiplication algorithm when working with P2 and P3.

Lemma 4.2. Let b ∈ RV and b′ ∈ R∪iVi . Vectors Pb and P T b′ can both be computed in
O(m log5 n) time.

5 Cost approximation analysis

In this section, we establish the approximation ratio α = O(log3 n) of the linear cost approxi-

mator P . Fix any proper demand vector b ∈ RV . We define a flow f ∈ RE⃗ routing b where
c(f) ≤ ||Pb||1. Then, we prove ||Pb||1 ≤ αOPT(b), giving a concrete expression for α in the
process.

5.1 A flow based on P

We construct the flow f as follows. Initially, f = 0E⃗ . For each pairs of vertices u, v ∈ V , let π(u, v)
denote any flow sending one unit from u to v along a shortest path in G. For each layer graph
vertex w, we pick an arbitrary representative r(w) ∈ V (w).

For each i ∈ {L, . . . , 0}, for each v, w ∈ Vi, we do the following. We add∑
v′∈p−1(v)

∑
w′∈(∪i′>iVi′)

P2((w
′, w), v′)b(v′) · π(r(w′), r(w)) to f . In words, we take the demand

reassigned by each child v′ ∈ children(v) to some vertex w′ and route it proportionally to the
vertices w for which we are reassigning the demand of v. The demands are only routed along the
canonical shortest path chosen for each pair of vertices.

Once we are done iterating over all layer graph vertices, we do a final cleanup step. Let s ∈ V
be an arbitrary vertex. For each v ∈ V0 and w ∈ V0, we add P2((w,w), v)b(v) · π(r(w), s) to f .

Lemma 5.1. Flow f ∈ RE⃗ as defined above routes b.

Proof: By construction, for any v ∈ Vi, we have
∑

w∈Vi
P2((w,w), v) = 1. Also,

∑
v′∈p−1(v) b(v

′) =
b(v). Together, these facts imply the shortest path flows for v send a total of b(v) units of flow to
various targets w. Further, the total amount taken from sources w′ for each v′ ∈ p−1(v) is equal to
b(v′).

The only targets w that do not have their flow carried further along by processing vertices v′

in lower index layers are those w ∈ V0. Each receives
∑

v∈V0
P2((w,w), v)b(v) units of flow total,

which are then carried to s. Vertex s receives a net of
∑

v∈V0
b(v) = 0 units from these paths.

Finally, each vertex v ∈ G appears in exactly one layer graph leaf where it sends b(v) units out
along one of the shortest path flows. □

Lemma 5.2. Let v ∈ Vi, v
′ ∈ p−1(v) ∩ Vi′ for some i′, w ∈ Vi, and w′ ∈ Vi′ . If P2((w,w), v) and

P ((w′, w′), v′) are both non-zero, then c(π(r(w′), r(w))) < 6∆i′ .

10 Emily Fox

Proof: If i′ > i+ 1, then Lemma 3.3 states δ(r(w′), r(w)) < 2∆i′ < 6∆i′ .

Suppose i′ = i + 1. Value P ((w′, w′), v′) > 0 only if δi′(v
′, w′) ≤ ∆i′ , and P ((w,w), v) > 0

only if δi(v, w) ≤ ∆i = 2∆i′ . The projection of any path in Gi to G includes some edges of Ei in
addition to at most n− 1 additional contracted edges of total length at most (n− 1) ·∆i/n < 2∆i′ .
Similarly, projecting paths in Gi′ to G increases the total length by at most (n− 1) ·∆i′/n < ∆i′ .
By the triangle inequality, c(π(r(w′), r(w))) < δi′(w

′, v′) + ∆i′ + δi(v, w) + 2∆i′ ≤ 6∆i′ . □

Lemma 5.3. We have c(f) ≤ ||Pb||1.

Proof: We send exactly
∑

v′∈(∪iVi)
P2((w

′, w), v′) = (P2P1b)((w
′, w)) units of flow in any shortest

path between two vertices r(w′) and r(w). Let w′ ∈ Vi′ . By Lemma 5.2, this flow costs at most
|6∆i′(P2P1b)((w

′, w))| = |(Pb)((w′, w))| to send. Also, for each w ∈ V0, we send
∑

v∈V0
P2((w,w), v) =

(P2P1b)((w,w)) units of flow to s at cost at most |∆0(P2P1b)((w,w))| = |(Pb)((w,w))|. □

5.2 Approximation ratio

Our approximation ratio upper bound depends on the following lemma, loosely mirroring the fact
that a random tree embedding of a graph distorts distances by only a small factor in expection. The
lemma essentially states that the closer two vertices sharing a layer graph are to one-another, the less
they disagree on where their aggregate demand should be reassigned. Let Ho = 1/1+1/2+· · ·+1/o
denote the oth harmonic number.

Lemma 5.4. Let u, v ∈ Vi for some i. We have

∑
w∈Vi

|P2((w,w), u)− P2((w,w), v)| <
8δi(u, v)Hn lg n

∆i
.

Proof: Recall in the construction of P2, we consider a continuously increasing λ ∈ [0,∆i]. As λ
increases at a rate of 1, we increase the value of at least one P2(w, u) at a rate of 1/(ℓ∆i) where
ℓ is the number of vertices in a particular set B̄j

i (u, λ). Only vertices w′ ∈ B̄j
i (u, λ) ⊆ Bj

i (u) see
P2(w

′, u) increase for this value of λ. Let C(u, λ) denote the set of vertices for which P2(w, u) is
increasing for parameter λ, and define C(v, λ) similarly. For a particular w ∈ Vi, |P2(w, u)−P2(w, v)|
is increasing at a rate of no more than |[w ∈ C(u, λ)]/(|C(u, λ)|∆i)− [w ∈ C(v, λ)]/(|C(v, λ)|∆i)|.
Suppose 1 ≤ |C(u, λ)| ≤ |C(v, λ)|. Then, the total rate of increase in difference among all w ∈ Vi

A simple deterministic near-linear time approximation scheme for transshipment 11

for a particular λ is at most

∑
w∈Vi

∣∣∣∣ [w ∈ C(u, λ)]

∆i|C(u, λ)|
− [w ∈ C(v, λ)]

∆i|C(v, λ)|

∣∣∣∣ = 1

∆i

|C(u, λ) \ C(v, λ)|

|C(u, λ)|
+

|C(v, λ) \ C(u, λ)|
|C(v, λ)|

+ |C(u, λ) ∩ C(v, λ)|
(

1

|C(u, λ)|
− 1

|C(v, λ)|

)

=
1

∆i

|C(u, λ) \ C(v, λ)|

|C(u, λ)|
+

|C(v, λ) \ C(u, λ)|
|C(v, λ)|

+
|C(u, λ) ∩ C(v, λ)|(|C(v, λ)| − |C(u, λ)|)

|C(u, λ)||C(v, λ)|

≤ 1

∆i

|C(u, λ) \ C(v, λ)|

|C(u, λ)|
+

|C(v, λ) \ C(u, λ)|
|C(v, λ)|

+
|C(u, λ)||C(v, λ) \ C(u, λ)|

|C(u, λ)||C(v, λ)|

=

1

∆i

(
|C(u, λ) \ C(v, λ)|

|C(u, λ)|
+

2|C(v, λ) \ C(u, λ)|
|C(v, λ)|

)
≤ 2

∆i

(
|C(u, λ) \ C(v, λ)|

|C(u, λ)|
+

|C(v, λ) \ C(u, λ)|
|C(v, λ)|

)

=
2

∆i

∑
w∈Vi

[w ∈ (C(u, λ) \ C(v, λ))]

|C(u, λ)|

+
[w ∈ (C(v, λ) \ C(u, λ))]

|C(v, λ)|

 ,

and this same bound holds when |C(v, λ)| < |C(u, λ)|.
Considering all λ, we see

∑
w∈Vi

|P2(w, u)− P2(w, v)| ≤
2

∆i

∫ ∆i

0

∑
w∈Vi

[w ∈ (C(u, λ) \ C(v, λ))]

|C(u, λ)|

+
[w ∈ (C(v, λ) \ C(u, λ))]

|C(v, λ)|

 dλ.

Therefore, our goal is to, for each w ∈ Vi, bound the measure of λ that puts w in exactly one
of C(u, λ) or C(v, λ) and then divide by a number at most the size of that same set for the length
of those λ.

Fix w, and consider the set of λ such that w ∈ (C(u, λ) \ C(v, λ)). We have two (not mutually
exclusive) cases to consider.

1. δi(u,w) ≤ λ but δi(v, w) > λ: By the triangle inequality, δi(v, w) − δi(u,w) ≤ δi(u, v).
Therefore, the range of λ for which this case can occur has measure at most δi(u, v) as well.
Recall, w ∈ C(u, λ) implies w ∈ Bj

i (u) for some j. Let ⟨w1, . . . , wr⟩ denote the vertices of

Bj
i (u) sorted by increasing distance from w, and let w = wq. We have {w1, . . . , wq} ⊆ C(u, λ),

so |C(u, λ)| ≥ q.

2. C(u, λ) ⊆ Bj
i (u) but C(v, λ) ⊆ Bj′

i (v) for some j′ ̸= j: This case occurs when (δi(u,A
j
i) ≤ λ

and δi(v,A
j
i) > λ) or (δi(u,A

j+1
i > λ) and δi(v,A

j+1
i) ≤ λ). As before, the triangle inequality

implies δi(v,A
j
i)− δi(u,A

j
i) and δi(u,A

j+1
i)− δi(v,A

j+1
i) are both at most δi(u, v). Therefore,

the range of relevant λ for this case has measure at most 2δi(u, v).

12 Emily Fox

There are k = lg n different choices for j in either case. The total measure of λ resulting in
case 2. is at most 2δi(u, v) lg n < δi(u, v)Hn lg n. During those moments, C(u, λ) and C(v, λ) are
completely disjoint, implying the integrand above is equal to 2. Summing across w ∈ Vi, and noting
each index q can be used at most once per choice of j, we have

∑
w∈Vi

|P2(w, u)− P2(w, v)| ≤
2

∆i

∫ ∆i

0

∑
w∈Vi

[w ∈ (C(u, λ) \ C(v, λ))]

|C(u, λ)|

+
[w ∈ (C(v, λ) \ C(u, λ))]

|C(v, λ)|

 dλ

<
2

∆i

2δi(u, v)Hn lg n+ 2 lg n

n∑
q=1

δi(u, v)

q

=

8δi(u, v)Hn lg n

∆i
.

□

We set α := 200Hn lg
2 n = O(log3 n).

Lemma 5.5. We have ||Pb||1 ≤ α ·OPT(b).

Proof: Let f∗ be an optimal flow with c(f∗) = OPT(b). Standard flow theory implies there exists
a decomposition of f∗ into a linear combination a1f1 + a2f2 + . . . of unit path flows such that each
aj > 0 and c(f∗) =

∑
j ajc(fj). We will charge each of the non-zero terms in Pb to one or more of

these path flows and argue that each flow fj is charged at most αajc(fj).

Fix fj . Let u ∈ V and v ∈ V be the source and sink of fj , respectively. We have c(fj) ≥ δ(u, v)
(in fact, equal). We consider charges based on aj units in b(u) and −aj units in b(v).

Consider any Vi where there exists u′ ∈ Vi with u ∈ V (u′) and ∆i ≤ 8δ(u, v)Hn lg n. By
construction of P2,

∑
w∈Vi

∑
w′∈(∪i′>iVi′)

∑
u′′∈p−1(u′) P2((w

′, w), u′′) = 1. Considering all such i and

the construction of P as a whole, we see

∑
i|∆i≤8δ(u,v)Hn lgn

∑
w∈Vi

∑
w′∈(∪i′>iVi′)

∑
u′′∈p−1(u′)

P ((w′, w), u′) ≤
∑

i′|∆i′≤4δ(u,v)Hn lgn

6∆i′

≤ 48δ(u, v)Hn lg n

≤ 24δ(u, v)Hn lg
2 n.

The above implies that the aj units of demand from u contribute at most 24ajδ(u, v)Hn lg
2 n total

among various |(Pb)((w′, w))| where w ∈ Vi with ∆i ≤ 8δ(u, v)Hn lg n. We charge 24ajδ(u, v)Hn lg
2 n

to fj for these contributions.

Now, consider any i where there exist u′ ∈ Vi, v′ ∈ Vi, u ∈ V (u′), v ∈ V (v′), and ∆i >
8δ(u, v)Hn lg n.

A simple deterministic near-linear time approximation scheme for transshipment 13

By Lemma 5.4 and the fact that |ab− cd| ≤ |a− c|+ |b− d| for a, b, c, d ∈ [0, 1],∑
w∈Vi

∑
w′∈(∪i′Vi′)

∑
u′′∈p−1(u)

∑
v′′∈p−1(v)

|P2((w
′, w), u′′)− P2((w

′, w), v′′)| =

∑
w∈Vi

∑
w′∈(∪i′Vi′)

∑
u′′∈p−1(u)

∑
v′′∈p−1(v)

|P2((w
′, w′), u′′)P2((w,w),u

′)− P2((w
′, w′), v′′)P2((w,w), v

′)|

∑
w∈Vi

∑
w′∈(∪i′Vi′)

∑
u′′∈p−1(u)

∑
v′′∈p−1(v)

(|P2((w
′, w′), u′′)− P2((w

′, w′),v′′)|+ |P2((w,w), u
′)− P2((w,w), v

′)|)

≤ 8δ(u, v)Hn lg n

∆i
+

8δ(u, v)Hn lg n

∆i/2

≤ 24δ(u, v)Hn lg n

∆i
.

Therefore, all but 24ajδ(u, v)Hn lg n/∆i units of the aj demand from u contributing to various
|(Pb)(w′, w)| of this sort are canceled by opposite demand from v. Each unit is multiplied by at
most 3∆i, so we charge 72ajδ(u, v)Hn lg n for these contributions. There are at most lg n different
values i of this type, bringing this third set of charges to 72ajδ(u, v)Hn lg

2 n.
Finally, we consider u′ ∈ V0, v

′ ∈ V0, u ∈ V (u′), and v ∈ V (v′). We have∑
w∈V0

|P2((w,w), u
′)− P2((w,w), v

′)| ≤ 8δ(u, v)Hn lg n

∆0
.

Similar to before, all but 8ajδ(u, v)Hn lg n∆0 units of the aj demand from u are canceled by opposite
demand from v. Multiplying by ∆0, we charge 8ajδ(u, v)Hn lg n ≤ 4ajδ(u, v)Hn lg

2 n.
Summing over all three types of charges and then doubling the value for the contributions of v

to various |(Pb)(w′, w)|, we get a total charge of 200ajδ(u, v)Hn lg
2 n ≤ α · ajc(fj) to fi. All units

of demand for all u, v ∈ V are considered throughout these charges, so we have charged at least
||Pb||1 in total. On the other hand, we charge at most

∑
j α · ajc(fj) = α · c(f∗) = α ·OPT(b) in

total. □

6 Approximation scheme

We are now ready to present our main theorem.

Theorem 6.1. There exists a deterministic algorithm that given an undirected graph G = (V,E)
over n vertices and m edges, positive edge costs c ∈ RE

>0, a proper set of demands b ∈ RV , and

a parameter ε > 0 computes a flow f routing b with c(f) ≤ (1 + ε)OPT(d) in O(ε−2m logO(1) n)
time.

Proof: We begin by constructing the layer graphs as presented in Section 3 along with the Thorup-
Zwick distance oracles for each in O(m logO(1) n) time total. We construct sparse representations
of the matrices P2 and P3 in O(m log5 n) time so they can be used in matrix-vector multiplications
with the O(log3 n)-approximate linear cost approximator P and its transpose. Each matrix-vector
multiplication takes O(m log5 n) time. We perform O(ε−2 logO(1) n) multiplications with P accord-
ing to the boosting framework of Zuzic [Zuz23a, Corollaries 12 and 16] to find an infeasible flow
f ′ of cost c(f ′) ≤ (1 + ε/2)OPT(b) where OPT(b − IGf

′) ≤ OPT(b)/n2. Finally, we add in an
n-approximate solution that routes b− IGf

′ as in [She17] in O(m log n) additional time. The total
cost of the flow returned is (1 + ε/2 + 1/n)OPT(b) ≤ (1 + ε)OPT(b). □

14 Emily Fox

References

[ASZ20] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected
shortest paths via low hop emulators. In Proc. 52nd Ann. ACM SIGACT Symp. Theory
of Comput., pages 322–335, 2020.

[BFKL21] Ruben Becker, Sebastian Forster, Andreas Karrenbauer, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming
models. SIAM J. Comput., 50(3):815–856, 2021.

[Bou85] Jean Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel
J. Math., 52(1–2), 1985.

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In
Proc. 63rd IEEE Symp. Found. Comput. Sci., pages 612–623, 2022.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[DS08] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow
via interior point algorithms. In Proc. 40th Ann. ACM Symp. Theory Comput., pages
451–460, 2008.

[FL22] Kyle Fox and Jiashuai Lu. A near-linear time approximation scheme for geometric
transportation with arbitrary supplies and spread. J. Comput. Geom., 13(1):204–225,
2022.

[FL23a] Emily Fox and Jiashuai Lu. A deterministic near-linear time approximation scheme for
geometric transportation. In Proc. 64th IEEE Ann. Symp. Found. Comput. Sci., 2023.
To appear.

[FL23b] Emily Fox and Jiashuai Lu. A deterministic near-linear time approximation scheme for
geometric transportation. CoRR, arXiv:2211.03891v2, 2023.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–
497, 2004.

[KNP21] Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning for
the geometric transportation problem. J. Comput. Geom., 11(2):234–259, 2021.

[Li20] Jason Li. Faster parallel algorithm for approximate shortest path. In Proc. 52nd Ann.
ACM SIGACT Symp. Theory of Comput., pages 308–321, 2020.

[Orl93] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41(2):338–350, 1993.

[RGH+22] Václav Rozhoň, Christoph Grunau, Bernhard Haeupler, Goran Zuzic, and Jason Li.
Undirected (1 + ε)-shortest paths via minor-aggregates: Near-optimal deterministic
parallel and distributed algorithms. In Proc. 54th Ann. ACM Symp. Theory Comput.,
STOC 2022, pages 478–487, New York, NY, USA, 2022. Association for Computing
Machinery.

A simple deterministic near-linear time approximation scheme for transshipment 15

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zqick. Deterministic constructions of approxi-
mate distance oracles and spanners. In Proc. 32nd Int. Colloq. Automata Lang. Prog.,
pages 261–272, 2005.

[She17] Jonah Sherman. Generalized preconditioning and undirected minimum-cost flow. In
Proc. 28th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 772–780, 2017.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, jan
2005.

[Vil08] Cédric Villani. Optimal Transport: Old and New. Springer Science & Business Media,
2008.

[ZGY+22] Goran Zuzic, Gramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui Sun.
Universally-optimal distributed shortest paths and transshipment via graph-based ℓ1-
oblivious routing. In Proc. 2022 Ann. ACM-SIAM Symp. Discrete Algorithms, pages
2549–2579, 2022.

[Zuz23a] Goran Zuzic. A simple boosting framework for transshipment. In Proc. 31st Ann.
Europ. Symp. Algorithms, 2023. To appear.

[Zuz23b] Goran Zuzic. A simple boosting framework for transshipment. CoRR,
arXiv:2110.11723v2, 2023.

	Introduction
	Recent results
	Our results

	Thorup-Zwick distance oracle
	Layer graphs
	A linear cost approximator
	P1: Aggregating demands
	P2: Reassigning aggregate demands
	P3: Charging for what remains

	Cost approximation analysis
	A flow based on P
	Approximation ratio

	Approximation scheme

