
Approximating the (Continuous) Fréchet Distance∗

Connor Colombe† Kyle Fox‡

March 27, 2021

Abstract

We describe the first strongly subquadratic time algorithm with subexponential approxi-
mation ratio for approximately computing the Fréchet distance between two polygonal chains.
Specifically, let P and Q be two polygonal chains with n vertices in d-dimensional Euclidean
space, and let α ∈ [

√
n, n]. Our algorithm deterministically finds an O(α)-approximate Fréchet

correspondence in time O((n3/α2) log n). In particular, we get an O(n)-approximation in near-
linear O(n log n) time, a vast improvement over the previously best know result, a linear time
2O(n)-approximation. As part of our algorithm, we also describe how to turn any approximate
decision procedure for the Fréchet distance into an approximate optimization algorithm whose
approximation ratio is the same up to arbitrarily small constant factors. The transformation
into an approximate optimization algorithm increases the running time of the decision procedure
by only an O(log n) factor.

∗Most of this work was done while the first author was a student at the University of Texas at Dallas.
†The University of Texas at Austin; ccolombe@utexas.edu
‡The University of Texas at Dallas; kyle.fox@utdallas.edu

ccolombe@utexas.edu
kyle.fox@utdallas.edu


Approximating the (Continuous) Fréchet Distance 1

1 Introduction
The Fréchet distance is a commonly used method of measuring the similarity between a pair of
curves. Both its standard (continuous) and discrete variants have seen use in map construction
and mapping [5, 16], handwriting recognition [27], and protein alignment [23].

Formally, it is defined as follows: Let P : [1,m] → Rd and Q : [1, n] → Rd be two curves
in d-dimensional Euclidean space. We’ll assume P and Q are represented as polygonal chains,
meaning there exist ordered vertex sequences ⟨p1, . . . , pm⟩ and ⟨q1, . . . , qn⟩ such that P (i) = pi for
all 1 ≤ i ≤ m, Q(j) = qj for all 1 ≤ j ≤ n, and both P and Q are linearly parameterized along line
segments or edges between these positions. We define a re-parameterization σ : [0, 1] → [1,m]
of P as any continuous, non-decreasing function such that σ(0) = 1 and σ(1) = m.1 We define
a re-parameterization θ : [0, 1] → [1, n] of Q similarly. We define a Fréchet correspondence
between P and Q as a pair (σ, θ) of re-parameterizations of P and Q respectively, and we say any
pair of reals (σ(r), θ(r)) for any 0 ≤ r ≤ 1 are matched by the correspondence. Let d(p, q) denote
the Euclidean distance between points p and q in Rd. The cost of the correspondence is defined as

µ((σ, θ)) := max
0≤r≤1

d(P (σ(r)), Q(θ(r))).

Let ΠFD denote the set of all Fréchet correspondences between P and Q. The (continuous)
Fréchet distance of P and Q is defined as

FD(P,Q) := min
(σ,θ)∈ΠFD

µ((σ, θ)).

The standard intuition given for this definition is to imagine a person and their dog walking
along P and Q, respectively, without backtracking. The person must keep the dog on a leash, and
the goal is to pace their walks as to minimize the length of leash needed to keep them connected.
There also exists a variant of the distance called the discrete Fréchet distance where the input
consists of two finite point sequences. Here, we replace the person and dog by two frogs. Starting
with both frogs on the first point of their sequences, we must iteratively move the first, the second,
or both frogs to the next point in their sequences. As before, the goal is to minimize the maximum
distance between the frogs.

Throughout this paper, we assume 2 ≤ m ≤ n. We can easily compute the discrete Fréchet dis-
tance in O(mn) time using dynamic programming. The first polynomial time algorithm for comput-
ing the continuous case was described by Alt and Godau [6]. They use parametric search [17,25] and
a quadratic time decision procedure (see Section 2) to compute the Fréchet distance in O(mn log n)
time. Almost two decades passed before Agarwal et al. [3] improved the running time for the
discrete case to O(mn log log n/ log n). Buchin et al. [14] later improved the running time for the
continuous case to O(mn(log log n)2) (these latter two results assume we are working in the word
RAM model of computation).

Recently, Gudmundsson et al. [21] described an O(n log n) time algorithm for computing the
continuous distance between chains P and Q assuming all edges have length a sufficiently large
constant larger than FD(P,Q). In short, having long edges allows one to greedily move the person
and dog along their respective chains while keeping their leash length optimal.

From this brief history, one may assume substantially faster algorithms are finally forthcoming
for general cases of the continuous and discrete Fréchet distance. Unfortunately, more meaningful
improvements may not be possible; Bringmann [10] showed that strongly subquadratic (n2−Ω(1))

1Re-parameterizations are normally required to be bijective, but we relax this requirement to simplify definitions
and arguments throughout the paper.



2 Connor Colombe and Kyle Fox

time algorithms would violate the Strong Exponential Time Hypothesis (SETH) that solving CNF-
SAT over n variables requires 2(1−o(1))n time [22].

Therefore, we are motivated to look for fast approximation algorithms for these problems.
Aronov et al. [8] described a (1 + ε)-approximation algorithm for the discrete Fréchet distance.
This algorithm runs in subquadratic and often near-linear time if P or Q fall into one of a few
different “realistic” families of curves such as ones modeling protein backbones. Driemel et al. [18]
describe a (1 + ε)-approximation for the continuous Fréchet distance that again runs more quickly
if one of the curves belongs to a realistic family than it would otherwise. This latter algorithm was
improved for some cases by Bringmann and Künnemann [12]. In the same work mentioned above,
Gudmundsson et al. [21] described a

√
d-approximation algorithm that runs in linear time if the

input polygonal chains have sufficiently long edges.
Approximation appears more difficult when the input is arbitrary. Bringmann [10] showed there

is no strongly subquadratic time 1.001-approximation for the Fréchet distance, assuming SETH. For
arbitrary point sequences, Bringmann and Mulzer [13] described an O(α)-approximation algorithm
for the discrete distance for any α ∈ [1, n/ log n] that runs in O(n log n + n2/α) time. Chan and
Rahmati [15] later described an O(n log n + n2/α2) time O(α)-approximation algorithm for the
discrete distance for any α ∈ [1,

√
n/ log n].

For the continuous Fréchet distance over arbitrary polygonal chains, the only strongly subqua-
dratic time algorithm known with bounded approximation ratio runs in linear time but has an
exponential worst case approximation ratio of 2Θ(n). This result is described in the same paper
of Bringmann and Mulzer [13] mentioned above. We note that there is also a substantial body
of work on the (approximate) nearest neighbor problem using Fréchet distance as the metric; see
Mirzanezhad [26] for a survey of recent results. These results assume the query curve or the curves
being searched are short, so they do not appear directly useful in approximating the Fréchet distance
between two curves of arbitrary complexity.

The closely related problems of computing the dynamic time warping and geometric edit dis-
tances have a similar history to that of the discrete Fréchet distance.2 They have straightforward
quadratic time dynamic programming algorithms that have been improved by (sub-)polylogarithmic
factors for some low dimensional cases [20]; substantial improvements to these algorithms violate
SETH or other complexity theoretic assumptions [1,2,9,11]; and there are fast (1+ε)-approximation
algorithms specialized for realistic input sequences [4, 28]. And, there exist some approximation
results for arbitrary point sequences as well. Kuszmaul [24] described O((n2/α) polylog n) time
O(α)-approximation algorithms for dynamic time warping distance over point sequences in well
separated tree metrics of exponential spread and geometric edit distance over point sequences in
arbitrary metrics. Fox and Li [19] described a randomized O(n log2 n + (n2/α2) log n) time O(α)-
approximation algorithm for geometric edit distance for points in low dimensional Euclidean space.
Even better approximation algorithms exist for the traditional string edit distance where all sub-
stitutions have cost exactly 1; see, for example, Andoni and Nosatzki [7].

Each of the above problems for point sequences admit strongly subquadratic approximation
algorithms with polynomial approximation ratios when the input comes from low dimensional
Euclidean space. However, such a result remains conspicuously absent for the continuous Fréchet
distance over arbitrary polygonal chains. One may naturally assume results for the discrete Fréchet
distance extend to the continuous case. However, one advantage of discrete Fréchet distance over

2The dynamic time warping distance is defined similarly to the discrete Fréchet distance, except the goal is to
minimize the sum of distances between the frogs over all pairs of points they stand upon. The geometric edit distance
can be defined as the minimum number of point insertions and deletions plus the minimum total cost of point
substitutions needed to transform one input sequence into another. The cost of a substitution is the distance between
its points.



Approximating the (Continuous) Fréchet Distance 3

the continuous case is that input points can only be matched with other input points. The fact that
vertices can match with edge interiors in the continuous case makes it much more difficult to make
approximately optimal decisions. In addition, we can no longer depend upon certain data structures
for testing equality of subsequences in constant time. These structures are largely responsible for
the relatively small running times seen in the algorithms of Chan and Rahmati [15] and Fox and
Li [19].

Our results

We describe the first strongly subquadratic time algorithm with subexponential approximation
ratio for computing Fréchet correspondences between polygonal chains. Let P and Q be two
polygonal chains of m and n vertices, respectively, in d-dimensional Euclidean space, and let α ∈
[
√
n, n]. Again, we assume m ≤ n. Our algorithm deterministically finds a Fréchet correspondence

between P and Q of cost O(α) · FD(P,Q) in time O((n3/α2) log n). In particular, we get an O(n)-
approximation in near-linear O(n log n) time, a vast improvement over Bringmann and Mulzer’s [13]
linear time 2O(n)-approximation for continuous Fréchet distance. Our algorithm employs a novel
combination of ideas from the original exact algorithm of Alt and Godau [6] for continuous Fréchet
distance, the algorithm of Chan and Rahmati [15] for approximating the discrete Fréchet distance,
and Gudmundsson et al.’s [21] greedy approach for computing the Fréchet distance between chains
with long edges.

Let δ > 0. We describe an approximate decision procedure that either determines FD(P,Q) >
δ or finds a Fréchet correspondence of cost O(α) · δ. The exact decision procedure of Alt and Go-
dau [6] computes a set of reachability intervals in the free space diagram of P and Q with respect
to δ (see Section 2). These intervals represent all points on a single edge of Q that can be matched
to a vertex of P (or vice versa) in a Fréchet correspondence of cost at most δ. For our approx-
imate decision procedure, we compute a set of approximate reachability intervals such that the
re-parameterizations realizing these intervals have cost O(α) · δ. We cannot afford to compute
intervals for all Θ(mn) vertex-edge pairs, so we instead focus on O(n2/α2) vertex-edge pairs as
described below that contain the first and last vertices and edges of both chains. The approximate
interval we compute for any vertex-edge pair contains the exact interval for that same pair. So
if FD(P,Q) ≤ δ, we are guaranteed (pm, qn) is approximately reachable and our desired Fréchet
correspondence exists.

The vertex-edge pairs chosen to hold the approximate reachability intervals follow from ideas
of Chan and Rahmati [15]. Similar to them, we place a grid of side length α · δ so that at most
O(n/α) vertices of P and Q lie within distance 3δ of the side of a grid box. We call these O(n/α)
vertices bad and the rest good. Also, we call any edge with a bad endpoint bad. Our approximate
reachability intervals involve only bad edges and vertices with at least one bad incident edge. To
compute these intervals, we describe a method for tracing how a Fréchet correspondence of cost δ
must behave starting from one approximate reachability interval until it reaches some others we
wish to compute. Recall, an approximate reachability interval corresponds to pairs of points on P
and Q that could be matched together. Either the next edge of P or Q after one of these pairs
to leave a box is good and therefore long, or it is bad, and we can afford to compute some new
approximate reachability intervals using this edge. We can easily compute correspondences between
long edges and arbitrary length edges on the other curve, and we can greedily match the portions of
the curves before they leave the box at cost at most O(α) · δ. The traces take only O(n) time each,
and we perform at most O(n2/α2) traces, so our decision procedure takes O(n3/α2) time total.

We would like to use our approximate decision procedure as a black box to compute a Fréchet
correspondence of cost O(α) · FD(P,Q) without knowing FD(P,Q) in advance. Unfortunately,



4 Connor Colombe and Kyle Fox

we are unaware of any known general method to do so.3 Therefore, we describe how to turn
any approximate decision procedure into an algorithm with the same approximation ratio up to
arbitrarily small constant factors after an O(log n) factor increase in running time. In particular,
any improvement to our approximate decision procedure would immediately carry over to our
overall approximation algorithm. Our method involves binary searching over a set of O(n) values
approximating distances between pairs of vertices. If there is a large gap between the Fréchet
distance and the nearest of these values, we can simplify both P and Q without losing much
accuracy in the Fréchet distance computation while allowing us to use the long edge exact algorithm
of Gudmundsson et al. [21].

The rest of our paper is organized as follows. We describe preliminary notions in Section 2. We
describe our decision procedure in Section 3 and how to turn it into an approximation algorithm
in Section 4. We conclude with some closing thoughts in Section 5.

2 Preliminaries
Let R : [1, n] → Rd be a polygonal chain in d-dimensional Euclidean space. We let R[r, r′] denote
the restriction of R to [r, r′]. In other words, the notation refers to the portion of R between points
R(r) and R(r′). We generally use s to refer to members of the domain of a polygonal chain P and
t to refer to members of the domain of a polygonal chain Q. We use i and j, respectively, when
these members are integers. Recall, pi = P (i) for all 1 ≤ i ≤ m and qj = Q(j) for all 1 ≤ j ≤ n.
We use superscript notation (sa) to label particular members of these domains (and not to take
the ath power of s), and we use subscript notation (sk) when we are working with an ordered list
of these members.

Free space diagram and reachability Let P : [1,m] → Rd and Q : [1, n] → Rd be polygonal
chains. Fix some δ > 0. Alt and Godau [6] introduced the free space diagram to decide if
FD(P,Q) ≤ δ. It consists of a set of pairs F = {(s, t) ∈ [1,m]× [1, n]}. Each (s, t) ∈ F represents
the pair of points P (s) and Q(t). Point (s, t) ∈ F is free if d(P (s), Q(t)) ≤ δ. The free space
D≤δ(P,Q) consists of all free points between P and Q for a given δ. Formally, it is given by the
set D≤δ(P,Q) := {(s, t) ∈ [1,m] × [1, n] : d(P (s), Q(t)) ≤ δ}. We say that a point (s′, t′) ∈ F is
reachable if there exists an s and t-monotone path from (1, 1) to (s′, t′) through D≤δ(P,Q).

The standard procedure for determining if FD(P,Q) ≤ δ divides F into cells Ci,j := [i− 1, i]×
[j−1, j] for all i ∈ ⟨2, . . . ,m⟩ and j ∈ ⟨2, . . . , n⟩. The intersection of a cell Ci,j with the free space is
convex [6]. The intersection of an edge of the free space diagram cell Ci,j with the free space forms
a free space interval. The subset of reachable points within a free space interval form what is
called an (exact) reachability interval. We say a Fréchet correspondence (σ, θ) between P and Q
uses or passes through a reachability interval if there exists some point (σ(r), θ(r)) within that
interval.

Given the bottom and left reachability intervals of a free space diagram cell, we can compute
the top and right reachability intervals of the same cell in O(1) time [6]. The exact decision
procedure loops through the cells in increasing order of i and j, computing reachability intervals
one-by-one. Let α ∈ [

√
n, n]. We cannot afford to compute all Θ(mn) reachability intervals,

so instead we compute O(n2/α2) (α)-approximate reachability intervals. The approximate
3Bringmann and Künnemann [12, Lemma 2.1] claim there exists a general method for turning an approximate

decision procedure into an approximate optimization algorithm when the approximation ratio of the decision proce-
dure is at most 2. However, they rely on a method of Driemel et al. [18] that uses certain structural properties of the
input polygonal chains that we cannot assume.



Approximating the (Continuous) Fréchet Distance 5

reachability intervals are subsets of the free space intervals such that for any point (s, t) on an
approximate reachability interval, there exists a Fréchet correspondence between P [1, s] and Q[1, t]
of cost O(α) · δ. We express exact or approximate reachability intervals by the subset of F they
contain; for example, given j − 1 ≤ ta ≤ tb ≤ j, we will use {i} × [ta, tb] to refer to an interval on
the right side of cell Ci,j .

Grids, good points, bad points, and dangerous points Chan and Rahmati [15] utilize a
d-dimensional grid to create the useful notion of good and bad vertices for their discrete Fréchet
distance approximation algorithm. We adopt their use of a d-dimensional grid. Unlike Chan and
Rahmati, however, we are no longer working with sequences of discrete points but instead polygonal
chains. We must therefore define new constructs of good and bad that work better for our problem’s
input.

Let P : [1,m] → Rd and Q : [1, n] → Rd be two polygonal chains. Fix δ > 0 and α ∈ [
√
n, n].

Let G be a d-dimensional grid consisting of boxes of side length α · δ. (We do not use the term
cell here to avoid confusion with the free space diagram.) We say a vertex of P or Q is good if
it is more than distance 3δ from any edge of G. If a vertex is not good, then we call it bad. For
simplicity, we also designate p1, q1, pm, and qn as bad, regardless of their position within boxes of
G.

We also extend the constructs of good and bad to the edges of P and Q. We say an edge on
either chain is good if both its endpoints are good vertices. Otherwise, the edge is bad. Lastly, we
say that a vertex is dangerous (but not necessarily good or bad) if at least one of its incident edges
is bad. Chan and Rahmati [15, Lemma 1] demonstrate how to compute a grid G with O(n/α) bad
vertices in O(n) time. Because each bad vertex has up to two incident edges, there are also O(n/α)
bad edges. Each bad edge is incident to two vertices, so there are O(n/α) dangerous vertices as well.
Our approximate decision procedure will compute approximate reachability intervals only between
dangerous vertices and bad edges. Therefore, there will be at most O(n2/α2) such intervals.

Curve simplification Let R : [1, n] → Rd be a polygonal chain with vertices ⟨r1, . . . , rn⟩. Our
approximation algorithm relies on a method for simplifying chains so their edges are not too short.
We slightly modify of a procedure of Driemel et al. [18]. Let ν > 0 be a parameter. We mark r1
and set it as the current vertex. We then repeat the following procedure until we no longer have a
designated current vertex. We scan R from the current vertex until reaching the first vertex ri of
distance at least ν from the current vertex. We mark ri, set it as the current vertex, and perform
the next iteration of the loop. The ν-simplification of R, denoted R̂, is the polygonal chain
consisting of exactly the marked vertices in order. Note that unlike Driemel et al. [18], we do not
require the final vertex of R to be marked. We can easily verify that all edges of R̂ have length at
least ν. Also, FD(R, R̂) ≤ ν [18, Lemma 2.3].

3 Approximate Decision Procedure

In this section, we present our O(α)-approximate decision procedure. Let P : [1,m] → Rd and
Q : [1, n] → Rd be two polygonal chains in d-dimensional Euclidean space as defined before, and
let α ∈ [

√
n, n]. Let δ > 0. We begin by computing the grid G along with O(n/α) bad edges

and points as defined in Section 2. We then explicitly compute and record a set of O(n2/α2)
approximate reachability intervals between dangerous vertices and bad edges. To compute these
intervals, we occasionally perform a linear time greedy search for a good correspondence. We



6 Connor Colombe and Kyle Fox

describe this greedy search procedure in Section 3.1 before giving the remaining details of the
decision procedure in Section 3.2.

3.1 Greedy mapping subroutines
We describe a pair of subroutines for greedily computing Fréchet correspondences along lengths
of P and Q. The first of these procedures GreedyMappingP(i, t) takes as its input an integer
i ∈ ⟨1, . . . ,m⟩ such that pi is a good vertex of P along with a real value t ∈ [1, n] such that
d(pi, Q(t)) ≤ δ. Informally, the procedure does the following: Suppose there exists a Fréchet
correspondence (σ, θ) between P and Q of cost at most δ that maps pi ‘close to’ Q(t). Procedure
GreedyMappingP(i, t) essentially follows P and Q from box to box, discovering groups of points
that must be matched by (σ, θ). When there is too much ambiguity in what must be matched to
continue searching greedily, it outputs a set of approximate reachability intervals, including one
used by (σ, θ). While we can infer which boxes pairs of matched points belong to, it may still be
unclear exactly which pairs appear in (σ, θ). Also, the procedure may output intervals despite (σ, θ)
not existing in the first place! Therefore, we can only guarantee the intervals can be reached using
a correspondence of cost at most O(α) · δ. We define another procedure GreedyMappingQ(j, s)
similarly, exchanging the roles of P and Q. As they are rather technical, the precise definitions of
these procedures are best expressed in the following lemmas.

Lemma 3.1. Let i ∈ ⟨1, . . . ,m⟩ and t ∈ [1, n] such that pi is good and d(pi, Q(t)) ≤ δ. Procedure
GreedyMappingP(i, t) outputs zero or more approximate reachability intervals between a bad
edge of P or Q and a dangerous vertex of Q or P , respectively. For each pair (s′, t′) ∈ [i,m] ×
[t, n] in an approximate reachability interval computed by the procedure, there exists a Fréchet
correspondence of cost O(α) · δ between P [i, s′] and Q[t, t′]. Procedure GreedyMappingQ(j, s)
has the same properties with the roles of P and Q exchanged.

Lemma 3.2. Let i ∈ ⟨1, . . . ,m⟩ and t ∈ [1, n] such that pi is good and d(pi, Q(t)) ≤ δ. Sup-
pose there exists a Fréchet correspondence (σ, θ) between P and Q of cost at most δ that matches
i with some t∗ ≥ t such that every point of Q[t, t∗] is at most distance 3δ from pi. Then, (σ, θ) passes
through at least one approximate reachability interval output by procedure GreedyMappingP(i, t).
Procedure GreedyMappingQ(j, s) has the same properties with the roles of P and Q exchanged.

We now provide details on the implementation of GreedyMappingP(i, t) along with intuition for
the steps it uses. Procedure GreedyMappingQ(j, s) has an analogous description, with the roles
of P and Q exchanged.

To begin, observe pi and Q(t) lie in the same box B of grid G, because pi is good and
d(pi, Q(t)) ≤ δ. We first follow P and Q to see where they leave B: Let se = m if P never
leaves B after pi. Otherwise, let se be the minimum value in (i,m] such that P (se) lies on the
boundary of B (the ‘e’ stands for exit). Define te similarly for Q. See Figure 3.1.

If either curve ends before leaving B, then the rest of the other curve needs to stay near B
if a correspondence like in Lemma 3.2 exists. Therefore, if se = m (resp. te = n), we check if
all points of Q[t, n] (resp. P [i,m]) lie in or within distance δ of B. If so, we output the trivial
approximate reachability interval of {(m,n)} and terminate the procedure. Otherwise, we output
zero approximate reachability intervals.

From here on, we assume se ̸= m and te ̸= n. Let ie ∈ ⟨1, . . . ,m⟩ such that ie − 1 ≤ se ≤ ie,
and define je similarly. We begin by considering cases where a curve leaves box B along a good
edge. Here, a correspondence as described in Lemma 3.2 must match a portion of the other curve
to the good edge. Fortunately, we can guess approximately where that portion of the other curve



Approximating the (Continuous) Fréchet Distance 7

Figure 3.1. Basic setup for GreedyMappingP(i, t)

Figure 3.2. GreedyMappingP(i, t): The case where P [ie − 1, ie] is good

begins and ends. Afterward, the other endpoint of the good edge serves as a suitable parameter
for a recursive call to one of our greedy mapping procedures.

Specifically, suppose edge P [ie−1, ie] is good. In this case, let tf be the minimum value in (t, n]
such that d(pie , Q(tf )) ≤ δ, and let tc be the maximum value in [t, tf ) such that d(pie−1, Q(tc)) ≤ δ
(the ‘f ’ stands for far, and the ‘c’ stands for close). See Figure 3.2. We check if every point
of Q[t, tc] lies in or within distance δ of B and if FD(P [ie − 1, ie], Q[tc, tf ]) ≤ δ. If so, we run
GreedyMappingP(ie, tf ) and use its output. Otherwise, we output zero approximate reachability
intervals.

Now suppose the previous case does not hold but edge Q[je − 1, je] is good. Here, we perform
similar steps to those described in the previous case, exchanging the roles of P and Q. Specifically,
we let sf be the minimum value in (i,m] such that d(qje , P (sf )) ≤ δ, and let sc be the maximum
value in [i, sf ) such that d(qje−1, Q(sc)) ≤ δ. We check if every point of P [i, sc] lies in or within
distance δ of B and if FD(P [sc, sf ], Q[je−1, je]) ≤ δ. If so, we run GreedyMappingQ(je, sf ) and
use its output. Otherwise, we output zero approximate reachability intervals.

From here on, we assume neither curve leaves box B through a good edge. Suppose there is a
correspondence (σ, θ) as described in Lemma 3.2. Further suppose the reparameterized walks along
P and Q leave box B along P before Q. In this case, we can show that P (se) is matched with
a point on a bad edge of Q. Accordingly, we iterate over the bad edges of Q that appear before
Q leaves box B, computing sufficiently large approximate reachability intervals along the top and
right sides of free space diagram cells for P [ie − 1, ie] and those bad edges of Q. Both of the edges
for each of these cells are bad, so the intervals we compute are between bad edges and dangerous



8 Connor Colombe and Kyle Fox

Figure 3.3. Left: Definition of ⟨t1, . . . , tℓ⟩. Right: Designating approximate reachability intervals near a pair (se, tk). The
clipped ellipse coincides with the free points inside cell Cie,jk .

vertices.
Specifically, let t ≤ t1 < t2 < · · · < tℓ ≤ te be the list of first positions along their respective

edges of Q such that d(P (se), Q(tk)) ≤ δ for each k ∈ ⟨1, . . . , ℓ⟩. See Figure 3.3, left. Observe that
each edge containing a point tk must be bad, because Q does not leave B along a good edge, and
no good edge with two endpoints in B lies within distance δ of P (se). For each k ∈ ⟨1, . . . , ℓ⟩, we do
the following: Let jk ∈ ⟨1, . . . , n⟩ such that jk−1 ≤ tk ≤ jk. Let tak be the minimum value in [tk, jk]
such that d(pie , Q(tak)) ≤ δ and let tbk be the maximum value in [tk, jk] such that d(pie , Q(tbk)) ≤ δ. If
tak and tbk are well-defined, then we designate the interval {ie}× [tak, t

b
k] as approximately reachable.

(If we have already designated a subset of {ie} × [jk − 1, jk] as approximately reachable earlier in
the decision procedure, then we extend the approximately reachable area by taking the union with
the old interval. Every interval of {ie} × [jk − 1, jk] we compute will end at (ie, tbk), so the union is
also an interval.) Similarly, let sak be the minimum value in [se, ie] such that d(P (sak), qjk) ≤ δ and
let sbk be the maximum value in [se, ie] such that d(P (sbk), qjk) ≤ δ. If sak and sbk are well-defined,
then we designate the interval [sak, sbk]× {jk} as approximately reachable. See Figure 3.3, right.

It is also possible that a good correspondence has the walk along Q leave box B first. So, in
addition to the above set of approximate reachability intervals, we also create some based on points
of P between pi and P (se) that pass close to Q(te). Let s ≤ s1 < s2 < · · · < sℓ ≤ se be the
exhaustive list of first positions along their respective edges of P such that d(P (sk), Q(te)) ≤ δ
for each k ∈ ⟨1, . . . , ℓ⟩. For each k ∈ ⟨1, . . . , ℓ⟩, we do the following: Let ik ∈ ⟨1, . . . , n⟩ such that
ik − 1 ≤ sk ≤ ik. Let sak be the minimum value in [sk, ik] such that d(P (sak), qje) ≤ δ, and let sbk be
the maximum value in [sk, ik] such that d(P (sbk), qje) ≤ δ. If sak and sbk are well-defined, then we
designate the interval [sak, sbk]× {je} as approximately reachable. Similarly, let tak be the minimum
value in [te, je] such that d(pjk , Q(tak)) ≤ δ, and let tbk be the maximum value in [te, je] such that
d(pjk , Q(tbk)) ≤ δ. If tak and tbk are well-defined, then we designate the interval {ik} × [tak, t

b
k] as

approximately reachable.
We have concluded our description of GreedyMappingP(i, t) and are ready to prove Lem-

mas 3.1 and 3.2.

Proof (of Lemma 3.1): We use the same notation as given in the description of
GreedyMappingP(i, t). We first argue that we only output reachability intervals between bad
edges and dangerous vertices. If we only output the trivial interval {(m,n)} then the statement



Approximating the (Continuous) Fréchet Distance 9

is trivially true. Otherwise, suppose we create an interval while working with P (se) and some
nearby point Q(tk). We are not performing a recursive call to GreedyMappingP in this case,
so P [ie − 1, ie] is bad, and pie is dangerous. Similarly, we are not performing a recursive call to
GreedyMappingQ, so Q[jk − 1, jk] is not a good edge with endpoint qjk outside of box B. Point
Q(tk) is within distance δ of the boundary of B, so Q[jk − 1, jk] cannot be a good edge with both
endpoints in B, either. We conclude Q[jk − 1, jk] is bad as well, and qjk is dangerous. A similar
argument holds if we create an interval while working with Q(te) and some nearby point of P .

We now argue that for any pair of points (s′, t′) on one of the approximate reachability in-
tervals output by the procedure, there exists a correspondence of cost O(α) · δ between P [i, s′]
and Q[t, t′]. First, suppose GreedyMappingP(i, t) creates one or more approximate reachability
intervals without performing a recursive call. Suppose se = m or te = n, implying (s′, t′) = (m,n).
All points of P [i,m] and Q[t, n] lie in or within distance δ of B, so they are all distance at most√
d(α+1) · δ from each other and any Fréchet correspondence between P [i, s′] and Q[t, t′] has cost

O(α) · δ.
Now suppose otherwise, but (s′, t′) lies on an interval created while working with P (se) and

some nearby point Q(tk). All points of P [i, se] and Q[t, tk] lie in B, so they are all distance at
most

√
dα · δ from each other and any Fréchet correspondence between P [i, se] and Q[t, tk] has cost

O(α) · δ. The set of pairs (x, y) ∈ P [ie − 1, ie]×Q[jk − 1, jk] such that d(P (x), Q(y)) ≤ δ includes
(se, tk) and (s′, t′), and the set is convex [6], so we can extend our correspondence to include another
between P [se, s′] and Q[tk, t

′] of cost at most δ. A similar argument covers the case where (s′, t′)
lies on an interval created while working with Q(te) and a nearby point of P .

Finally, suppose GreedyMappingP(i, t) recursively calls GreedyMappingP(ie, tf ). Every
point of P [i, ie − 1] and Q[t, tc] lies in or within distance δ of B, so every correspondence between
P [i, ie − 1] and Q[t, tc] has cost at most O(α) · δ. Also, we have FD(P [ie − 1, ie], Q[tc, tf ]) ≤
δ. We can combine these correspondences with the one inductively guaranteed by the call to
GreedyMappingP(ie, tf ) to get our desired correspondence between P [i, s′] and Q[t, t′]. Again, a
similar argument covers the case where we do a recursive call GreedyMappingQ(je, sf ).

The proof for GreedyMappingQ(j, s) is the same, but with the roles of P and Q exchanged. □

Proof (of Lemma 3.2): We use the same notation as given in the description of
GreedyMappingP(i, t). By assumption and the fact that pi is good, every point of Q[t, t∗] lies
within B. Let rse = σ−1(se) and rte = θ−1(te).

Suppose GreedyMappingP(i, t) does not do a recursive call. If we output the trivial in-
terval {(m,n)}, then the lemma is trivially true. Suppose we do not output the trivial interval
and rse ≤ rte. Point Q(θ(rse)) lies on an edge Q[jk − 1, jk] with one of the points Q(tk) where
d(P (se), Q(tk)) ≤ δ. By definition of tk, we have tk ≤ θ(rse). Recall, the free space is convex
within each individiaul cell of the free space diagram [6]. Therefore, the set of se ≤ s′ ≤ ie such
that FD(P [se, s′], Q[θ(rse), jk]) ≤ δ is precisely the approximate reachability interval [sak, sbk]× {jk}
we computed. Similarly, the set of θ(rse) ≤ t′ ≤ jk such that FD(P [se, ie], Q[θ(rse), t′]) ≤ δ is
actually a suffix of the approximate reachability interval {ie} × [tak, t

b
k] we computed. A similar

argument applies if rte < rse.
Finally, suppose GreedyMappingP(i, t) recursively calls GreedyMappingP(ie, tf ). Let tf∗

be matched with ie and tc∗ be matched with ie − 1 by (σ, θ). Because pie−1 and pie are both good,
d(pie−1, Q(tc∗)) ≤ δ, and d(pie , Q(tf )) ≤ δ, points Q(tc∗) and Q(tf ) lie within the same boxes as
pie−1 and pie , respectively. These boxes are distinct, so we may conclude tc∗ ≤ tf . Further, we
chose tc ≥ tc∗ and tf ≤ tf∗, and we may infer Q(tc) and Q(tf∗) also lie in the same boxes as pie−1

and pie , respectively. We conclude tc∗ ≤ tc < tf ≤ tf∗.
Consider the following correspondence between P [ie − 1, ie] and Q[tc, tf ]: Let sc ≥ ie − 1 and



10 Connor Colombe and Kyle Fox

Figure 3.4. A correspondence of cost δ between P [ie − 1, ie] and Q[tc, tf ]. A subset of matched points are represented
by thin green line segments.

sf ≤ ie be matched to tc and tf , respectively, by (σ, θ). We match every point of P [ie − 1, sc]
to Q(tc), match P [sc, sf ] to Q[tc, tf ] exactly as done by (σ, θ), and match every point of P [sf , ie]
to Q(tf ). See Figure 3.4. We have d(pie−1, Q(tc)) ≤ δ and d(P (sc), Q(tc)) ≤ δ, so the entire line
segment P [ie − 1, sc] lies within distance δ of Q(tc). Similarly, the line segment P [sf , ie] lies within
distance δ of Q(tf ). Our correspondence has cost at most δ.

Now, consider any point Q(t′) with tc∗ ≤ t′ ≤ tc and let s′ be matched to t′ by (σ, θ). We
have d(P (s′), Q(t′)) ≤ δ. We argued that line segment P [ie − 1, sc] is within distance δ of Q(tc),
implying d(P (s′), Q(tc)) ≤ δ. Finally, d(pie−1, Q(tc)) ≤ δ. By triangle inequality, d(pie−1, Q(t′)) ≤
3δ, implying Q(t′) lies in B. As explained above, every point of Q[t, t∗] lies in B. Also, every
point of Q[t∗, tc∗] lies within distance δ of a point in P [i, ie − 1] and therefore lies in or within
distance δ of B. And, we just showed every point of Q[tc∗, tc] lies in B. Our algorithm will
succeed at all its distance checks and recursively call GreedyMappingP(ie, tf ). Finally, a similar
triangle inequality argument implies every point of Q[tf , t∗f ] is at most distance 3δ from pie . We
are inductively guaranteed that (σ, θ) passes through an approximate reachability interval output
during the recursive call. Similar arguments apply if GreedyMappingP(i, t) does a recursive call
GreedyMappingQ(je, sf ).

The proof for GreedyMappingQ(j, s) is the same as that given above, but with the roles of
P and Q exchanged. □

3.2 Remaining decision procedure details
We now fill in the remaining details of our approximate decision procedure. Recall, we have
computed a grid G with boxes of side length α · δ such that there are O(n/α) bad vertices of P
and Q. Also recall, p1, pm, q1, and qn are designated as bad regardless of their position in G’s
boxes. As described below, our decision procedure, iteratively in lexicographic order, checks each
cell of the free space diagram for which we may have computed an approximate reachablity interval
on its left or bottom side. We then extend the known approximately reachable space from each
non-empty interval in one of two ways. Depending on whether relevant edges are good or bad,
we either perform a call to the appropriate greedy mapping subroutine to seek out new intervals
that are approximately reachable but potentially far away in the free space diagram, or we directly
compute approximate reachability intervals on the right or top sides of the cell using the constant
time method of Alt and Godau [6].

Specifically, we first check if d(p1, q1) ≤ δ. If not, our procedure reports failure. Otherwise, let tb
and sb be the maximum values in [1, 2] such that d(p1, Q(tb)) ≤ δ and d(P (sb), q1) ≤ δ, respectively.



Approximating the (Continuous) Fréchet Distance 11

We designate intervals {1} × [1, tb] and [1, sb] × {1} as (approximately) reachable. Now, for each
i ∈ ⟨2, . . . ,m⟩ such that pi−1 is dangerous, for each j ∈ ⟨2, . . . , n⟩ such that qj−1 is dangerous, we
do the following.

Suppose we have designated an interval {i− 1}×[ta, tb] as approximately reachable where j−1 ≤
ta ≤ tb ≤ j. Suppose edge P [i− 1, i] is good. Then, we run the procedure GreedyMappingP(i−
1, ta). If edge P [i − 1, i] is bad, we compute new approximate reachability intervals more directly
as follows. First, let ta

′ be the minimum value in [ta, j] such that d(pi, Q(ta
′
)) ≤ δ, and let tb

′ be
the maximum value in [ta, j] such that d(pi, Q(tb

′
)) ≤ δ. We designate interval {i} × [ta

′
, tb

′
] as

approximately reachable (again, we may end up extending a previously computed approximately
reachability interval on {i} × [j − 1, j]). Similarly, let sa

′ be the minimum value in [i − 1, i] such
that d(P (sa

′
), qj) ≤ δ, and let sb′ be the maximum value in [i−1, i] such that d(P (sa

′
), qj) ≤ δ. We

designate interval [sa′ , sb′ ] × {j} as approximately reachable. We are done working with interval
{i− 1} × [ta, tb].

Now, suppose we have designated interval [sa, sb]×{j − 1} as approximately reachable where i−
1 ≤ sa ≤ sb ≤ i. Suppose edge Q[j−1, j] is good. If so, we run the procedure GreedyMappingQ(j−
1, sa). If edge Q[j−1, j] is bad, we compute new approximate reachability intervals more directly as
follows. First, let ta′ be the minimum value in [j−1, j] such that d(pi, Q(ta

′
)) ≤ δ, and let tb′ be the

maximum value in [j − 1, j] such that d(pi, Q(tb
′
)) ≤ δ. We designate interval {i} × [ta

′
, tb

′
] as ap-

proximately reachable. Similarly, let sa′ be the minimum value in [sa, i] such that d(P (sa
′
), qj) ≤ δ,

and let sb
′ be the maximum value in [sb, i] such that d(P (sa

′
), qj) ≤ δ. We designate interval

[sa
′
, sb

′
]× {j} as approximately reachable. We are done working with interval [sa, sb]× {j − 1}.

Once we have completed the iterations, we do one final step. We check if (m,n) lies on an
approximate reachability interval. If so, we report there is a Fréchet correspondence between P
and Q of cost O(α) · δ. Otherwise, we report failure.

The following lemmas establish the correctness and running time for our decision procedure.

Lemma 3.3. The approximate decision procedure creates approximate reachability intervals only
between bad edges of P or Q and dangerous vertices of Q or P , respectively.

Proof: Vertices p1 and q1 are bad, so the intervals we compute before beginning the for loops are
between bad edges and dangerous vertices. Now, consider working with some approximate reach-
ability interval {i− 1} × [ta, tb] with j − 1 ≤ ta ≤ tb ≤ j. Inductively, we may assume Q[j − 1, j]
is bad, implying qj is dangerous. If P [i− 1, i] is good, then Lemma 3.1 guarantees we only create
approximate reachability intervals between bad edges and dangerous vertices. Otherwise, pi is dan-
gerous, and both approximate reachability intervals we directly create are for bad edge/dangerous
vertex pairs. A similar argument applies when working with some interval [sa, sb]× {j − 1}. □

Lemma 3.4. The approximate decision procedure is correct if it reports FD(P,Q) ≤ O(α) · δ.

Proof: Let (s′, t′) be any member of an approximate reachability interval created by the procedure.
We will show there exists a Fréchet correspondence between P [1, s′] and Q[1, t′] of cost O(α) · δ.
Setting (s′, t′) = (m,n) then proves the lemma. First, if (s′, t′) lies on either interval created
before the for loops begin, there is a trivial correspondence between P [1, s′] and Q[1, t′] of cost at
most δ that only uses one point of either P or Q. Now, consider working with some approximate
reachability interval {i− 1}× [ta, tb] with j − 1 ≤ ta ≤ tb ≤ j. Inductively, we may assume there is
a correspondence of cost O(α) · δ between P [1, i− 1] and Q[1, ta].

Suppose P [i − 1, i] is good, and we call GreedyMappingP(i − 1, ta). By Lemma 3.1, we can
extend our inductively guaranteed correspondence to one of cost O(α) ·δ ending at any point (s′, t′)
in any approximate reachability interval output by GreedyMappingP(i − 1, ta). Now, suppose



12 Connor Colombe and Kyle Fox

instead that P [i− 1, i] is bad. As in the proof of Lemma 3.1 or the original exact algorithm of Alt
and Godau [6], there is a Fréchet correspondence of cost at most δ between P [i− 1, s′] and Q[ta, t′]
for any (s′, t′) on the approximate reachability intervals we directly compute. Again, we can extend
the inductively guaranteed correspondence to end at any such (s′, t′). A similar argument applies
when working with some interval [sa, sb],×{j − 1}. □

Lemma 3.5. Suppose there exists a Fréchet correspondence (σ, θ) between P and Q of cost at
most δ. The approximate decision procedure will report FD(P,Q) ≤ O(α) · δ.

Proof: Suppose (σ, θ) matches a pair (i−1, t∗) on some approximate reachability interval {i− 1}×
[ta, tb]. Suppose P [i−1, i] is good. Every point of Q[ta, t∗] lies within distance δ of pi−1. Lemma 3.2
guarantees GreedyMappingP(i− 1, ta) will output at least one approximate reachability interval
which includes a matched pair of (σ, θ). We can easily verify that the interval must involve a later
vertex of P than pi−1.

Now, suppose instead that P [i − 1, i] is bad. The set of i − 1 ≤ s′ ≤ i such that FD(P [i −
1, s′], Q[t∗, j]) ≤ δ is precisely the approximate reachability interval [sa′ , sb′ ] × {j} we computed.
Similarly, the set of t∗ ≤ t′ ≤ j such that FD(P [i − 1, i], Q[t∗, t′]) ≤ δ is actually a suffix of the
approximate reachability interval {i} × [ta

′
, tb

′
] we computed.

Either way, we have (σ, θ) using an interval for a later vertex of P or Q. If the interval contains
(m,n), the decision procedure will report there exists a cheap correspondence. Otherwise, we may
assume it will report one inductively. Similar arguments apply if (σ, θ) includes a point on some
approximate reachability interval [sa, sb]× {j − 1}.

Finally, we observe that (σ, θ) does include a point on at least one approximate reachability
interval, because our procedure begins by computing two intervals that include (1, 1). □

Lemma 3.6. Procedures GreedyMappingP(i, t) and GreedyMappingQ(j, s) can be imple-
mented to run in O(n) time.

Proof: We use the notation given in the description of GreedyMappingP. Let m′ = m− i+ 1,
and let n′ be the number of vertices remaining in Q after Q(t). If se = m or te = n, then we spend
O(m′ + n′) time checking if a suffix of P and Q lies in or near box B. From here, assume neither
se = m nor te = n.

Suppose edge P [ie − 1, ie] is good. Let m′′ = ie − i ≥ 1, and let n′′ be the number of vertices
in Q[t, tf ]. We need to scan P and Q to find ie, tc, and tf . We also need to check if every point
of Q[t, tc] lies in or close to B. Doing these steps takes O(m′′ + n′′) time. We need to check if
FD(P [ie − 1, ie], Q[tc, tf ]) ≤ δ. The portion of P in this check consists of a single line segment, so
it can be done in O(n′′) time. Finally, we do a recursive call to GreedyMappingP(ie, tf ) that
inductively takes O(n′+m′−n′′−m′′) time. In total, we spend O(n′+m′) time. A similar argument
holds if P [ie − 1, ie] is bad but Q[je − 1, je] is good.

Finally, suppose both edges are bad. We spend O(n′ + m′) time total searching for se and
te, finding points from the other curve that lie close to se and te, and computing approximate
reachability intervals for each of these pairs of points. □

Lemma 3.7. The approximate decision procedure can be implemented to run in O(n3/α2) time.

Proof: Finding the grid G with the set of O(n/α) bad vertices takes O(n) time [15, Lemma 1].
There are at most twice as many bad edges as bad vertices, and at most twice as many dangerous
vertices as bad edges, so there are O(n/α) dangerous vertices. Therefore, the decision procedure
iterates over O(n2/α2) values of i and j. For each pair, we do at most two O(n) time calls to



Approximating the (Continuous) Fréchet Distance 13

GreedyMappingP or GreedyMappingQ, or we compute up to four approximate reachability
intervals directly in constant time each. □

Our decision procedure is easily extended to actually output a correspondence of cost O(α) · δ
instead of merely determining if one exists by concatenating the smaller correspondences we discover
directly during the iterations or during runs of GreedyMappingP and GreedyMappingQ as we
compute approximate reachability intervals. We are now able to state the main result of this
section.

Lemma 3.8. Let P and Q be two polygonal chains in Rd of at most n vertices each, let α ∈ [
√
n, n],

and let δ ≥ 0 be a parameter. We can compute a Fréchet correspondence between P and Q of cost
at most O(α) · δ or verify that FD(P,Q) > δ in O(n3/α2) time.

4 The Approximation Algorithm

We now describe how to turn our approximate decision procedure into an approximation algorithm
whose approximation ratio is arbitrarily close to that of the decision procedure. We emphasize
that our techniques use the decision procedure as a black box subroutine, so any improvement to
the running time of our approximate decision procedure will imply the same improvement to our
approximation algorithm. In short, we use our approximate decision procedure to binary search
over a set of O(n) distances approximating the distances between vertices of P and Q. If the
Fréchet distance lies in a large enough gap between a pair of these approximate distances, then
we can simplify both polygonal chains so that their edge lengths become large compared to their
Fréchet distance. We then run an exact Fréchet distance algorithm of Gudmundsson et al. [21]
designed for this case.

Let P : [1,m] → Rd and Q : [1, n] → Rd be two polygonal chains in d-dimensional Euclidean
space, and suppose we have an approximate decision procedure for the Fréchet distance between
two polygonal chains with approximation ratio α. We assume α is at most a polynomial function of
n (although it may be constant). Let T (n, α) denote the worst-case running time of the procedure
on two polygonal chains of at most n vertices each. We assume T (n, α) = Ω(n). Finally, consider
any 0 < ε ≤ 1. We describe how to compute an O((1 + ε)α)-approximation of FD(P,Q) in
O(T (n, α) log(n/ε)) time.

We begin by performing a binary search over a set Z of O(n) values close to all of the distances
between pairs of vertices in P and Q. Let V denote the set of vertex points in P and Q. Our
set Z is such that for any pair of distinct points o1, o2 ∈ V , there exist x, x′ ∈ Z such that
x ≤ d(o1, o2) ≤ x′ ≤ 2x. Such a set can be computed in O(n log n) time [18, Lemma 3.9]. To
perform the binary search, we simply search “down” if the approximate decision procedure finds
an α-approximate correspondence, and we search “up” if it does not. Let a and b be the largest
value of Z for which the procedure fails and the smallest value for which it succeeds, respectively.
If a does not exist, then we return the correspondence of cost α · b found for b. We are guaranteed
b exists, because the maximum distance between P and Q is achieved at a pair of vertices. From
here on, we assume a exists.

We check if the approximate decision procedure finds a correspondence when given parameter
δ := 12a/ε. If so, let Za denote the sequence of distances

⟨
(1 + ε)0 · a, (1 + ε)1 · a, . . . , (1 + ε)⌈12/ε⌉ · a

⟩
.

We binary search over Za and return the cheapest correspondence found.
Suppose no correspondence is found for 12a/ε. We check if the approximate decision procedure

finds a correspondence when given parameter δ := b/(2(1 + ε/2)(1 +
√
d)α). If not, let Zb denote



14 Connor Colombe and Kyle Fox

the sequence of distances
⟨
b/(1 + ε)0, b/(1 + ε)1, . . . , b/(1 + ε)⌈2(1+ε/2)(1+

√
d)α⌉

⟩
. We binary search

over Zb and return the cheapest correspondence found.
Finally, suppose no correspondence is found for 12a/ε but one is found for b/(2(1 + ε/2)(1 +√

d)α). We perform a 3a-simplification of P and Q, yielding the polygonal chains P̂ and Q̂ with
at most n vertices each. Gudmundsson et al. [21] describe an O(n log n) time algorithm that
computes the Fréchet distance of two polygonal chains exactly if all of their edges have length at
least (1 +

√
d) times their Fréchet distance. Their algorithm will succeed in finding an optimal

Fréchet correspondence between P̂ and Q̂. This correspondence can be modified to create one for
P and Q of cost at most (1 + ε)α · FD(P,Q) (see Driemel et al. [18, Lemmas 2.3 and 3.5]).

Lemma 4.1. The approximation algorithm finds a correspondence between P and Q of cost at
most (1 + ε)α · FD(P,Q).

Proof: Suppose value a as defined in the procedure does not exist. We find a correspondence of
cost at most α · b ≤ α · d(p1, q1) ≤ α · FD(P,Q). We assume from here on that a exists.

Suppose a binary search over Za or Zb is performed. There exist values a′ and b′ = (1 + ε)a′

such that the approximate decision procedure fails with a′ but succeeds at finding a correspondence
of cost at most α · b′. We have α · b′ = (1 + ε)α · a′ < (1 + ε)α · FD(P,Q).

Finally, suppose we perform binary searches over neither Za nor Zb. In this case, we observe
12a/ε < FD(P,Q) ≤ b/(2(1 + ε/2)(1 +

√
d)). Every distance between a pair of vertices in P or Q

is either at most 2a < (ε/6)FD(P,Q) or at least b/2 ≥ (1 +
√
d)(1 + ε/2)FD(P,Q). We observe

FD(P̂ , Q̂) ≤ FD(P,Q) + 6a < (1 + ε/2)FD(P,Q) [18, Lemma 2.3]. Polygonal chains P̂ and Q̂ have
no edges of length at most 2a, implying all edges have length at least (1+

√
d)(1+ ε/2)FD(P,Q) >

(1 +
√
d)FD(P̂ , Q̂). The conditions for the algorithm of Gudmundsson et al. [21] are met, and as

explained earlier, their algorithm will lead to the desired correspondence between P and Q. □

Lemma 4.2. The approximation algorithm can be implemented to run in O(T (n, α) log(n/ε))
time.

Proof: We spend O(n log n) time computing Z. We do O(log n) calls to the approximate decision
procedure binary searching over Z. Sequences Za and Zb contain O(log1+ε(1/ε)) = O((1/ε) log(1/ε))
and O(log1+ε α) = O((1/ε) log n) values, respectively. Therefore, binary searching over Za or Zb re-
quires O(log((1/ε) log(n/ε))) = O(log(n/ε)) calls to the approximate decision procedure. The case
where we have to simplify the polygonal chains and run the algorithm of Gudmundsson et al. [21]
requires only O(n log n) additional time. The lemma follows. □

We may now state the main result of this section.

Theorem 4.3. Suppose we have an α-approximate decision procedure for Fréchet distance that
runs in time T (n, α) on two polygonal chains in Rd of at most n vertices each. Let 0 < ε ≤ 1.
Given two such chains P and Q, we can find a Fréchet correspondence between P and Q of cost at
most (1 + ε)α · FD(P,Q) in O(T (n, α) log(n/ε)) time.

Combining Theorem 4.3 with Lemma 3.8 while setting ε := 1 gives us our main result.

Corollary 4.4. Let P and Q be two polygonal chains in Rd of at most n vertices each, and
let α ∈ [

√
n, n]. We can compute a Fréchet correspondence between P and Q of cost at most

O(α) · FD(P,Q) in O((n3/α2) log n) time.



Approximating the (Continuous) Fréchet Distance 15

5 Conclusion
We described the first strongly subquadratic time approximation algorithm for the continuous
Fréchet distance that has a subexponential approximation guarantee. Specifically, it computes an
O(α)-approximate Fréchet correspondence in O((n3/α2) log n) time for any α ∈ [

√
n, n]. We admit

that our result is not likely the best running time one can achieve and that it serves more as a first
major step toward stronger results. In particular, we are at a major disadvantage compared to the
O(n log n+ n2/α2) time algorithm of Chan and Rahmati [15] for discrete Fréchet distance in that
they rely on a constant time method for testing subsequences of points for equality and we know
of no analogous procedure for quickly testing (near) equality of subcurves. However, it may not be
the case that our own running time analysis is even tight; perhaps a more involved analysis applied
to a slight modification of our decision procedure could lead to a better running time. We leave
open further improvements such as the one described above.

Acknowledgements The authors would like to thank Karl Bringmann and Marvin Künnemann
for some helpful discussions concerning turning an approximate decision procedure into a proper
approximation algorithm.

References
[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In Proc. 56th Ann. IEEE Symp. Found. Comp.
Sci., pages 59–78, 2015.

[2] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: Or: a polylog shaved is a lower
bound made. In Proc. 48th Ann. ACM Sympos. Theory of Comput., pages 375–388, 2016.

[3] Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the
discrete Fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.

[4] Pankaj K. Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic time
warping and edit distance for a pair of point sequences. In Proc. 32nd Int. Conf. Comput.
Geom., pages 6:1–6:16, 2016.

[5] Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. Map Construction
Algorithms. Springer, 2015.

[6] Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Int. J. Comput. Geom. Appl., 5:75–91, 1995.

[7] Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a constant
factor. In Proc. 61st Ann. IEEE Symp. Found. Comput. Sci., 2020.

[8] Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In Proc. 14th Ann. Euro. Sympos. Algo., pages 52–63, 2006.

[9] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018.



16 Connor Colombe and Kyle Fox

[10] Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subqua-
dratic algorithms unless SETH fails. In Proc. 55th. Ann. IEEE Symp. Found. Comp. Sci.,
pages 661–670, 2014.

[11] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proc. 56th Ann. IEEE Symp. Found. Comp. Sci.,
pages 79–97, 2015.

[12] Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. Int. J. Comput. Geom. Appl., 27(1-2):85–
120, 2017.

[13] Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance. J.
Comput. Geom., 7(2):46–76, 2016.

[14] Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete Comput. Geom.,
58(1):180–216, 2017.

[15] Timothy M. Chan and Zahed Rahmati. An improved approximation algorithm for the discrete
Fréchet distance. Inf. Process. Lett., 138:72–74, 2018.

[16] Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approxi-
mate map matching with respect to the Fréchet distance. In Proc. 13th Meeting on Algorithm
Engineering and Experiments, pages 75–83, 2011.

[17] Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,
34(1):200–208, 1987.

[18] Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete Comput. Geom., 48(1):94–127, 2012.

[19] Kyle Fox and Xinyi Li. Approximating the geometric edit distance. In Proc. 30th Int. Symp.
Algo. Comput., pages 26:1–26:16, 2019.

[20] Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. ACM Trans. Algorithms, 14(4):50:1–50:17, 2018.

[21] Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk. Fast Fréchet
distance between curves with long edges. Int. J. Comput. Geom. Appl., 29(2):161–187, 2019.

[22] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comp. Sys.
Sci., 62(2):367–375, 2001.

[23] Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure-structure alignment with discrete
Fréchet distance. J. Bioinformatics and Computational Biology, 6(1):51–64, 2008.

[24] William Kuszmaul. Dynamic time warping in strongly subquadratic time: Algorithms for the
low-distance regime and approximate evaluation. In Proc. 46th Intern. Colloqu. Automata,
Languages, Programming, pages 80:1–80:15, 2019.

[25] Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. Assoc. Comput. Mach., 30(4):852–865, 1983.



Approximating the (Continuous) Fréchet Distance 17

[26] Majid Mirzanezhad. On the approximate nearest neighbor queries among curves under the
Fréchet distance. CoRR, abs/2004.08444, 2020. URL: https://arxiv.org/abs/2004.08444,
arXiv:2004.08444.

[27] E. Sriraghavendra, K. Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Proc. 9th Intern. Conf. Document Analysis
and Recognition, pages 461–465, 2007.

[28] Rex Ying, Jiangwei Pan, Kyle Fox, and Pankaj K. Agarwal. A simple efficient approximation
algorithm for dynamic time warping. In Proc. 24th ACM SIGSPATIAL Int. Conf. Adv. Geo.
Inf. Sys., 2016.

https://arxiv.org/abs/2004.08444
http://arxiv.org/abs/2004.08444

	Introduction
	Preliminaries
	Approximate Decision Procedure
	Greedy mapping subroutines
	Remaining decision procedure details

	The Approximation Algorithm
	Conclusion

