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Abstract
We present an O(n3g2 log g + m) + Õ(nω+1) time deterministic algorithm to find the minimum
cycle basis of a directed graph embedded on an orientable surface of genus g. This result improves
upon the previous fastest known running time of O(m3n+m2n2 log n) applicable to general directed
graphs.

While an O(nω + 22gn2 + m) time deterministic algorithm was known for undirected graphs, the
use of the underlying field Q in the directed case (as opposed to Z2 for the undirected case) presents
extra challenges. It turns out that some of our new observations are useful for both variants of
the problem, so we present an O(nω + n2g2 log g + m) time deterministic algorithm for undirected
graphs as well.
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1 Introduction

For a given connected undirected graph G = (V, E), let m = |E| and n = |V | be the number
of edges and vertices. We define a cycle to be a subset of the edges such that each vertex
is incident to an even number of edges in the subset. It is known that cycles constitute a
vector space with addition defined as symmetric difference of the edges and that this vector
space is isomorphic to Zm−n+1

2 .
We can form a vector space over cycles in directed graphs as well but we require some

more complicated definitions. To this end, we represent a directed graph using its underlying
undirected graph G = (V, E) along with a mapping between each edge e = uv and its two
underlying darts u�v and rev(u�v) = v�u. One of these two darts is designated as the
original/canonical orientation e⃗ of e. A cycle is a function C : e→ Q subject to certain
restrictions. Informally, we could say the “amount” of cycle (read flow) entering each vertex
is equal to the amount leaving. Formally, for each vertex v, we require

∑
e:e⃗=u�v C(e) =∑

e:e⃗=v�w C(e). Note that in general, cycles will have negative assignments to some edges.
In other words, a cycle is allowed to travel “backwards” relative to the canonical orientation
of an edge. Addition of cycles is defined to be an element-wise sum over the edges, and
multiplication by a scalar q ∈ Q is element-wise multiplication by q over the edges. The
cycles again form a vector space known to be isomorphic to Qm−n+1.

We define a cycle sequence of G to be a sequence of darts
S = ⟨v0�v1, v1�v2, . . . , vk−1�vk⟩ such that v0 = vk. Cycle sequence S corresponds to a
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Figure 1. A small directed graph. Cycle sequence ⟨e⃗1, rev(e⃗2), e⃗3⟩ corresponds to a cycle assigning 1 to
edges e1 and e3 and −1 to edge e2. The reversal of the sequence corresponds to a cycle assigning −1 to
edges e1 and e3 and 1 to edge e2.
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Figure 2. A directed graph with its underlying undirected graph [12].

cycle CS where CS(e) is equal to the number of times e⃗ appears in S minus the number of
times rev(e⃗) appears in S. We define the reversal of S as
rev(S) = ⟨vk�vk−1, vk−1�vk−2, . . . , v1�v0⟩. Observe that Crev(S) = −CS . See Figure 1.

In both cases of an undirected or directed graph G, a cycle basis is a set of d := m−n+1
independent cycles. It is well known that a cycle basis of G can be obtained from the
fundamental cycles of any spanning tree of G. Given an assignment of non-negative weights
w : E → Q≥0 to the edges, we define the weight of a cycle C as

∑
e∈C w(e) if G is undirected

or
∑

e∈E |C(e)|w(e) if G is directed. Note that the canonical orientations of the edges is
irrelevant when computing the weight of a cycle. The weight of a cycle basis is defined as
the sum of its constituent cycles’ weights.

In undirected graphs, a minimum cycle basis is a cycle basis of minimum weight.
Because we can always reduce the weight of a directed graph cycle by dividing it by a suffi-
ciently large scalar, we define the minimum cycle basis of a directed graph as a minimum
weight cycle basis in which every member corresponds to a cycle sequence (equivalently,
every member has only integral assignments to the edges). We emphasize that the set of
integral cycle bases in a directed graph and its underlying undirected graph may not be
same. A counter example is given in Figure 2 by Hariharan, Kavitha, and Mehlhorn [12].
In this figure we look at three cycle sequences ⟨e1, e2, e3, e4⟩, ⟨e1, rev(e5), rev(e3), e6⟩, and
⟨e2, e6, rev(e4), e5⟩. In the directed graph, the corresponding cycles are linearly independent.
However, in the underlying undirected graph, the sum of two of these cycles equals the third,
implying they are linearly dependent.

We do note the the problem of minimum directed cycle basis does have an alternative
definition where cycles in the basis are required to follow edges in the correct direction.
Using this variation the graph does not necessarily contain a cycle basis. This variation is
not addressed in this paper. The minimum cycle basis has applications in many fields for
both the directed [6, 10] and undirected [5, 16,19] cases.
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From the definition of independence in vector spaces, sets of independent cycles form a
matroid. Therefore, one can use the standard greedy algorithm of sorting and eliminating
to find the minimum cycle basis. However, the number of cycles in G is exponential in
the undirected case and infinite in the directed case. Horton reduced the search space
for the greedy algorithm to O(mn) cycles by showing that every cycle in the minimum
cycle basis must be a fundamental cycle of a shortest path tree, giving the first polynomial
time algorithm [14]. Several other deterministic polynomial time algorithms have been
given [1,7,13,17], the fastest being an O(nm2/ log n+n2m) time algorithm for the undirected
case by Mehlhorn and Michail [17] and an O(m3n + m2n2 log n) time algorithm for the
directed case by Hariharan, Kavitha, and Mehlhorn [12]. There also exist faster O(mω)
time randomized algorithms for both undirected and directed graphs where O(mω) is the
time needed to multiply two m×m matrices [1, 18].

A surface or 2-manifold with boundary Σ is defined as a compact Hausdorff space such
that every point lies in an open neighborhood homeomorphic to the Euclidean plane or
the closed half plane. The boundary of the surface is the set of all points whose open
neighborhood is homeomorphic to the closed half plane, and every boundary component
is homeomorphic to the circle. A cycle in the surface is a continuous mapping from the
unit circle to the surface, and the cycle is called simple if the mapping is injective. A
surface is said to be orientable if it does not contain a subset homeomorphic to the Möbius
band, and non-orientable otherwise. The genus of a surface, denoted g, is the maximum
number of disjoint cycles in the surface such that their removal leaves a surface that is still
connected. Two surfaces are homeomorphic if their genus, number of boundary components,
and whether or not they are orientable all agree.

We can improve upon the deterministic running times by restricting ourselves to graphs
that can be embedded on a surface of a certain genus. It is possible to bypass the matrix
multiplication bound in planar graphs, ultimately resulting in a near-linear time algorithm
that builds a data structure for quickly retrieving individual cycles [1,3,13]. The minimum
cycle bases are identical in planar undirected and directed graphs, so these results work in
both settings. Borradaile, Chambers, Fox, and Nayyeri [2] presented an O(nω + 22gn2 + m)
time algorithm for computing the minimum cycle basis in undirected graphs embedded on
orientable surfaces of genus g.

1.1 Our results
We give an O(n3g2 log g + m) + Õ(nω+1) time deterministic algorithm to find the minimum
cycle basis for a directed graph embedded in an orientable surface of genus g.1 At a high
level, we follow the same strategy used by others for computing minimum cycle bases [2, 7,
12]. We describe a way to represent each cycle as an integer vector of dimension d while
also maintaining an ordered collection of d-dimensional support vectors. We maintain the
property that after finding i members of the minimum cycle basis, the latter d− i members
of the collection are all orthogonal to the basis cycles’ representations. The i + 1st cycle
is simply the lightest cycle whose representation is not orthogonal to the i + 1st support
vector.

In general sparse directed graphs, a deterministic search for a single lightest non-orthogonal
cycle takes O(n3 log n) time [12]. Even in undirected graphs, such a search would take
roughly quadratic time. However, Borradaile et al. [2] show how to perform the search in

1 We use Õ(·) to hide terms polylogarithmic in n.
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only O(22gn) time given an undirected graph embedded on an orientable surface of g. Their
idea is to partition a collection of candidate cycles into 22g subsets so that each subset of
cycles nest. One can then use the nesting structure to search for the lightest non-orthogonal
candidate cycle of any group in only O(n) time.

We offer two main technical contributions on top of Borradaile et al.’s [2] algorithm to
get our algorithm for directed graphs. First, we use a recent result of Greene [11] to argue
that the number of subsets needed in the partition is actually O(g2 log g) (we return to this
point when we describe our second result). Second, we show how to extend the search within
each group of candidates to work in the directed graphs. Doing so requires us to carefully
acknowledge the orientation of edges and cycles as we do our searches while also dealing
with the very large support vector elements that may arise over the course of our algorithm
from no longer working over a finite field.

It turns out that our observation concerning the size of the candidate cycle partition
applies to undirected graphs as well. Consequently, we get an O(nω + n2g2 log g + m) time
deterministic algorithm to find the minimum cycle basis of a surface embedded undirected
graph. The better running time requires no change to the algorithm of Borradaile et al. [2]
beyond the observation which we will describe in the context of directed graphs, so we need
not elaborate further beyond stating the relevant theorem.

▶ Theorem 1. Let G be an undirected graph with n vertices and m non-negatively weighted
edges, cellularly embedded in an orientable surface of genus g. We can deterministically
compute a minimum-weight cycle basis of G in O(nω + n2g2 log g + m) time.

2 Preliminaries

For a given graph G = (V, E), an embedding of G on Σ is a mapping taking vertices to
distinct points on Σ and edges to internally disjoint paths on Σ with endpoints that lie
on their incident vertices’ points. A face of the embedding is defined to be a maximally
connected subset of Σ such that the subset does not intersect the embedded graph. If every
face on an embedding is homeomorphic to an open disk we say the embedding is cellular.
Only orientable cellular embeddings of graphs will be considered from now on. Without
loss of generality, we also assume the surface has exactly one boundary component. Let
ℓ denote the number of faces in an embedding of G. Based on our assumptions, Euler’s
formula guarantees n−m + ℓ = 1− 2g.

Every embedded graph G has a dual graph G∗ which is constructed by creating a vertex
for every boundary component in Σ as well as every face of G. Edges are then created be-
tween two vertices in G∗ if the corresponding faces and boundary components are separated
by an edge. We define the canonical orientation of edge e’s dual to cross e⃗ from left to right.
Finally, faces in G∗ now correspond to vertices in G. The original graph is then known as
the primal graph, where primal vertices are dual to dual faces, and dual vertices are dual
to primal faces. We make no notational distinction between corresponding primal and dual
objects in this paper.

2.1 Cycle signatures and homology
Let G be directed. A spanning tree of G is a subset of edges of G that form a tree containing
every vertex of G. A tree-cotree decomposition is a partition of the edges of G into three
sets, T a spanning tree of G, D a spanning tree of G∗, and L the leftover edges. Let β = |L|.
Euler’s formula implies β = 2g [8, 9].
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Let (T, L, D) be an arbitrary tree-cotree decomposition of G. Define ci for i ∈ {1, . . . , β}
to be either orientation of the unique simple cycle in G∗ created by adding the ith edge in L

to D. Let fβ+1, . . . fm−n+1 denote the faces of G. Define ci for i ∈ {β + 1, . . . , m− n + 1} to
be the simple path in D from fi to the unique dual vertex for Σ’s boundary. We define the
signature [e] ∈ {−1, 0, 1}m−n+1 of an edge e as a vector with the ith component defined
as follows.

[e]i =


1 if e⃗ is in and oriented along ci

−1 if rev(e⃗) is in and oriented along ci

0 otherwise

The signature of a cycle C is [C] =
∑

e∈E C(e) · [e]. Borradaile, et al. [2] show that a
similar cycle signature definition produces an isomorphism to the cycle space in an undirected
graph. We use a nearly identical argument to prove the following lemma.

▶ Lemma 2. Cycle signatures are an isomorphism between the cycle space of a directed
graph and Qm−n+1. In particular, two cycles C and C ′ are equal if and only if [C] = [C ′].

Proof: The definition of cycle signatures immediately implies [C + C ′] = [C] + [C ′] and
[q · C] = q · [C] for any two cycles C and C ′. Therefore, cycle signatures form a linear map.

Now, consider an arbitrary w ∈ Qm−n+1. From w, we will construct a cycle C such that
[C] = w, implying cycle signatures are a surjection. Combined with them being a linear
map between equal dimensional vector spaces, we conclude they must be an isomorphism.
For each i ∈ {1, . . . , β}, let Ci correspond to the unique simple cycle sequence in G created
from adding the ith edge of L as defined above to T , oriented so that [Ci]i = 1. Next, for
each i ∈ {β + 1, . . . , m− n + 1}, let Ci correspond to the boundary of face fi as defined
above, again oriented so that [Ci]i = 1. Finally, let C =

∑m−n+1
i=1 wi · Ci.

Fix any i, j ∈ {1, . . . , m− n + 1} such that i ̸= j. If i ∈ {1, . . . , β}, then Ci completely
avoids the dual cycle or path cj , implying [Ci]j = 0. If i ∈ {β + 1, . . . , m− n + 1}, then
either Ci avoids cj or cj has exactly one dart entering fi and one dart leaving fi, again
implying [Ci]j = 0. We conclude [C]i = wi for all i. □

The homology of G is an algebraic description of the topology of the surface as well as
G’s embedding. We are only concerned with the one-dimensional cellular homology over the
finite field Z2 and use the underlying undirected graph when referencing the homology of G.
We say a cycle sequence or its corresponding cycle is null-homologous if it is the boundary
of a subset of faces. Two cycle sequences are homologous if their symmetric difference is
null-homologous. These definitions allows us to partition the cycle sequences of G into 22g

homology classes. We define the operation G ∤ S as cutting both G and Σ along some cycle
sequence S, creating two copies of S. Cutting G using any cycle sequence from the null-
homology class cuts Σ into two separate surfaces, and cutting G along any two non-crossing
sequences in the same homology class cuts Σ into two separate surfaces. We also define the
homology signature [e]h ∈ {0, 1}β of an edge e as a vector with the ith component defined
as follows.

[e]hi =

{
1 if e⃗ is in ci

0 otherwise

The homology signature of a cycle C is [C]h the bitwise exclusive-or of the homology
signatures of its edges. We only use the homology signature to seperate the cycles by
homology class and therefore do not use the direction of the edges to define the signature.
Therefore this definition matches the undirected case of Borradaile, et al. [2].

ISAAC 2022
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2.2 Simplifying assumptions
We assume g = O(n1−ε) for some constant ε > 0; otherwise our algorithms make no im-
provements upon what is known for general graphs. If G has no faces of degree 1 or 2,
then Euler’s formula implies the number of edges and faces to be O(n). We guarantee this
property of G as follows. If an edge e bounds a face of degree 1 on one side, then S = ⟨e⃗⟩
corresponds to the lightest cycle for which C(e) = 1. Any other cycle with C(e) ̸= 0 can be
made cheaper by setting C(e) to 0, so we can safely assume CS is in a minimum basis and
remove e from G.

Suppose a face f has degree 2. If f is bounded twice by the same edge, then G must
be embedded in the sphere and consist of only that single edge. There are no non-zero
cycles, so we terminate the algorithm. Otherwise, f is bound by two distinct edges e1 and
e2. Assume without loss of generality that w(e1) ≤ w(e2), and let u�v = e⃗2. Let σ denote
the shortest path in G from u to v, and let S = e⃗2 ◦ rev(σ), the concatenation of e⃗2 with
rev(σ). Cycle CS is the lightest cycle for which C(e2) = 1, so we may assume it belongs to
a minimum cycle basis. Observe w(σ) ≤ w(e1) ≤ w(e2). Any other cycle C with C(e2) ̸= 0
can be made strictly lighter by adding or subtracting an appropriate multiple of CS , so we
may then remove e2 from G.

We can guarantee all faces have degree at least 3 by computing all-pairs shortest paths
in the subgraph of G that includes only the lightest member of each set of parallel edges
in O(n2 log n + m) time. Removing edges as described above takes O(m) additional time
total. From here on, we assume there are O(n) edges and faces.

3 Algorithm

Our algorithm computes cycles of the minimum basis one by one. We do this by maintaining
a set of support vectors that form the basis for the subspace orthogonal to the set of cycles
already computed for the basis. To compute a new cycle in the basis, we choose a support
vector that we have not used so far and find the cycle of minimum weight that is not
orthogonal the chosen support vector. The unchosen support vectors are then updated so
they remain orthogonal to the current incomplete basis we have computed. This is the
method that many algorithm have used to compute minimum cycle bases [2, 7, 12].

Specifically, our algorithm uses the prime field modifications for directed graphs made by
Hariharan, Kavitha, and Mehlhorn for dealing with the potentially large numbers generated
by the coefficients from Q [12]. For choosing the non-orthogonal cycle our algorithm follows
the basic idea of Borradaile, et al. [2] of constructing so-called region trees based on homology
classes to improve the cycle selection time. However, modifications must be made to the
cycle selection procedure to account for the coefficients from Q.

3.1 Computing Support Vectors
The method of computing support vectors that are used to calculate the minimum cycle
basis follows from the following theorem given and proved by Hariharan, Kavitha, and
Mehlhorn [12]. We have adapted their theorem to use our cycle signatures. Its proof requires
no changes thanks to the isomorphisms between various representations of the cycles.

▶ Theorem 3. Integral cycles C1, . . . Cd form a minimum cycle basis if there are vectors
N1 . . . Nd in Qm such that for all i, 1 ≤ j ≤ i:
1. Prefix orthogonality: ⟨Ni, [Ci]⟩ = 0 for all j, 1 ≤ j < i.
2. Nonorthogonality: ⟨Ni, [Ci]⟩ ̸= 0.
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3. Lightness: Ci is a lightest integral cycle with ⟨Ni, [Ci]⟩ ̸= 0

Algorithm 1 is a simple deterministic algorithm that was given by Kavitha and Mehlhorn
to compute the Ni’s and Ci’ [15].

Algorithm 1 An algorithm to compute Ni’s and Ci’s

N1, . . . , Nd ← û1, . . . ûd ▷ (ûd has a 1 in the ith position and 0’s everywhere else)
for i← 1 to d do

Ci ← lightest cycle with non-zero dot product with Ni

for j ← i + 1 to d do
Nj ← Nj −Ni

⟨[Ci],Nj⟩
⟨[Ci],Ni⟩

Nj ← Nj
⟨[Ci],Ni⟩

⟨[Ci−1],Ni−1⟩
end for

end for

The correctness of this algorithm is based on a lemma given and proved by Kavitha and
Mehlhorn [15].

▶ Lemma 4. For any i, at the end of iteration i− 1, the vectors Ni, . . . , Nd are orthogonal
to [C1], . . . , [Ci−1] and moreover for any j with i ≤ j ≤ d,

Nj = ⟨[Ci−1], Ni−1⟩(xj,1, . . . , xj,i−1, 0, . . . , 0, 1, 0, . . . , 0)

where 1 occurs in the jth coordinate and the vector x = (xj,1, . . . , xj,i−1) is the unique
solution to the set of equations: C̃T

1
...

C̃T
i−1

 x =

 −c1,j

...
−ci−1,j


Where C̃k, 1 ≤ k < i, is the restriction of [Ck] to its first i − 1 coordinates and ck,j is the
jth coordinate of [Ck].

Furthermore, the running time of this algorithm was shown by Kavitha and Mehlhorn to
be Õ(m4) + mO(cycle), where O(cycle) is the time taken to find the lightest non-orthogonal
integral cycle to Ni [15].

This simple algorithm was then improved upon by Hariharan, Kavitha, and Mehlhorn.
By using a divide-and-conquer approach, the calculations spent updating the Ni vectors can
be done in bulk [12]. Algorithm 2 gives the recursive step from index l to index h is as
follows.

Algorithm 2 A faster algorithm to compute Ni’s and Ci’s

mid← ⌈(l + h)/2⌉
Find cycles Cl, . . . , Cmid using Nl, . . . , Nmid recursively
Update the vectors Nmid+1, . . . , Nh

Find cycles Cmid+1, . . . , Ch using Nmid+1, . . . , Nh recursively

To compute the minimum cycle basis, we call this algorithm with N1, . . . , Nd initialized
to the first d unit vectors, l = 1, and h = d. Our goal when updating the vectors is to
make the vectors Nmid+1, . . . , Nh orthogonal to the newly computed cycles Cl, . . . , Cmid.
To update the vectors, we make the following definitions.

ISAAC 2022
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A ∈ Qk×m, A’s ith row is [Cl+i−1]
D ∈ Q(h−k)×(h−k), D has the value ⟨Nmid, [Cmid]⟩ / ⟨Nl−1, [Cl−1]⟩ in every diagonal
X ∈ Qk×(h−k)

Nd ∈ Qm×(h−k), Nd’s jth column is Nmid+j

Nu ∈ Qm×k, Nu’s jth column is Nl+j−1

As shown by Hariharan, Kavitha, and Mehlhorn, we can update the vectors by solving
the following system for X [12]:

ANdD = −ANuX

By construction (NNu) is lower triangular with non-zero diagonal entries, and therefore
is invertible. Hence we can write

X = −(ANu)−1ANdD.

Finally our updated vectors Nmid+1, . . . , Nh can be found by computing NuX + NdD.
This process of updating the vectors takes O(nkω−1) arithmetic operations in total, where
nω is the time it takes to multiply two n × n matrices using fast matrix multiplication.
However, because we are in a directed graph, the elements of (ANu)−1 can be as large as
dΘ(d2). Even assuming a model of computation that allows for constant time operations on
words of up to O(log n) bits, we see each arithmetic operation can take up to Θ̃(d2) time.
Therefore, we get a runtime of Θ̃(nω+2) for the outermost step which is slower than the
simpler algorithm for directed graphs [12].

In order to solve the problem of large intermediate elements we run the above algorithm
over a ring ZR where R is a specially chosen prime. Working over this ring allows us to
do arithmetic operations in O(1) time each. In order to be able to recover our Nj vectors, we
must choose a R such that R is relativity prime to ⟨Nl, [Cl]⟩ , ⟨Nl+1, [Cl+1]⟩ , . . . , ⟨Nmid, [Cmid]⟩
(to ensure ANu is invertible in ZR), and relativity prime to ⟨Nl−1, [Cl−1]⟩ (to ensure that
⟨Nmid, [Cmid]⟩ / ⟨Nl−1, [Cl−1]⟩ is well defined in ZR) [12]. We can select R for each iteration
of the recursive step using Algorithm 3.

Algorithm 3 An algorithm select a suitable R

Require: p1, . . . , pd2 , primes each of which is at least d, the products P1 = p1 . . . pd, P2 =
p1 . . . p2d, . . . , Pd = p1 . . . pd2 precomputed before running algorithm.
L← ⟨Nl−1, [Cl−1]⟩ ⟨Nl, [Cl]⟩ . . . ⟨Nmid, [Cmid]⟩
Binary search P1 . . . Pd to find the smallest s ≥ 0 such that Ps+1 ∤ L

Determine a p ∈ {psd+1, . . . , psd+d} such that p ∤ L

return pd

Pre-computing d2 primes takes Õ(d2) time, and pre-computing the products P1, . . . , Pd

takes Õ(d3) time. The algorithm to select R runs in Õ(d2) time [12]. All together, the
total time complexity for a single update step with modulo arithmetic is Õ(n2kω−1 + d2k)
or Õ(n2kω−1).

3.2 Finding the Minimum Cycle
What remains is to find the integral cycle of minimum weight that is non-orthogonal to
a given support vector. To do this quickly, we modify an algorithm given by Borradaile,
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et al. [2] for undirected graphs. Their algorithm first computes a set of O(22gn) candidate
cycles that contain every member of some minimum cycle basis. The cycles are then parti-
tioned into 22g sets and a tree representation of each set is built in O(n2) time. Each tree
can then be searched in O(n) time to find the minimum weight non-orthogonal cycle for
that tree’s subset of cycles [2].

We first show that it suffices to consider essentially the same small set of candidate cycles.
A Horton cycle is defined to be a simple cycle sequence given by a shortest x, u-path, a
shortest x, v-path, and an edge uv for some vertices x, u, and v. The set of all Horton
cycles on a graph is given by the set of m− n + 1 fundamental cycles of the n shortest path
trees [14]. A cycle sequence S is said to be isometric if for all vertices x and y appearing
along S, the set of S’s edges contain a shortest x, y-path.

▶ Theorem 5. There exists a minimum cycle basis of directed graph G where every member
corresponds to an isometric Horton cycle.

Proof: Let C be a minimum cycle basis of G, let C ∈ C, and let C′ = C \ {C}. For any
three paths α, β, and γ in G, we observe that if Cα◦rev(β) and Cβ◦rev(γ) are both dependent
on cycles in C′, then Cα◦rev(γ) is dependent on cycles in C′ by simple algebra on the cycle
signatures. Therefore, the cycle sequences corresponding to dependent cycles follow the
three path condition as defined by Cabello, Colin de Verdière, and Lazarus [4]. They show
there exists a shortest cycle sequence not in the family corresponding to dependent cycles
that is a fundamental cycle of a shortest paths tree, and that the root of this shortest paths
tree can be any vertex of the cycle sequence. Such a cycle sequence is an isometric Horton
cycle. □

From here on, we must assume all shortest paths are unique, and this assumption can
be enforced without increasing our already-quadratic running time [13]. We compute all
Horton cycles of the graph and extract the isometric cycles as shown by Amaldi et al [1]. As
they are both dependent upon one-another, we keep only one of each pair of an isometric
Horton cycle and its reversal.

Borradaile, et al. [2] show the isometric cycles can be partitioned into subsets of size O(n),
each corresponding to one of the 22g different homology classes. However, we observe that
the number of non-empty classes is much smaller. Uniqueness of shortest paths implies that
if two isometric cycles intersect, they do so along a single shortest path [3]. A recent result
of Greene [11] implies that a set of cycle sequences that pairwise intersect (or cross) at most
once must live in at most O(g2 log g) homotopy classes. Homotopy is a finer relation between
cycle sequences than homology, implying the number of non-empty homology classes for a
collection of isometric cycles to be O(g2 log g) as well. In particular, our minimum cycle
basis algorithm need only consider O(ng2 log g) candidate cycles total.

In order to follow the approach of Borradaile, et al. [2], we must first convert their
algorithm to use cycle signatures in Qd instead of Zd. As shown by Hariharan, Kavitha,
and Mehlhorn using Hadamard’s inequality the support vector can have elements of up to
size dd/2 [12] so naively modifying the algorithm will lead to problems with the speed of
arithmetic. We use a similar approach to that of Hariharan, Kavitha, and Mehlhorn [12]
and first find the minimum weight cycles that are non-orthogonal to our chosen support
vector modulo some prime p.

We first describe how to construct the region trees that will aid us in our search. We
note that this step is done once before running the main algorithm and does not depend on
the prime p. We compute the homology signatures for the candidate cycles and split them
into their O(g2 log g) homology classes. Then for each homology class, we compute its own
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region tree. Each vertex v of a region tree corresponds to a set of faces F v, and each edge e

corresponds to a candidate cycle Ce. A region tree TS also has a designated cycle denoted
T 0

S . The region trees are defined as the result of Algorithm 4.

Algorithm 4 An algorithm to create a region tree for a homology class

Require: Non-empty set of isometric Horton cycles S all belonging to the same homology
class and the graph G

TS starts out with one vertex v with F v equal to all faces of G

if members of S have non-trivial homology then
Choose an arbitrary S0 ∈ S
TS has a single edge e looping on v with Ce = CS0

G′ ← G ∤ S0
for S ∈ {C \ S0} do

G′ ← G′ ∤ S

Cutting G′ splits some component of G′ into two new components
Split vertex v corresponding to cut component into two new vertices with corre-

sponding faces from the newly created components
Assign CS to the new edge

end for
T 0

S ← CS0

Remove edge corresponding to S0
Root TS at the vertex whose region contains the boundary

else
G′ ← G

for S ∈ S do
Cutting G′ splits some component of G′ into two new components
Split vertex corresponding to cut component into two new vertices with correspond-

ing faces from the newly created components
Assign CS to the new edge

end for
T 0

S is assigned the 0-cycle
Root TS at the vertex whose region contains the boundary

end if
Negate all cycles as needed so the root region lies to the right of their corresponding
sequences

In Algorithm 4, the operation G ∤ γ takes O(n) time, so the entire algorithm takes O(n2)
time for each region tree. Therefore, we can preprocess G in O(n2g2 log g) time. Examples
of constructed region trees can be seen in Figures 3 and 4.

We can use the region trees to find a shortest cycle that is non-orthogonal modulo p

with a given support vector N as shown in Algorithm 5. This algorithm is based on that of
Borradaile, et al. [2] with modifications to account for the prime p and the importance of
cycle orientations. Given a region tree TS , we start by computing ⟨N, [T 0

S ]⟩. We then travel
the region tree in postorder, computing the inner product for each edge’s cycle by adding
the contributions from only the components of the cycle’s signature that differ from those of
the children edge’s cycles. Recall the definition of the dual paths ci used to define the cycle
signatures in Section 2. In order to do add inner product contributions consistently, we need
to know whether each new cycle C we consider crosses a dual path ci a different number
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S0
S1S2

S3 S4

r

S3 S4

S2
S1

S0

Figure 3. A region tree for a set of edges with non-trivial homology [2]. The root is depicted with r.

S0
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S5

S6

r
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Figure 4. A region tree for a set of edges with null-homologous homology signature [2]. The root is
depicted with r.

of times than T 0
S . Fortunately, this number changes precisely when we consider the parent

edge of the region containing face fi. And because Algorithm 4 orients the cycles’ sequences
so the root region of TS lies to each sequence’s right, the net number of crossings and thus
the corresponding component of the cycle signature changes by exactly 1. Algorithm 5
considers each face of the graph at most once, so the total runtime to walk up the tree is
O(n). We must run this algorithm once for every region tree, so the total runtime to find a
non-orthogonal cycle modulo p is O(ng2 log g).

In order to obtain a lightest non-orthogonal cycle from a collection of lightest non-
orthogonal cycles modulo p, we first pre-compute primes p1, . . . , pd/2 each of which is at
least d. The ring Z∏

pi
is isomorphic to Zp1 × · · · × Zpd/2 , which implies that any non-zero

element whose magnitude is less than
∏d/2

i=1 pi is mapped to a tuple of values that is not
the zero vector. Therefore, if we run our algorithm for cycle searching d/2 times, once for
each prime we pre-computed, each cycle that is non-orthogonal will also be non-orthogonal
for some p ∈

{
p1, . . . , pd/2

}
. We get a total runtime of O(n2g2 log g) to find a lightest

non-orthogonal cycle for some given support vector.

3.3 Final analysis
Let T (k) denote the time to run Algorithm 2 in our setting when h− l + 1 = k.

T (k) =
{

2T (k/2) + Õ(n2kω−1) if k > 1
n2g2 log g if k = 1

This recurrence solves to O(n3g2 log g) + Õ(nω+1). Including the O(m) time needed to
guarantee all faces have degree 3 or greater, we get a total running time of of O(n3g2 log g +
m) + Õ(nω+1). As in Borradaile et al. [2], any method to improve the speed of selecting
support vectors would improve the time required to find a minimum cycle basis.
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Algorithm 5 An algorithm find the lightest cycle non-orthogonal to a given support vector N

modulo p for a given region tree TS

Require: Region tree TS
m←∞ ▷ The current minimum weight
C ← NULL ▷ The current cycle referring to the minimum weight
for edge e ∈ TS in postorder do

if e goes to a leaf then
ze ← ⟨N, [T 0

S ]⟩
else

ze ← 0
end if
for child edge e′ of e do

ze ← ze +p ze′

end for
for fi ∈ F (bottom(e)) do

ze ← ze +p N i

end for
if ze ̸= 0 and w(Ce) < m then m← w(Ce) and C ← Ce

end for
return C

We conclude with a theorem summarizing our main result.

▶ Theorem 6. Let G be a directed graph with n vertices and m non-negatively weighted
edges, cellularly embedded in an orientable surface of genus g. We can deterministically
compute a minimum-weight cycle basis of G in O(n3g2 log g + nω+1 + m) time.
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