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Abstract
In this paper we introduce and formally study the problem of k-clustering with faulty centers.
Specifically, we study the faulty versions of k-center, k-median, and k-means clustering, where
centers have some probability of not existing, as opposed to prior work where clients had some
probability of not existing. For all three problems we provide fixed parameter tractable algorithms,
in the parameters k, d, and ε, that (1 + ε)-approximate the minimum expected cost solutions
for points in d dimensional Euclidean space. For Faulty k-center we additionally provide a 5-
approximation for general metrics. Significantly, all of our algorithms have a small dependence on
n. Specifically, our Faulty k-center algorithms have only linear dependence on n, while for our
algorithms for Faulty k-median and Faulty k-means the dependence is still only n1+o(1).
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1 Introduction

There is a vast body of computational geometry literature which considers input points that
are certain, that is they always exist and their location is known. However, uncertainty
naturally arises when we are dealing with real world inputs. To model uncertain inputs,
several works have considered the notion of probabilistic points. Two models for probabilistic
points are commonly used: (i) the existential model [17, 19, 20], and (ii) the locational
model [7, 11]. In the existential model, each probabilistic point has a certain fixed location
if it exists, but it has a given probability of not existing. In the locational model, each
probabilistic point always exists but its location is uncertain, and is instead specified by a
probability density function over some region.

In this paper, we consider variants of the k-clustering problem under the existential
model for the cluster centers. Specifically, we consider the k-center, k-median, and k-means
problems, where the input points that must be covered are certain to exist, but each one
of the k selected centers has an independent probability of existing, i.e. of being open to
cover points. Our goal is then to select centers so as to minimize the expected furthest
distance, sum of distances, or sum of squared distances, that points must travel to their
nearest open center. We denote this as the Faulty k-Clustering problem. Prior papers have
considered k-clustering in probabilistic input models, but where the centers are certain and
the points needing to be covered are probabilistic (see for example [7]). To the best of our
knowledge we are the first to consider probabilistic k-clustering, where the uncertainty is on
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40:2 Clustering with Faulty Centers

the cluster centers. Our variant of k-clustering is quite natural, as real world facilities can
often have some probability of failure. Indeed, this real world motivation of faulty centers
has inspired other previous work, though not in our probabilistic setting. Specifically, in the
Fault Tolerant Clustering Problem (see for example [22]), the centers are certain to exists,
though each point must travel to its l-th closest center. This objective attempts to provide
robustness (i.e. failure tolerance) in the chosen centers. However, it less faithfully models
the case where individual centers fail with some probability, since for example while one
point’s closest center may be closed, a different point’s closest center may be open.

Related Work

The k-clustering problem with certain (i.e. non-probabilistic) input points is a classic and
fundamental topic in computational geometry. The three most common variants are k-center,
k-median, and k-means clustering. All three problems are know to be NP-hard. k-center
is NP-hard to approximate within any factor less than 2 in general metric spaces [16] and
hard to approximate within a factor of roughly 1.82 in the plane [8]. k-means is known to be
NP-hard even when k = 2 [2], while k-median is known to be hard to approximate within a
factor of (1 + 2/e) [18]. Despite the hardness of these problems, there are many well known
approximation algorithms. The standard greedy algorithm for k-center by Gonzalez [10]
achieves an optimal 2-approximation to the optimal radius ropt. By an alternative method,
Hochbaum and Shmoys [15] also achieved a 2-approximation for k-center. For k-median and
k-means it is known that local search achieves a constant factor approximation in polynomial
time. (See discussion in [12] and references therein.) In Euclidean space, PTAS’s exists for
these problems when k, d, and ε are bounded. Specifically, Agarwal and Procopiuc [1] achieve
a (1 + ε)-approximation for k-center in O(n log k) + (k/ε)O(k1−1/d) time. For k-median and
k-means a number of corset based (1 + ε)-approximation algorithms have been given which
run in linear time in n, including Har-Peled and Mazumdar [13], and subsequent papers
improving the time dependency on k, d, and ε [5, 9].

A number of prior works have considered variants of k-clustering where the client points
that need to be covered are probabilistic, as opposed to our model where the centers are prob-
abilistic. Perhaps most notably is the work of Cormode and McGregor [7]. They consider
client points under the locational model, though as they also allow clients to have non-zero
probability to not exist, their model also captures the existential model. For k-median and
k-means they achieve (1 + ε)-approximations to the minimum expected cost solution in Eu-
clidean space, and a constant factor approximation for k-median in general metrics. Their
main focus, however, is on the more challenging case of k-center, for which they provide
bi-criteria approximations for general metrics. That is, in addition to approximating the
radius, they are allowed to exceed the requested number centers, and they provide different
tradeoffs between the two kinds of approximation. Guha and Munagala [11] subsequently
provided a non-bi-criteria approximation for k-center, obtaining an O(1)-approximation on
only the expected radius. For points in Rd, Huang and Li [17] later achieved the first PTAS
for k-center, when k, d are fixed constants.

There have been a number of other follow up results to [7], again for the case of proba-
bilistic clients not centers. For k-center on the real line, R1, Wang and Zhang [26] showed
that the problem can be solved exactly in polynomial time. Munteanu et al. [24] considered
the special case where k = 1 for both the k-center and the k-median objectives, and achieved
polynomial time (1+ε)-approximations. Moreover, in the data mining community, previous
works have considered variations of probabilistic k-median [23] and k-means clustering [3,25].

The idea of modeling faulty centers in clustering problems has also been considered in
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previous works under the setting of fault tolerant k-clustering [4, 21, 22]. In fault tolerant
clustering centers are certain rather than probabilistic, and one assigns each point to its l

nearest center for some integer l ≥ 1. This is unlike our probabilistic model where each
point is assigned to its nearest center that happens to be open.

1.1 Preliminaries
In the standard k-clustering problem, we are given a set P of n points in a metric space,
called clients, and an integer parameter k > 0. The task is to select k points from P , called
centers, so as to minimize some cost function of the distances of the client points in P to
their nearest centers. In k-center clustering one minimizes the maximum distance from a
client to its nearest center. In k-median clustering one minimizes the sum of distances from
each client to their nearest center. Finally, in k-means clustering, one minimizes the sum
of squared distances from each client to their nearest center. Note that for a given set of
centers, the distances from the clients to their nearest centers, defines a vector of length n.
The goal of k-center, k-median, or k-means, is then to minimize the ℓ∞, ℓ1, or ℓ2 norm of
this vector, respectively.

For these three problems we now formally define their respective cost functions for any
given subset C ⊆ P . Specifically, for k-center, k-median, and k-means we respectively define
the functions f , g, and h, as follows.

fP (C) = max
p∈P

||p − C|| = max
p∈P

min
c∈C

||p − c||, gP (C) =
∑
p∈P

||p − C|| =
∑
p∈P

min
c∈C

||p − c||,

hP (C) =
∑
p∈P

||p − C||2 =
∑
p∈P

min
c∈C

||p − c||2.

The goal of k-center, k-median, or k-means is then to select the subset C ⊆ P of size k that
minimizes fP , gP , or hP respectively. Note that for k-center clustering specifically, we often
refer to r = fP (C) as the radius of the solution C, as r can be viewed as the radius of k

equal radius balls covering the points in P .
Here we consider a variation of the standard k-clustering problem where there is uncer-

tainty on whether any one of the chosen centers will be open, i.e. uncertainty on whether
points in P can be covered by that center. Specifically, in addition to the point set P , as part
of the input we are also given a vector V whose ith entry vi is the probability that pi will
be open if it is chosen as a center. For any point pi, when convenient we use prob(pi) = vi

to denote its associated probability.

▶ Definition 1. Let P be a set of n points in a metric space, V ∈ [0, 1]n be a corresponding
vector of probabilities, and C ⊆ P be any subset. Any subset R ⊆ C is called a realization of
C, and let Real(C) denote the set of all realizations (i.e. the power set of C). For a given
realization R, a center p ∈ C is said to be open (resp. closed) is p ∈ R (resp. p ̸∈ R). Each
center p ∈ C is open independently with probability prob(p), thus the probability R ∈ Real(C)
occurs (i.e. is the set of open centers) is Prob(R) = (Πp∈R prob(p))(Πp∈C\R (1 − prob(p))).

For this probabilistic version of k-clustering, our cost functions fP,V (C), gP,V (C), and
hP,V (C) are now random variables, which for a given realization R ⊆ C are equal to fP (R),
gP (R), and hP (R), respectively. (Note that throughout we use the single subscript fP to
denote the non-probabilistic cost function, and the double subscript fP,V to denote the
corresponding random variable version.) Our goal is now to find the subset C minimizing
the expected value E[fP,V (C)], E[gP,V (C)], or E[hP,V (C)], where the expectation is taken
over the distribution of Real(C) determined by V .
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40:4 Clustering with Faulty Centers

▶ Problem 2 (Faulty k-Center Clustering). As input you are given a set P of n points in a
metric space, a corresponding vector V ∈ [0, 1]n of independent probabilities, and a positive
integer parameter k. Find the subset Copt of k centers which minimizes E[fP,V (C)]. That
is, Copt = arg minC⊆P,|C|=k E[fP,V (C)].

▶ Problem 3 (Faulty k-Median Clustering). As input you are given a set P of n points in a
metric space, a corresponding vector V ∈ [0, 1]n of independent probabilities, and a positive
integer parameter k. Find the subset Copt of k centers which minimizes E[gP,V (C)]. That
is, Copt = arg minC⊆P,|C|=k E[gP,V (C)].

▶ Problem 4 (Faulty k-Means Clustering). As input you are given a set P of n points in a
metric space, a corresponding vector V ∈ [0, 1]n of independent probabilities, and a positive
integer parameter k. Find the subset Copt of k centers which minimizes E[hP,V (C)]. That
is, Copt = arg minC⊆P,|C|=k E[hP,V (C)].

▶ Remark 5. It is possible that all selected centers are closed, i.e. R = ∅. Thus to make sure
the problem is well defined, we set fP (∅), gP (∅), and hP (∅) equal to different specified values.
Natural choices for these would depend on the input set P . For example, setting them equal
to the optimal (non-probabilistic) 1-center, 1-median, or 1-mean solution, respectively. An
alternative, though related approach, is to fix some center which is open with probability 1
and always included in the solution (i.e. not a part of the k selected centers).

Note that if all entries in V are the same then the probability that R = ∅ is the same,
regardless of which subset C of size k is chosen, and thus the choice of fP (∅) (resp. gP (∅)
and hP (∅)) does not affect the relative ordering of E[fP,V (C)] for different C. Furthermore,
even in the case when the entries in V differ, for the solution our algorithm returns (as
described below) the probability that R = ∅ is less than or equal to that for the optimal
solution.

1.2 Our Contribution
To the best of our knowledge, we are the first to formally study the faulty k-clustering
problem, where the probabilities are on the centers rather than the clients. As stated above,
this is a natural setting, as centers may have some probability of failure.

For the three most common k-clustering variants, k-center, k-median, and k-means, we
provide fixed parameter tractable approximation algorithms for their faulty versions. Specif-
ically, for Faulty k-Center we provide an O(8kkn) time 5-approximation in general metrics,
and an O(dn log(k)) + (1/ε)O(kd log d) time (1 + ε)-approximation in the Euclidean case. For
Faulty k-Median we provide an (2O(k log k)/εdk)n1+o(1) time (1 + ε)-approximation in the
Euclidean case. Finally, for Faulty k-Means we provide an (2O(k log k)/ε(2d+1)k)n1+o(1) time
(1 + ε)-approximation in the Euclidean case.

It is important to note that all of our algorithms have a small dependence on n. Specifi-
cally, our Faulty k-Center algorithms have only linear dependence on n, while for our algo-
rithms for Faulty k-Median and Faulty k-Means, the dependence is still only n1+o(1). More-
over, for all three problems, in the Euclidean case we are providing a (1 + ε)-approximation,
that is an EPTAS for fixed k and d.

Recall that the standard (non-faulty) versions of these problems are NP-hard, even in
Euclidean settings, with additional results on hardness of approximation or for special cases,
depending on which one of the three problems is considered. As the non-faulty versions are
a special case of the faulty versions (where probabilities are all 1), these hardness results
immediately apply to our problems. Moreover, our problems have the additional challenge
that each choice of centers has an exponential number of possible realizations.
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2 FPT Approximation Algorithms for k-Center

In this section we develop fixed parameter tractable (in the parameter k) approximation
algorithms for Faulty k-Center Clustering. Specifically, for general metric spaces we achieve
a 5-approximation to the optimal radius and in fixed dimensional Euclidean space we achieve
a (1 + ε)-approximation, i.e. a PTAS. For comparison, recall that for the standard non-
probabilistic version of k-center clustering it is hard to approximate the radius within any
constant factor less than 2 in general metric spaces [16], and there is a PTAS in Euclidean
space. First, we present definitions and a core lemma, which are common to both algorithms.

Consider any instance P, k of Faulty k-Center, and let ρ = {ρ1, . . . , ρm} be a partition
of P into m disjoint subsets. Define the diameter of ρ as,

diam(ρ) = max
i

diam(ρi) = max
i

max
p,q∈ρi

||p − q||.

For any subset Z ⊆ P , let ρ(Z) = {ρ1(Z), . . . , ρm(Z)}, where ρi(Z) = Z ∩ ρi, denote the
partition of Z induced by ρ. We then define the characteristic vector of Z with respect to ρ,
denoted char(Z, ρ) as the m dimensional integer vector whose ith entry is |ρi(Z)|. Define the
canonical subset, Canon(char(Z, ρ)), of a characteristic vector char(Z, ρ) = (w1, . . . , wm),
as the subset S ⊆ P consisting of the wi points with highest probability from ρi, for all i.1
We then have the following key lemma.

▶ Lemma 6. Let ρ = {ρ1, . . . , ρm} be a partition of P into m subsets. Let Q ⊆ P be any
subset, and let S = Canon(char(Q, ρ)). Then we have,

E[fP,V (S)] ≤ diam(ρ) + E[fP,V (Q)].

Proof. Observe that for all i, |ρi(S)| = |ρi(Q)|, since S and Q have the same characteris-
tic vector. For any i, label the points in ρi(S) = {si

1, . . . , si
wi

} and similarly in ρi(Q) =
{qi

1, . . . , qi
wi

} in decreasing order of their probability. We define a bijection b : S → Q,
such that b(si

j) = qi
j . Observe that the bijection b defines a bijection between Real(S) and

Real(Q). Abusing notation slightly, for any realization RS of S we use b(RS) to denote the
corresponding realization in Q. Observe that by construction, char(RS , ρ) = char(b(RS), ρ).

Let RS ∈ Real(S) be any realization of S. Consider any point p ∈ P . Let s be the
closest point in RS to p, and let q be the closest point in b(RS) to p. Let i be the index such
that q ∈ ρi. Since char(RS , ρ) = char(b(RS), ρ), there must be some point s′ ∈ RS such
that s′ ∈ ρi(S) ⊆ ρi. Therefore, by the triangle inequality,

||p − s|| ≤ ||p − s′|| ≤ ||p − q|| + ||q − s′|| ≤ ||p − q|| + diam(ρ).

This implies fP (RS) = maxp∈P ||p − RS || ≤ maxp∈P ||p − b(RS)|| + diam(ρ) = fP (b(RS)) +
diam(ρ).

For two vectors u, v of the same dimension, let u ≤ v denote that u is coordinate-wise
smaller than v, i.e. ui ≤ vi for all i. So let V ′ be a probability vector such that V ′ ≤ V .
Then observe that E[fP,V (X)] ≤ E[fP,V ′(X)] for any subset X ⊆ P . In other words, if each
center in X has a smaller or equal probability to be open under V ′, then the expected cost
cannot decrease when replacing V with V ′.

For any point p ∈ P , let probV (p) denote the corresponding probability from the vector
V . We define a new probability vector V ′ such that for any p ∈ P , if p ∈ S then probV ′(p) =

1 For points of equal probability, let there be an arbitrary but fixed ordering.
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40:6 Clustering with Faulty Centers

probV (b(p)), and if p ̸∈ S then probV ′(p) = probV (p). Observe that since ρi(S) consists of
the wi points with highest probability in ρi, we have that probV (si

j) ≥ probV (qi
j) for any i, j.

Therefore V ′ ≤ V , and so by the above discussion, E[fP,V (S)] ≤ E[fP,V ′(S)].
Let probV (RS) and probV ′(RS) denote the probability that RS is realized under V and V ′,

respectively. Observe that probV ′(RS) = probV (b(RS)). Therefore, we have the following,

E[fP,V (S)] ≤ E[fP,V ′(S)] =
∑

RS∈Real(S)

probV ′(RS) · fP (RS)

=
∑

b(RS)∈Real(Q)

probV (b(RS)) · fP (RS)

≤
∑

b(RS)∈Real(Q)

probV (b(RS)) · (fP (b(RS)) + diam(ρ))

= E[fP,V (Q)] + diam(ρ) ◀

2.1 General Metrics
Here we develop a fixed parameter tractable algorithm for Faulty k-Center Clustering in
general metric spaces, which achieves a 5-approximation to the optimal radius.

Consider a subset C = {c1, . . . , ck} of k centers from P . For any other subset Z ⊆ P ,
let Vori(Z, C) denote the subset of points in Z whose nearest center in C is ci, e.g. when P

is a point set in Euclidean space then this is the subset of points of Z in the Voronoi
cell of ci. Observe that Vor(Z, C) = {Vor1(Z, C), . . . , Vork(Z, C)} defines a partition
ρ(Z) = {ρ1(Z), . . . , ρk(Z)} of Z where ρi(Z) = Vori(Z, C). Thus the definitions of charac-
teristic vectors and canonical subsets from above apply, where to simplify notation we write
char(Z, C) = char(Z, Vor(P, C)). Moreover, by the triangle inequality

diam(Vor(P, C)) = max
i

max
p,q∈Vori(P,C)

||p − q|| ≤ 2 max
i

max
p∈Vori(P,C)

||p − ci||

= 2 max
p∈P

||p − C|| = 2fP (C),

and thus we immediately have the following corollary of Lemma 6.

▶ Corollary 7. Let C = {c1, . . . , ck} be a subset of k centers from P . Let Q ⊆ P be any
subset, and let S = Canon(char(Q, C)). Then we have,

E[fP,V (S)] ≤ 2fP (C) + E[fP,V (Q)].

Observe that for two different subsets Z, Z ′ ⊆ P such that |Z| = |Z ′| it is possible to
have char(Z, C) = char(Z ′, C), however, we have the following bound on the total number
of characteristic vectors for subsets of size k.

▶ Observation 8. Let C ⊆ P be a subset of k points. Then there are O(4k) possible
characteristic vectors for all subsets of size k with respect to C. That is,∣∣∣∣∣∣

⋃
C′⊆P,|C′|=k

char(C ′, C)

∣∣∣∣∣∣ = O(4k).

Proof. Recall char(C ′, C) is a vector of length k whose (non-negative) entries sum to k.
Any such vector can be represented as a binary vector of length 2k − 1 by writing each
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entry from the original vector in unary, and then separating entries with a single zero. The
number of binary vectors of length 2k − 1 is 22k−1 = O(4k).2 ◀

Before we present our algorithm, we make one more simple observation.

▶ Observation 9. Given a point set P , probability vector V , and a subset C of k centers,
E[fP,V (C)] can be computed in O(2kkn) time. Specifically, enumerate all possible O(2k)
realizations in Real(C). Then for a given realization R, the probability of R occurring is
(Πpi∈R vi)(Πpi∈C\R (1 − vi)), and thus is computable in O(k) time. Moreover, fP (R) can
be computed in O(kn) time, by checking for each point of P what is the closest point in R.

▶ Theorem 10. Let Copt denote an optimal solution to Faulty k-Center. Then in O(8kkn)
time one can compute a set C ⊆ P of k centers such that E[fP,V (C)] ≤ 5E[fP,V (Copt)].

Proof. The first step of our algorithm is to compute a set of k centers D ⊆ P , which is
a 2-approximation to the optimal solution to the standard k-center instance on P , that is
fP (D) ≤ 2 minC′⊆P,|C′|=k fP (C ′). Note that D can be computed in O(kn) time using the
standard k-center algorithm of Gonzalez [10]. Next we guess the characteristic vector of Copt

with respect to D, char(Copt, D). This is done by enumerating all binary vectors of length
2k − 1 which have k 1’s, as discussed in Observation 8. Let W = (w1, . . . , wk) denote the
current guess for char(Copt, D). We construct the canonical subset Canon(W ), by taking the
wi points with highest probability from Vori(P, D) for all i. Next we compute the expected
cost of this subset E[fP,V (Canon(W ))]. After computing this value for all possible guesses
of W , we then return as our solution C = Canon(W ) with minimum expected cost. (Note
if W is not realizable, i.e. if there are fewer than wi points in Vori(P, D), then we simply
record E[fP,V (Canon(W ))] = ∞.)

For the running time, computing D takes O(kn) time. Next, for each guess W =
(w1, . . . , wk) of char(Copt, D), computing Canon(W ) takes O(kn) time, since finding the
wi points with highest probability from Vori(P, D) can easily be done in O(win) time, and
hence O(kn) time over all i since

∑
wi = k. (Note this step can be performed faster

by preprocessing the points, though ultimately it does not affect the asymptotic running
time.) Next we must compute E[fP,V (Canon(W ))], which can be done in O(2kkn) time by
Observation 9. Thus since there are O(4k) possible guesses by Observation 8, the total time
is O(4k(2kkn + kn) + kn) = O(8kkn)

As for correctness, first observe that

fP (D) ≤ 2 min
C′⊆P,|C′|=k

fP (C ′) ≤ 2 min
C′⊆P,|C′|=k

E[fP,V (C ′)] = 2E[fP,V (Copt)].

Next, for C = Canon(char(Copt, D)), by Corollary 7 we have E[fP,V (C)] ≤ 2fP (D) +
E[fP,V (Copt)]. Combining these inequalities thus gives,

E[fP,V (C)] ≤ 2fP (D)+E[fP,V (Copt)] ≤ 4E[fP,V (Copt)]+E[fP,V (Copt)] = 5E[fP,V (Copt)]. ◀

2.2 Euclidean PTAS
In this section we provide a fixed parameter tractable (1 + ε)-approximation to the optimal
radius for instances of Faulty k-Center Clustering where P ⊆ Rd. To achieve this we

2 Further using the fact that there are exactly k entries which are 1 in this vector of length 2k − 1, gives
the more precise bound on the number of such vectors,

(2k−1
k

)
= O(4k/

√
k).
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consider the axis aligned regular grid of cell side length ∆, which is a value to be determined
shortly. Specifically, for any point p ∈ P , where p = (p1, . . . , pd), its cell is given by
cell∆(p) = (⌊p1/∆⌋, . . . , ⌊pd/∆⌋). Assuming this limited use of the floor function takes O(1)
time, in O(dn) time we can compute the cell of every point in P . Moreover, as these cells
are given by integer vectors, using hashing in the same time we can also compute the set of
non-empty grid cells and the corresponding points in each cell. Let Grid∆(P ) denote this
partition of P into the non-empty grid cells. We have the following standard observation
(see for example [14]).

▶ Observation 11. Let B(c, r) denote the ball of radius r and center c, for any point c and
radius r > 0. Consider the regular grid of cell side length ∆. Then the number of grid cells
intersecting B(c, r) is at most (2 + ⌈2r/∆⌉)d.

The following theorem uses similar observations about grids and k-center as [1]. In
particular, as a starting point, we similarly make use of the algorithm of Feder and Greene [8],
which achieves a 2-approximation for k-center clustering in O(dn log k) time.

▶ Theorem 12. Let P ⊂ Rd be an instance of Faulty k-Center Clustering in d-dimensional
Euclidean space, and let Copt denote an optimal solution to this instance. Then for any
ε > 0, in O(dn log(k)) + (1/ε)O(kd log d) time3 one can compute a set C ⊆ P of k centers
such that E[fP,V (C)] ≤ (1 + ε)E[fP,V (Copt)].

Proof. First, use the algorithm of [8] to compute a set of k centers C ′ which covers all
of P within radius r = fP (C ′) ≤ 2 minZ⊆P,|Z|=k fP (Z) ≤ 2E[fP,V (Copt)]. Now set ∆ =
εr/(4

√
d), and compute Grid∆(P ). Let x denote the number of entries in Grid∆(P ), where

by Observation 11,

x ≤ k(2 + ⌈2r/∆⌉)d = k(2 + ⌈8
√

d/ε⌉)d = k(1/ε)O(d log d).

Observe that Grid∆(P ) is a partition of P , with diameter diam(Grid∆(P )) ≤ ∆
√

d = εr/4.
Let S = Canon(char(Copt, Grid∆(P ))) By Lemma 6 we have,

E[fP,V (S)] ≤ εr

4
+E[fP,V (Copt)] ≤ ε

2
E[fP,V (Copt)]+E[fP,V (Copt)] = (1+ε/2)E[fP,V (Copt)].

Therefore in order to compute a (1 + ε/2)-approximation, it suffices to compute all possible
characteristic vectors for char(Copt, Grid∆(P )), evaluate the expected cost of their corre-
sponding canonical subsets, and take the minimum. To speed up the time to evaluate the
expected cost of a canonical subset, we instead compute additive εr/4 ≤ (ε/2)E[fP,V (Copt)]
approximations to these values, thus in total achieving a relative (1 + ε)-approximation.

As for the running time, similar to Observation 8 one can argue that the number of
possible characteristic vectors is at most(

x + k − 1
k

)
≤
(

(x + k)e
k

)k

= (1/ε)O(kd log d).

For each characteristic vector we need to compute the corresponding canonical subset. Ob-
serve that within a given cell of Grid∆(P ), the canonical subset consists of the m highest
probability points for some value m ≤ k. Therefore, as a preprocessing step, we can throw

3 Technically the (1/ε)O(kd log d) bound term assumes ε < 1. If ε ≥ 1 this terms becomes 2O(kd log d).
That said, it is standard practice to write the bound in this simplified manner.
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out all but the k highest probability points in each cell, and then sort the remaining points
in each cell by their probability. Throwing out all but the k highest probability points takes
O(n) time in total by using linear time median selection in each cell. All the sorting can be
done in O(x · k log k) time total. After preprocessing, for a specific characteristic vector, it
takes O(x+k) time to compute the canonical subset. Suppose that for this canonical subset,
we can compute an additive εr/4-approximation to its expected cost in O(2kkx) time. Then
the total time is

O(dn log k + n + xk log k) + (x + k + 2kkx)(1/ε)O(kd log d) = O(dn log k) + (1/ε)O(kd log d).

So let S be any given canonical subset. What remains is to show an additive εr/4-
approximation to its expected cost can be computed in O(2kkx) time. Let R be any realiza-
tion of S. Consider the set of points X in some cell of the grid partition Grid∆(P ). Consider
any two points p, q ∈ X, and let rp, rq be the nearest center in R to p and q respectively. By
the triangle inequality we have

||p − rp|| ≤ ||p − rq|| ≤ ||p − q|| + ||q − rq|| ≤
√

d∆ + ||q − rq|| = εr/4 + ||q − rq||.

Therefore, ||q − rq|| ≤ maxp∈X ||p − R|| ≤ εr/4 + ||q − rq||, that is the distance from q to its
nearest center in R is an additive εr/4 approximation to the maximum distance of a point in
the cell to its nearest center in R. Thus to get an O(kx) time additive εr/4-approximation
to fP (R), it suffices to pick an arbitrary representative q in each cell, compute its nearest
center in R, and take the maximum. As there are O(2k) possible realizations R of S, the
claim now follows in a similar fashion to Observation 9. ◀

3 k-Median and k-Means

In this section, we develop a fixed parameter tractable approximation scheme for Faulty
k-Median Clustering of a collection of points P ⊂ Rd in d-dimensional Euclidean space. As
in our approximation scheme for Faulty k-Center, we begin by finding a constant-factor
approximate solution to k-Median without faulty centers and then partition the points of P

into disjoint subsets based on their location in appropriately sized regions of space. Unlike
the algorithm for Faulty k-Center, however, these subsets may have different diameters
depending on how far away each subset is from the nearest member of the non-faulty k-
Median solution. At the end of this section, we describe the minor changes necessary for
our algorithm to apply to Faulty k-Means instead of k-Median. For simplicity, throughout
this section we assume 0 < ε ≤ 1.

We now turn to our algorithm description. Let C ′
opt denote an optimal solution for

non-faulty k-Median. We compute a set of centers D = {d1, . . . , dk} such that gP (C ′
opt) ≤

gP (D) ≤ 2gP (C ′
opt). The set D can be computed in O(n) + kO(1) logO(1) n time [13].4

As in Section 2.1, we partition P into a collection of k subsets defined by the distance
from each point to its nearest member of D. For any subset Z ⊆ P and any i ∈ {1, . . . , k},
let Vori(Z, D) denote the subset of points of Z whose nearest center in D is di.

We proceed to refine the above partition as follows. Fix any i ∈ {1, . . . , k}. Let t =⌈
log(1+ε) 2n

⌉
= O((1/ε) log n). For each j ∈ {0, . . . , t}, let rj = (gP (D)/(2n)) · (1 + ε)j ,

and let Bi,j = B(di, rj), the ball of radius rj centered at di. We partition the points of

4 The algorithms in [13] are randomized, though they achieve this time with high probability. There are
deterministic constant factor approximations, though with higher polynomial dependence on n.
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Vori(P, D) ∩ Bi,0 into O(1/εd) batches each of diameter εr0/4. For each j ∈ {1, . . . , t},
partition the points of Vori(P, D) ∩ (Bi,j \ Bi,j−1) into O(1/εd−1) batches each of diameter
εrj/8. These batches can be computed in time linear in their number and the size of
Vori(P, D) by partitioning points according to their location in a sufficiently fine grid. (See
the discussion before Observation 11 and Observation 11 itself.)

We perform the above assignment to batches for each i ∈ {1, . . . , k}. Observe that no
point p ∈ P can lie further than gP (D) from its nearest center in D, implying all points are
assigned to exactly one batch. Let ρ = {ρ1, . . . , ρm} denote the partition of P into batches.

▶ Observation 13. For the partition ρ = {ρ1, . . . , ρm}, we have m = O((k/εd) log n).

Recall the definitions of canonical subsets given in Section 2. As in our algorithm for
Faulty k-Center, we will enumerate characteristic vectors for subsets of size k with respect
to ρ, taking the best canonical subset for these vectors as our solution. We adapt Lemma 6
for the current setting.

▶ Lemma 14. Let ρ = {ρ1, . . . , ρm} denote the partition of P as described above. Let Q ⊆ P

be any subset such that |Q| ≤ k, and let S = Canon(char(Q, ρ)). Then we have,

E[gP,V (S)] ≤ (1 + ε)E[gP,V (Q)].

Proof. Our proof follows the one for Lemma 6 except when comparing costs between two
realizations RS ∈ Real(S) and RQ ∈ Real(Q) with the same characteristic vector. Consider
any point p ∈ P . Let s be the closest point in RS to p, and let q be the closest point in RQ

to p. Let iq be such that q ∈ Voriq
(P, D), and let ℓ be the index such that q ∈ ρℓ. Given RS

and RQ have the same characteristic vector, there must be some point s′ ∈ RS such that
s′ ∈ ρℓ. We have

||p − s|| ≤ ||p − s′|| ≤ ||p − q|| + ||q − s′||.

Suppose q ∈ Biq,0. Recall, Biq,0 is the ball of radius r0 = gP (D)/(2n) centered at diq
. Then,

||p − s|| ≤ ||p − q|| + ||q − s′|| ≤ ||p − q|| + εr0

4
= ||p − q|| + εgP (D)

8n
.

. Now, suppose q ∈ (Biq,j \ Biq,j−1) for some j > 0. Centers dip
and diq

are the closest
members of D for p and q respectively, and ||q − D|| ≥ rj−1. By triangle inequality,

rj−1 ≤ ||q − D|| ≤ ||q − p|| + ||p − D||.

Therefore,

||p − s|| ≤ ||p − q|| + ||q − s′|| ≤ ||p − q|| + ε(1 + ε)rj−1

8
≤ ||p − q|| + εrj−1

4

≤ ||p − q|| + ε||p − q||
4

+ ε||p − D||
4

.

Finally, summing over all p and observing gP (D) ≤ 2gP (RQ).

gP (RS) =
∑
p∈P

||p − RS || ≤
∑
p∈P

(
||p − RQ|| + εgP (D)

8n
+ ε||p − RQ||

4
+ ε||p − D||

4

)

≤ gP (RQ) + εgP (RQ)
4

+ εgP (D)
8

+ εgP (D)
4

≤ (1 + ε)gP (RQ).
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The rest of the proof proceeds as in the one for Lemma 6, with “(1+ε)E[gP,V (Q) | eQ(u)]”
appearing in place of “E[fP,V (Q) | eQ(u)]+diam(ρ)” alongside analogous substitutions. ◀

We conclude with our main theorem for Faulty k-Median.

▶ Theorem 15. Let P ⊂ Rd be an instance of Faulty k-Median in d-dimensional Eu-
clidean space, and let Copt denote an optimal solution to this instance. Then for any
ε > 0, in (2O(k log k)/εdk)n1+o(1) time, one can compute a set C ⊆ P of k centers such
that E[gP,V (C)] ≤ (1 + ε)E[gP,V (Copt)].

Proof. As stated above, our algorithm begins by computing the set D ⊆ P of k centers in
O(n)+kO(1) logO(1) n time [13]. We then find the closest center in D for each point in P , and
then refine this partition into batches as described above. This produces a partition ρ into
O((k/εd) log n) batches by Observation 13, and thus ρ is computed in O(kn + (k/εd) log n)
time. We enumerate all O((k/εd) log n)k) possible characteristic vectors W for char(Copt, ρ),
finding and computing the expected cost of the canonical subset Canon(W ) in O(2kkn) time
for each, and return the solution C with the minimum expected cost. Lemma 14 implies
our solution has the correct expected cost.

We observe that logk n = 2O(k log k)no(1) [6]: If n ≤ 2k2 , then logk n ≤ k2k = 2O(k log k),
and if n > 2k2 , then logk n ≤ 2

√
log n log log n = no(1). Therefore, for the (2O(k log k)/εdk)no(1)

characteristic vectors, in (2O(k log k)/εdk)n1+o(1) time total we compute the expected costs
of their canonical subsets, and this dominates the running time of all other operations. ◀

3.1 k-Means
We now discuss how to modify our algorithm for Faulty k-Median to instead find a (1 + ε)-
approximate solution to Faulty k-Means. As before, we start by computing a 2-approximate
solution D to non-faulty k-Means in O(n+kk+2ε−(2d+1)k logk+1 n logk(1/ε)) time [13]. Then,
we partition the points of P into the k subsets Vori(P, D) and refine the partition.

We need to modify the refined partition somewhat to work with k-Means. We set the
parameter t that determines the number of concentric balls to

⌈
log1+ε(

√
2n)
⌉
, and let rj =√

hP (D)/(2n)·(1+ε)j . We now partition the points of Vori(P, D)∩Bi,0 into O(1/εd) batches
each of diameter εr0/8, and for each j ∈ {1, . . . , t}, partition the points of Vori(P, D)∩(Bi,j \
Bi,j−1) into O(1/εd−1) batches each of diameter εrj/16.

The rest of the algorithm itself remains the same, but for the analysis we need to revise
Lemma 14 to account for the different objective in k-Means.

▶ Lemma 16. Let ρ = {ρ1, . . . , ρm} denote the partition of P for Faulty k-Means. Let
Q ⊆ P be any subset such that |Q| ≤ k, and let S = Canon(char(Q, ρ)). Then we have,

E[hP,V (S)] ≤ (1 + ε)E[hP,V (Q)].

Proof. We recall the notation from Lemma 6 and Lemma 14 that is used in the novel part
of the proof. Let RS ∈ Real(S) and RQ ∈ Real(Q) have the same characteristic vector.
Consider any point p ∈ P . Let s be the closest point in RS to p, and let q be the closest
point in RQ to p. Let iq be such that q ∈ Voriq

(P, D), and let ℓ be the index such that
q ∈ ρℓ. Given RS and RQ have the same characteristic vector, there must be some point
s′ ∈ RS such that s′ ∈ ρℓ. We have

||p − s|| ≤ ||p − s′|| ≤ ||p − q|| + ||q − s′||.
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The remainder of the proof will rely on the fact that for any x, y ≥ 0, xy ≤ x2/2 + y2/2.
This fact is a special case of both Young’s [27] inequality for products and the AM-GM
inequality.

Suppose q ∈ Biq,0. Recall, Biq,0 is the ball of radius r0 =
√

hP (D)/(2n) centered at diq .
Then,

||p − s||2 ≤ (||p − q|| + ||q − s′||)2 ≤
(

||p − q|| + εr0

8

)2
=

(
||p − q|| +

ε
√

hP (D)
8
√

2n

)2

= ||p − q||2 + ε

4
||p − q|| ·

√
hP (D)√

2n
+ ε2hP (D)

128n

= ||p − q||2 +
√

ε

4
||p − q|| ·

√
εhP (D)

8n
+ ε2hP (D)

128n

≤ ||p − q||2 + ε||p − q||2

8
+ 9εhP (D)

128n

Now, suppose q ∈ (Biq,j \ Biq,j−1) for some j > 0. Again, rj−1 ≤ ||p − q|| + ||p − D||.
Therefore,

||p − s||2 ≤ (||p − q|| + ||q − s′||)2 ≤
(

||p − q|| + ε(1 + ε)rj−1

16

)2

≤
(

||p − q|| + εrj−1

8

)2
≤
((

1 + ε

8

)
||p − q|| + ε||p − D||

8

)2

=
(

1 + ε

4
+ ε2

64

)
||p − q||2 + 2

(
ε

8
+ ε2

64

)
||p − q|| · ||p − D|| + ε2||p − D||2

64

≤
(

1 + 17ε

64

)
||p − q||2 + 2

√
9ε

64
||p − q|| ·

√
9ε

64
||p − D|| + ε||p − D||2

64

≤ ||p − q||2 + 13ε||p − q||2

32
+ 5ε||p − D||2

32

Finally, summing over all p and observing hP (D) ≤ 2hP (RQ).

hP (RS) =
∑
p∈P

||p − RS ||2 ≤
∑
p∈P

(
||p − RQ||2 + 13ε||p − RQ||2

32
+ 9εhP (D)

128n
+ 5ε||p − D||2

32

)

≤ hP (RQ) + 13εhP (RQ)
32

+ 9εhP (D)
128

+ 5εhP (D)
32

≤ (1 + ε)hP (RQ).

The rest of the proof proceeds as in the one for Lemma 6, with “(1 + ε)E[hP,V (Q) | eQ(u)]”
appearing in place of “E[fP,V (Q) | eQ(u)]+diam(ρ)” alongside analogous substitutions. ◀

The running time analysis for Faulty k-Means is virtually the same as that for Faulty
k-Median, except for the larger time needed to find the initial non-faulty 2-approximate
solution. We thus conclude with our final theorem.

▶ Theorem 17. Let P ⊂ Rd be an instance of Faulty k-Means in d-dimensional Euclidean
space, and let Copt denote an optimal solution to this instance. Then for any ε > 0, in
(2O(k log k)/ε(2d+1)k)n1+o(1) time, one can compute a set C ⊆ P of k centers such that
E[hP,V (C)] ≤ (1 + ε)E[hP,V (Copt)].
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