
Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions

KYLE FOX∗, The University of Texas at Dallas, USA

DEBMALYA PANIGRAHI†, Duke University, USA

FRED ZHANG, UC Berkeley, USA

On hypergraphs with𝑚 hyperedges and 𝑛 vertices, where 𝑝 denotes the total size of the hyperedges, we provide the following results:

• We give an algorithm that runs in 𝑂

(
𝑚𝑛2𝑘−2

)
time for finding a minimum 𝑘-cut in hypergraphs of arbitrary rank. This

algorithm betters the previous best running time for the minimum 𝑘-cut problem, for 𝑘 > 2.

• We give an algorithm that runs in 𝑂

(
𝑛max{𝑟,2𝑘−2}

)
time for finding a minimum 𝑘-cut in hypergraphs of constant rank 𝑟 .

This algorithm betters the previous best running times for both the minimum cut and minimum 𝑘-cut problems for dense

hypergraphs.

Both of our algorithms are Monte Carlo, i.e., they return a minimum 𝑘-cut (or minimum cut) with high probability. These algorithms

are obtained as instantiations of a generic branching randomized contraction technique on hypergraphs, which extends the celebrated

work of Karger and Stein on recursive contractions in graphs. Our techniques and results also extend to the problems of minimum

hedge-cut and minimum hedge-𝑘-cut on hedgegraphs, which generalize hypergraphs.

CCS Concepts: • Theory of computation → Network optimization; Graph algorithms analysis.

Additional Key Words and Phrases: hypergraph cut, minimum cut, hypergraph connectivity, 𝑘-cut

ACM Reference Format:
Kyle Fox, Debmalya Panigrahi, and Fred Zhang. 2021. Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions.

1, 1 (October 2021), 22 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

In this paper, we design a randomized branching framework for findingminimum cut andminimum𝑘-cut in hypergraphs,

leading to improvements in randomized algorithms for these problems over recent results of Ghaffari et al. [12] and

Chandrasekaran et al. [6]. Our algorithms can be thought of as the natural analog in hypergraphs of the celebrated

recursive contraction algorithm of Karger and Stein [20] for finding minimum cut and minimum 𝑘-cut in graphs.

∗
This work was supported in part by NSF grant CCF-1527084.

†
This work was supported in part by NSF grants CCF-1527084, CCF-1535972, and an NSF CAREER Award CCF-1750140.

Authors’ addresses: Kyle Fox, kyle.fox@utdallas.edu, The University of Texas at Dallas, Dallas, USA; Debmalya Panigrahi, debmalya@cs.duke.edu, Duke

University, Durham, USA; Fred Zhang, z0@berkeley.edu, UC Berkeley, Berkeley, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

2 Fox, Panigrahi and Zhang

1.1 Randomized contractions in graphs

Consider an undirected graph with𝑚 edges on 𝑛 vertices. Aminimum cut (or min-cut) of the graph is a minimum

weight set of edges whose removal partitions the vertices into two connected components. More generally, aminimum
𝒌-cut (or min-𝑘-cut) is a minimum weight set of edges whose removal partitions the vertices into at least 𝑘 connected

components; amin-cut is simply amin-𝑘-cut for𝑘 = 2. Min-cut andmin-𝑘-cut are fundamental problems in combinatorial

optimization and network reliability, and an impressive body of work has been devoted to designing algorithms for these

problems. Perhaps the simplest, and one of the most elegant, among them is the randomized contraction algorithm of

Karger [18]. For min-cut, this algorithm selects edges at random with probability proportional to their weight (uniformly,

if the graph is unweighted) and unifies their endpoints (called edge contraction) until only two vertices remain. The

edges that survive at this stage are then output by the algorithm. Karger argues that the algorithm returns a min-cut

with probability Ω
(
1/𝑛2

)
, which implies that a min-cut can be found with high probability by running 𝑂

(
𝑛2 log𝑛

)
independent instances of the algorithm.

1
For min-𝑘-cut, the algorithm is exactly identical, except that it terminates

when 𝑘 vertices are left, and outputs all the surviving edges. In this case, the probability of returning a min-cut is

Ω
(
1/𝑛2𝑘−2

)
, which can be similarly boosted by running 𝑂

(
𝑛2𝑘−2 log𝑛

)
independent instances of the algorithm.

Unfortunately, performing these independent runs can take Ω
(
𝑛4

)
time for the min-cut algorithm and Ω

(
𝑛2𝑘

)
time

for min-𝑘-cut, since the number of edges𝑚 can be Ω
(
𝑛2

)
. In a later work, Karger and Stein [20] proposed a branching

approach called recursive contraction to significantly speed up this scheme. This algorithm exploits the fact that the

probability of contracting a min-cut edge is rather small initially, and only increases in the later stages of the contraction

algorithm. So, they proposed to run a single branch of the contraction algorithm until ⌈𝑛/
√
2⌉ vertices remain, at which

stage two identical copies of the partially contracted graph are created and independent recursive runs of the branching

algorithm are performed on these copies. While it does take time to create and work with these extra copies, the total

number of edges in the graph decreases fast enough that the branching algorithm runs in 𝑂
(
𝑛2 log𝑛

)
time and returns

a min-cut with probability Ω(1/log𝑛). Using 𝑂
(
log

2 𝑛

)
independent runs, one can now obtain a total running time of

only 𝑂

(
𝑛2 log3 𝑛

)
. With slight modifications, this algorithm can instead return a min-𝑘-cut with high probability in

𝑂

(
𝑛2𝑘−2 log3 𝑛

)
time, and this min-𝑘-cut algorithm remains the fastest one known for any constant 𝑘 > 2 when the

edges have arbitrary weights.

1.2 Randomized contractions in hypergraphs

A hypergraph 𝐻 consists of a vertex set 𝑉 and a set of hyperedges 𝐸. Each hyperedge 𝑒 ∈ 𝐸 is itself an arbitrary

subset of vertices. The size of a hyperedge 𝑒 is |𝑒 |, the cardinality of its vertex set. The weight of a hyperedge 𝑒 is
denoted𝑤 (𝑒). For a subset of hyperedges 𝑆 , let𝑤 (𝑆) denote the total weight of hyperedges in the subset. The rank 𝑟 of

the hypergraph 𝐻 is the maximum size of a hyperedge, i.e., 𝑟 = max𝑒∈𝐸 |𝑒 |. A graph is simply a hypergraph of rank 2.

Accordingly, we may say a hyperedge 𝑒 is incident to a vertex 𝑣 if 𝑣 ∈ 𝑒 . We generally use the notation 𝑝 =
∑
𝑒∈𝐸 |𝑒 | to

denote the total size of all hyperedges in 𝐻 . Finally, we define the order of 𝐻 as the number of vertices |𝑉 |. As before,
a minimum cut (or min-cut) is a minimum weight set of hyperedges whose removal partitions the vertices into at

least two connected components, and a minimum 𝑘-cut (or min-𝑘-cut) is a minimum weight set of hyperedges whose

removal partitions the vertices into at least 𝑘 connected components.

1
We say an event occurs with high probability if it occurs with probability at least 1 − 1/𝑛Ω (1)

.

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 3

A natural approach for computing min-cuts and min-𝑘-cuts in hypergraphs is to try applying the (non-branching)

randomized contraction approach of Karger [18] described above. We let 𝐻/𝑒 denote the contraction of hyperedge 𝑒 in

hypergraph 𝐻 , accomplished by unifying 𝑒’s endpoints and removing hyperedges that now have size 1. Unfortunately,

even if hyperedges are unweighted, contracting a hyperedge chosen uniformly at random may destroy a min-cut with

fairly high probability when the hyperedges have variable sizes. Indeed, Kogan and Krauthgamer [24] show that this

natural strategy finds a min-cut with probability exponentially small in the rank 𝑟 . Recently, Ghaffari, Karger, and

Panigrahi [12] showed how to achieve Karger’s Ω
(
1/𝑛2

)
probability of success by biasing the selection of hyperedges

away from those of large size. Chandrasekaran, Xu, and Yu [6] refined this strategy and generalized it to work for 𝑘-cuts

as well. This leads to randomized algorithms for min-cut and min-𝑘-cut that run in 𝑂 (𝑝𝑛2 log2 𝑛) and 𝑂 (𝑝𝑛2𝑘−1 log𝑛)
time, respectively. This latter result was the first polynomial time algorithm for minimum 𝑘-cut in hypergraphs for

arbitrary constant 𝑘 , and it remains the fastest result to date. In particular, no polynomial time deterministic algorithm

is known for any 𝑘 > 3. In contrast, there are deterministic 𝑂
(
𝑝𝑛 + 𝑛2 log𝑛

)
time algorithms for the min-cut problem

in arbitrary hypergraphs [23, 25] and an 𝑂 (𝑝𝑚𝑛3) time algorithm for 𝑘 = 3 [32] using other techniques.

Hence, it is reasonable to ask whether we can generalize the branching contraction approach of Karger and Stein [20]

to hypergraphs as well, to yield faster randomized algorithms for the min-cut and min-𝑘-cut problems. There appear to

be two major barriers to doing so.

First, the analysis of Karger and Stein’s algorithm depends upon the branching occurring at precisely chosen moments

determined by the number of vertices in the partially contracted graph. If one branches too early, then there are too

many large graphs in the recursive calls, and the running time increases. If one branches too late, then it decreases

the probability of a min-cut surviving beyond the branching point and to the end of a run of the algorithm. When

attempting to run the branching algorithm on a hypergraph, there is a risk of contracting a very large hyperedge and

skipping right past one or more of these carefully selected branching points. Thus, it appears we cannot select the

branching orders in advance of our randomized contractions, and we need a smoother procedure that performs branches

based on which hyperedges we are contracting.

The second barrier to generalizing Karger and Stein’s algorithm concerns the total size 𝑝 of hyperedges in an arbitrary

hypergraph. While we can easily see 𝑝 = 𝑂 (𝑛𝑟) in hypergraphs of rank 𝑟 , the total size could be much larger when

the rank is not fixed. Any generalization of Karger and Stein’s algorithm to hypergraphs must be careful to minimize

the time spent interacting with hyperedges during contractions, especially in later stages of the algorithm when the

number of hypergraph copies is large.

1.3 Our results

We present a new randomized branching framework for hypergraphs, where instead of branching at fixed graph

orders, we probabilistically decide whether to branch before each contraction based on the size of the hyperedge we

(randomly) select to contract. Our framework allows us to derive new randomized algorithms for computing min-cuts

and min-𝑘-cuts in hypergraphs.

For hypergraphs of arbitrarily rank, we show the following result:

Theorem 1.1. There exists an algorithm that with high probability computes a minimum 𝑘-cut of a weighted hypergraph

with 𝑛 vertices and𝑚 hyperedges in 𝑂

(
𝑚𝑛2𝑘−2 log2 𝑛

)
time for all 𝑘 ≥ 3. For the special case of minimum cut (𝑘 = 2), our

algorithm runs in 𝑂

(
𝑚𝑛2 log3 𝑛

)
time.

Manuscript submitted to ACM

4 Fox, Panigrahi and Zhang

This result improves upon the best randomized running times for both problems due to Chandrasekaran et al. [6]

by a factor of Ω̃(𝑝𝑛/𝑚), which is at least Ω̃(𝑛) and at most 𝑂 (𝑛2).2 For 𝑘 > 2, this yields the fastest algorithm for the

min-𝑘-cut problem to date. (For 𝑘 = 2, i.e., the min-cut problem, the best running time is 𝑂 (𝑝𝑛 + 𝑛2 log𝑛) [23, 25] due
to deterministic algorithms. See Section 1.6 for more details).

Dense Hypergraphs. Since the number of hyperedges 𝑚 can be Ω(𝑛𝑟), the above result yields running times of

𝑂

(
𝑛𝑟+2 log3 𝑛

)
for min-cut and 𝑂

(
𝑛𝑟+2𝑘−2 log2 𝑛

)
for min-𝑘-cut (𝑘 ≥ 3) for dense hypergraphs of constant rank 𝑟 . We

improve on these results by the showing that for any constant rank 𝑟 :

Theorem 1.2. There exists an algorithm that with high probability computes a minimum 𝑘-cut of a weighted hypergraph

with𝑛 vertices, constant rank 𝑟 , and total hyperedge size𝑝 in𝑂

(
𝑝 + 𝑛2𝑘−2 log3 𝑛

)
time if 𝑟 = 2𝑘−2 or𝑂

(
𝑝 + 𝑛max{𝑟,2𝑘−2}

log
2 𝑛

)
time otherwise. For the special case of minimum cut (𝑘 = 2) with 𝑟 > 2, our algorithm runs in 𝑂

(
𝑝 + 𝑛𝑟 log2 𝑛

)
time.

For both minimum cut and minimum 𝑘-cut, these time bounds improve upon the best ones known for sufficiently

dense hypergraphs of rank 𝑟 > 2.

1.4 Extension to hedgegraphs

Along with studying randomized contractions for hypergraph min-cut, Ghaffari, Karger, and Panigrahi [12] also initiated

the study of minimum hedge-cuts. A hedgegraph 𝐻 = (𝑉 , 𝐸) consists of a collection of vertices 𝑉 and a collection

of disjoint hedges 𝐸, each of which is a subset of edges over the vertex set 𝑉 . A hedge-cut is a collection of hedges

whose removal separates 𝐻 into at least two components; a hedge-𝒌-cut is a hedge-cut that separates 𝐻 into at

least 𝑘 components. A min-hedge-cut or min-hedge-𝑘-cut is one of minimum total hedge weight. Ghaffari, Karger,

and Panigrahi [12] provide a randomized polynomial time approximation scheme and an exact quasi-polynomial

time algorithm for computing a min-hedge-cut. The span of a hedge is the number of connected components in the

subgraph induced by its edge set. The randomized contraction result of Chandrasekaran, Xu, and Yu [6] for hypergraph

𝑘-cut is actually a special case of a randomized algorithm they give for hedgegraphs, where every hedge has span

bounded by a constant 𝑠 . (Note that a hypergraph is simply a hedgegraph of unit span.) Their general algorithm runs in

𝑂

(
𝑚𝑝𝑛𝑘𝑠+𝑘−𝑠 log𝑛

)
time where𝑚 denotes the number of hedges and 𝑝 their total size.

Our results for computingmin-cuts andmin-𝑘-cuts in hypergraphs extend to hedgegraphs of bounded span.With high

probability, we can find a min-hedge-cut in 𝑂

(
𝑚2𝑛𝑠+1 log2 𝑛

)
time and a min-hedge-𝑘-cut in 𝑂

(
𝑚2𝑛 (𝑠+1) (𝑘−1) log2 𝑛

)
time, improving upon known results for all 𝑘 ≥ 2 and 𝑠 ≥ 2. Let the rank of a hedgegraph be the maximum number of

vertices incident to edges in any one hedge. For constant rank 𝑟 , we can find a min-hedge-𝑘-cut with high probability

in 𝑂

(
𝑝 + 𝑛 (𝑠+1) (𝑘−1) log3 𝑛

)
time if 𝑟 = (𝑠 + 1) (𝑘 − 1) or 𝑂

(
𝑝 + 𝑛max{𝑟,(𝑠+1) (𝑘−1) }

log
2 𝑛

)
time otherwise.

1.5 Techniques and organization

As mentioned above, our algorithm relies on probabilistic branching instead of branching at fixed graph orders like in

the original method of Karger and Stein [20]. Instead of explicitly biasing away from larger hyperedges like in previous

work [6, 12], we pick hyperedges to contract with probability proportional to their weight. Before contraction, however,

we branch with a probability that is dependent on the size of the hyperedge we just selected. These probabilities are

carefully selected so that the total probability of branching is at least as high as the probability of contracting an edge

in the min-cut. Intuitively, the expected number of min-cuts discovered by our algorithm at the bottom of its branches

2
We use𝑂 notation to hide polylog factors when they are either too onerous to write or the exact exponents on the polylog are unclear.

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 5

ends up being at least 1. Through a relatively straightforward inductive argument, we prove that any one run of our

algorithm returns a min-cut with probability at least Ω(1/log𝑛). In fact, the analysis of our algorithm is arguably

simpler than that given for Karger and Stein’s [20], and we give a probability bound that is actually tight for min-cut in

graphs. Our high level algorithm and the analysis bounding its probability of success appear in Section 2.

In order to give our specific running time bounds, we need to perform hyperedge contractions efficiently. We first

consider arbitrary rank hypergraphs. In earlier work [6, 12], the contraction of a hyperedge 𝑒 involved going through

the incidence list of each vertex in 𝑒 so that all the incidences could be replaced with a single vertex representing the

contracted edge 𝑒 . This process takes Θ(𝑚 · |𝑒 |) time in the worst case, so the running time of contraction increases with

|𝑒 |. Unfortunately, our algorithm is also more likely to branch when |𝑒 | is large, increasing our chances of performing

another expensive contraction in the future. Therefore, instead of spending Θ(𝑚 · |𝑒 |) time checking incidences, we

essentially make brand new copies of what remains of each edge after contraction in 𝑂 (𝑚(𝑛 − |𝑒 | + 1)) time so

contractions that are more likely to cause branching are also cheaper to perform. We describe the implementation for

arbitrary rank hypergraphs in Section 3.

For hypergraphs of constant rank 𝑟 , we only make copies of the hypergraph when branching, and we otherwise

perform contractions using a similar procedure as that given by Karger and Stein [20] for graphs. Specifically, we

explicitly merge new parallel hyperedges after every contraction to guarantee we never store more than 𝑂 (𝑛𝑟)
hyperedges at a time. We also generalize their edge selection procedure to select and contract a hyperedge in 𝑂

(
𝑛𝑟−1

)
time. Our implementation for constant rank hypergraphs appears in Section 4.

For hedgegraphs, randomly contracting a hedge incident to 𝑥 vertices induces a branch with the same probability as

contracting a hyperedge of size 𝑥 . The key difference increasing the running time for hedgegraphs is that we might

create more branches overall, because a hedgegraph only shrinks by 𝑥 − 𝑠 vertices if the contracted hedge has span 𝑠 .

Note that 𝑠 can be as large as 𝑥/2 in general, thus guaranteeing a reduction of only 𝑥/2 vertices, whereas shrinking a
hyperedge of size 𝑥 reduces the number of vertices by 𝑥 − 1. In addition, we need to maintain information about how

the components of hedges share vertices in order to perform fast hedge contractions, and maintaining this information

incurs additional running time. For simplicity, we stick to hypergraph min-cut and min-𝑘-cut in most of the paper

before giving the necessary details for our extensions to hedgegraphs in Section 5.

1.6 Related work

We give a brief survey of what is known about computing minimum cuts and 𝑘-cuts beyond the approaches of Karger

and Stein [18, 20]. Nagamochi and Ibaraki [27] gave the first min-cut algorithm for graphs that does not perform

repeated computations of minimum 𝑠, 𝑡-cuts. Their approach was later refined to give 𝑂
(
𝑚𝑛 + 𝑛2 log𝑛

)
deterministic

algorithms for the problem, and this running time remains the best known among deterministic algorithms [26, 29].

This running time can be improved to𝑂
(
𝑚 + _𝑛2

)
[26] in unweighted graphs with min-cut value _ and to𝑂 (𝑚 log

12 𝑛)
in simple unweighted graphs [22]. The randomized 𝑂

(
𝑛2 log3 𝑛

)
time algorithm of Karger and Stein [20] improves

upon the weighted edge result for graphs that are not too sparse. By applying other techniques, Karger [19] further

improved the best randomized running time to 𝑂

(
𝑚 log

3 𝑛

)
.

When 𝑘 is part of the input, the min-𝑘-cut problem is NP-hard [13]. However, Goldschmidt and Hochbaum [13] were

still able to give a deterministic 𝑛𝑂 (𝑘2)
time algorithm for the problem when 𝑘 is a constant. Their work was followed by

a series of deterministic algorithms [16, 17, 31] that led to an 𝑂

(
𝑛2𝑘

)
time algorithm due to Thorup [30]. In concurrent

work to our own, Chekuri, Quanrud, and Xu [8] improved this running time to𝑂

(
𝑚𝑛2𝑘−3

)
. This was further improved

Manuscript submitted to ACM

6 Fox, Panigrahi and Zhang

to 𝑂

(
𝑘𝑂 (𝑘)𝑛 (2𝜔/3+𝑜 (1))𝑘

)
by a recent work of Gupta, Lee and Li [14], where 𝜔 is the matrix multiplication constant.

For small 𝑘 , the result also gives a faster randomized algorithm in time 𝑂

(
𝑘𝑂 (𝑘)𝑛𝑘+⌊(𝑘−2)/3⌋𝜔+1+((𝑘−2) mod 3)𝑊

)
,

where all weights are bounded by𝑊 . For unweighted graphs and 𝑘 ∈ [8, 𝑛𝑜 (1)], this improves upon the randomized

𝑂

(
𝑛2𝑘−2 log3 𝑛

)
time algorithm of Karger and Stein [20], while the latter still remains the state-of-the-art for weighted

graphs.

The situation in hypergraphs is a bit different. Queyranne [28] gave the first non-trivial algorithm for min-cut in

hypergraphs, and it was later improved by Klimmek and Wagner [23] and Mak and Wong [25] to run in𝑂 (𝑛𝑝 +𝑛2 log𝑛)
time. Chekuri and Xu [9] improved the running time for unweighted hypergraphs with min-cut value _ to 𝑂 (𝑝 + _𝑛2).
All of these algorithms are deterministic. In fact, all the randomized algorithms mentioned above are actually slower at

computing min-cuts than these deterministic algorithms, with the aforementioned exception of our 𝑂 (𝑝 + 𝑛𝑟) time

algorithm for sufficiently dense hypergraphs of constant rank.

For 𝑘 = 3, there exists a deterministic 𝑂
(
𝑝𝑚𝑛3

)
time min-𝑘-cut algorithm due to Xiao [32, Theorem 4.1]. Fukunaga

gave a deterministic 𝑂

(
𝑛𝑟𝑘+𝑂 (1)

)
time algorithm for any constant 𝑘 and constant rank 𝑟 via a hypertree packing

approach [11]. In these cases of 𝑘 > 2, we see the randomized algorithm of Chandrasekaran, Xu, and Yu [6] and our

own results do provide improvements over the deterministic algorithms, and the randomized approach is the only one

known to work with arbitrarily large hyperedges.

Based on the history above, it seems likely that randomized approaches will eventually lead to even faster algorithms

for both min-cut and min-𝑘-cut in hypergraphs. We believe our work is a natural and important step toward this end.

1.7 Subsequent work

Subsequent to the the conference publication of our work [10], the hypergraph minimum cut and related problems

were studied in [1–5, 7, 21]. Karger and Williamson [21] provided a streamlined analysis of our algorithm in the

case of graph minimum cut. Gupta, Lee and Li show that the Karger-Stein algorithm is optimal for graph 𝑘-cut [15].

Chandrasekaran and Chekuri [4] gave the first deterministic polynomial-time algorithm for hypergraph 𝑘-cut, for fixed

𝑘 . Their approach significantly differs from ours, as it is based on a divide-and-conquer procedure and does not rely on

(randomized) contractions. Beideman et. al. [1] provided a faster algorithm for hypergraph minimum cut on low-rank

simple hypergraphs. Beideman et. al. [2, 3] study counting and enumerating optimal hypergraph cuts. Chandrasekaran

and Chekuri [5] considered the problem of minmax hypergraph 𝑘-cut and gave a polynomial-time algorithm. Finally,

Chekuri and Quanrud [7] devised an 𝑂 (
√︁
𝑝𝑛(𝑚 + 𝑛)1.5) time algorithm for hypergraph min-cut.

2 BRANCHING CONTRACTIONS

In this section, we provide the high level details of our branching randomized contraction algorithm. Recall, a non-

branching algorithm that simply selects hyperedges to contract proportional to their weight will preserve a min-cut

with probability exponentially small in the rank of the given hypergraph [24]. Therefore, previous work biases edge

selection away from large hyperedges [6, 12].

For our branching contraction algorithm, though, we must also use the size of hyperedges to determine the number

of branches we create. The min-cut includes every hyperedge except 𝑒 . Because all the hyperedges have the same size

and nearly the same weight, any randomized contraction procedure will preserve the min-cut after one contraction

with probability only Θ(1/𝑛). Recall that the goal of branching contractions is to preserve the min-cut with probability

Θ(1/log𝑛); we clearly need Ω(𝑛/log𝑛) branches at the very outset of the algorithm. Contrast this with graphs, where

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 7

the algorithm branches much slower, creating two branches after 𝑛(1 − 1/
√
2) edge contractions. Since a hypergraph

comprises hyperedges of non-uniform size, the number of branches created therefore needs to vary with the size of the

hyperedge chosen for contraction.

Simultaneously biasing selection away from large hyperedges and deciding how often to branch based on the size of

selected hyperedges makes the analysis very complicated. Instead, we encode the bias against large hyperedges into

the probability of branching or not. More concretely, our algorithm selects hyperedges to contract proportionally to

their weight just as in graphs [19, 20], but before contracting, it randomly decides to branch with the probability of

branching being a function of the selected hyperedge’s size. In other words, instead of biasing the hyperedge selected for

contraction away from large hyperedges, we branch with a higher probability if a large hyperedge is selected thereby

creating a copy of the uncontracted graph and effectively increasing the probability of preserving the min-cut.

Intuitively, a high probability of contracting leads to a large chance of destroying a min-cut. On the other hand,

a high probability of branching may give a large number of branches, resulting in prohibitive time complexity. Our

algorithm is designed to balance these two probabilities such that in expectation, one copy of the min-cut survives either

in the contracted graph or in the copy of the uncontracted graph we create by branching, and yet the total number of

branches can be well controlled.

We begin by determining the probability that a random hyperedge, selected with probability proportional to its

weight, belongs to a given min-cut or min-𝑘-cut. Recall, for a given hypergraph 𝐻 = (𝑉 , 𝐸) and set of hyperedges 𝑆 ⊆ 𝐸,

we use𝑤 (𝑆) to denote the total weight of 𝑆 . The following lemma is essentially a restating of one by Chandrasekaran,

Xu, and Yu [6, Lemma 3.1] for the case of hypergraph min-𝑘-cut.

Lemma 2.1. Let 𝐶 be a minimum 𝑘-cut in a hypergraph 𝐻 = (𝑉 , 𝐸). We have

𝑤 (𝐶)
𝑤 (𝐸) ≤ 1

𝑤 (𝐸)
∑︁
𝑒∈𝐸

𝑤 (𝑒) ©«
(𝑛
𝑘−1

)
−

(𝑛−|𝑒 |
𝑘−1

)(𝑛
𝑘−1

) ª®¬ .
Proof: Fix a subset 𝐴 = {𝑎1, . . . , 𝑎𝑘−1} of 𝑘 − 1 vertices. Subset 𝐴 induces a 𝑘-cut 𝐶 ′ = ({𝑎1}, . . . , {𝑎𝑘−1},𝑉 \ 𝐴) of
weight at least 𝑤 (𝐶). Each hyperedge 𝑒 ∈ 𝐸 that includes at least one member of 𝐴 contributes weight 𝑤 (𝑒) to 𝐶 ′

.

There are

(𝑛
𝑘−1

)
such subsets 𝐴 total, and each hyperedge 𝑒 contributes weight to the cuts of

(𝑛
𝑘−1

)
−

(𝑛−|𝑒 |
𝑘−1

)
of them,

so

∑
𝑒∈𝐸 𝑤 (𝑒)

((𝑛
𝑘−1

)
−

(𝑛−|𝑒 |
𝑘−1

))
≥

(𝑛
𝑘−1

)
𝑤 (𝐶). Multiplying both sides of the inequality by 1/

(
𝑤 (𝐸)

(𝑛
𝑘−1

))
proves the

lemma. □

Because the expression will arise often throughout the remainder of this paper, we define

𝑧𝑛 (𝑒) =
(𝑛
𝑘−1

)
−

(𝑛−|𝑒 |
𝑘−1

)(𝑛
𝑘−1

) for any hyperedge 𝑒 ∈ 𝐸.

We call 𝑧𝑛 (𝑒) the redo probability of contracting hyperedge 𝑒 in a hypergraph of order 𝑛. If our branching algorithm

randomly selects hyperedge 𝑒 for contraction, then it will branch with probability precisely 𝑧𝑛 (𝑒). Observe 𝑤 (𝐶)
𝑤 (𝐸) ≤

1

𝑤 (𝐸)
∑
𝑒∈𝐸 𝑤 (𝑒) · 𝑧𝑛 (𝑒). Therefore, as we select a hyperedge to contract proportionally to its weight, our algorithm

branches with the same probability that we contract a hyperedge in a min-cut or min-𝑘-cut.

Before giving the full details of our branching algorithm, as an aside, we reinterpret the algorithm of Chandrasekaran,

Xu, and Yu [6] in our framework. Suppose we select a hyperedge 𝑒 to contract proportional to its weight and, instead

of branching with probability 𝑧𝑛 (𝑒), we redo the random hyperedge selection with probability 𝑧𝑛 (𝑒). In other words,

if we branch, then we ignore the originally selected hyperedge 𝑒 and only pay attention to what happens in the new

Manuscript submitted to ACM

8 Fox, Panigrahi and Zhang

branch. In this case, the probability that we select a hyperedge 𝑒 and perform its contraction instead of branching

is proportional to 𝑤 (𝑒) · (1 − 𝑧𝑛 (𝑒)) =
𝑤 (𝑒) (𝑛−|𝑒 |𝑘−1)

(𝑛
𝑘−1)

, which is exactly proportional to the (non-uniform) probability of

contraction of hyperedge 𝑒 in the algorithm of Chandrasekaran, Xu, and Yu [6]. Indeed, this view gives a very short

analysis for their algorithm (see Appendix A).

2.1 Algorithm details

We now give the details for our branching contraction algorithm for min-𝑘-cut in a hypergraph 𝐻 = (𝑉 , 𝐸) of order 𝑛.
The algorithm for min-cut is the special case for 𝑘 = 2. As we show, a single run of our algorithm has (within constant

factors) the same probability of finding a min-𝑘-cut as in the branching algorithm of Karger and Stein [20] for graphs.

We say a hyperedge 𝑒 is 𝒌-spanning if it contains at least 𝑛−𝑘+2 vertices, implying it spans every 𝑘-cut. We maintain

a collection 𝑆 ⊆ 𝐸 of hyperedges that we believe belong to the min-𝑘-cut based on earlier randomized contractions.

Initially, every 𝑘-spanning hyperedge is added to 𝑆 . Then, we sample a random hyperedge 𝑒 with probability proportional

to its weight (or uniformly at random if the hypergraph is unweighted). We contract the hyperedge 𝑒 to create the

hypergraph 𝐻/𝑒 , and recursively call our algorithm on 𝐻/𝑒 . With probability 𝑧𝑛 (𝑒), we also branch, meaning we

recursively call our algorithm on the same hypergraph 𝐻 . If we branched, then we return the smaller of the cuts

returned for 𝐻/𝑒 and our second run on 𝐻 . Otherwise, we return the cut found for 𝐻/𝑒 . The algorithm is given in

pseudo-code below as the procedure BranchingContract(𝐻, 𝑆). It initially takes the empty set as its second parameter.

BranchingContract(𝐻, 𝑆) :
For each 𝑘-spanning hyperedge 𝑒 , add 𝑒 to 𝑆 and remove 𝑒 from 𝐻

If 𝐸 = ∅, return 𝑆

Select a hyperedge 𝑒 at random with probability proportional to 𝑤 (𝑒)
With probability 𝑧𝑛 (𝑒) ,

return the smaller of the cuts BranchingContract(𝐻/𝑒, 𝑆) and BranchingContract(𝐻, 𝑆)
Otherwise, return BranchingContract(𝐻/𝑒, 𝑆)

2.2 Computation tree.

Consider a single run of BranchingContract on a hypergraph 𝐻 . We define the computation tree of the run as

follows. The computation tree contains as a node the input hypergraph 𝐻 and each hypergraph created by a contraction

(including multiple nodes for identical hypergraphs created by separate branched contractions). It also contains a

special root node not associated with any particular hypergraph. The parent of hypergraph 𝐻 ′
is the hypergraph from

whose contraction 𝐻 ′
was created, and the parent of input hypergraph 𝐻 is the root node. Lastly, we remark that the

non-contracting branch does not create a new node.

A computation tree can be defined similarly for Karger and Stein’s [20] recursive contraction algorithm; here the

root node contains two children, one for each of the two independent runs on the input graph. However, while this

computation tree is deterministic in its structure and graph orders of its nodes, the structure and hypergraph orders of

our computation tree are themselves randomized. In particular, BranchingContract may not yield an isomorphic

computation tree to that of the algorithm of Karger and Stein when given a graph as input.

The following lemma bounds the number of hypergraphs of various orders in our computation tree and will prove

useful in the analysis of our implementations of BranchingContract. Let 𝑆 (𝑛, 𝑛0) denote the maximum expected

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 9

number of nodes of order 𝑛0 created in a computation tree for some hypergraph 𝐻 of order 𝑛, where the maximum is

over all hypergraphs of order 𝑛.

Lemma 2.2. Fix integer 𝑛0 such that 𝑘 ≤ 𝑛0 ≤ 𝑛. We have

𝑆 (𝑛, 𝑛0) ≤
(𝑛
𝑘−1

) (𝑛−1
𝑘−1

)(𝑛0

𝑘−1
) (𝑛0−1

𝑘−1
) = 𝑂

((
𝑛

𝑛0

)
2𝑘−2)

.

On graphs, this bound is met with equality.

Proof: We will prove the lemma using induction on 𝑛. For 𝑛 = 𝑛0, we have 𝑆 (𝑛, 𝑛0) = 1, because only the root’s single

child node has order 𝑛. The lemma follows.

Now, suppose 𝑛 > 𝑛0. Fix a hypergraph𝐻 of order 𝑛. Let 𝐸 ′ ⊆ 𝐸 be the subset of hyperedges such that |𝑒 | ≤ 𝑛−𝑛0 +1.
Only contracting a hyperedge of 𝐸 ′ can lead to a node of order 𝑛0. Given that such a hyperedge is contracted, any

given 𝑒 ∈ 𝐸 ′ is chosen with probability
𝑤 (𝑒)
𝑤 (𝐸′) . And conditioned on 𝑒 being chosen, there will be in expectation at most

𝑆 (𝑛 − |𝑒 | + 1, 𝑛0) descendants of 𝐻 of order 𝑛0 formed by calling BranchingContract on 𝐻/𝑒 . Also, the algorithm will

branch with probability 𝑧𝑛 (𝑒) and that branch will create at most 𝑆 (𝑛, 𝑛0) additional descendants in expectation. Thus

𝑆 (𝑛, 𝑛0) ≤
1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) (𝑧𝑛 (𝑒) · 𝑆 (𝑛, 𝑛0) + 𝑆 (𝑛 − |𝑒 | + 1, 𝑛0)) .

Solving for 𝑆 (𝑛, 𝑛0), using the definition of 𝑧𝑛 (𝑒), and applying the inductive hypothesis, we find

𝑆 (𝑛, 𝑛0) ≤
1

1 − 1

𝑤 (𝐸′)
∑
𝑒∈𝐸′ 𝑤 (𝑒)𝑧𝑛 (𝑒)

· 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) 𝑆 (𝑛 − |𝑒 | + 1, 𝑛0)

=

(𝑛
𝑘−1

)
1

𝑤 (𝐸′)
∑
𝑒∈𝐸′ 𝑤 (𝑒)

(𝑛−|𝑒 |
𝑘−1

) · 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) 𝑆 (𝑛 − |𝑒 | + 1, 𝑛0)

≤
(𝑛
𝑘−1

)
1

𝑤 (𝐸′)
∑
𝑒∈𝐸′ 𝑤 (𝑒)

(𝑛−|𝑒 |
𝑘−1

) · 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) ©«
(𝑛−|𝑒 |+1

𝑘−1
) (𝑛−|𝑒 |

𝑘−1
)(𝑛0

𝑘−1
) (𝑛0−1

𝑘−1
) ª®¬ .

Finally, we observe

(𝑛−|𝑒 |+1
𝑘−1

)
≤

(𝑛−1
𝑘−1

)
and simplify to prove the lemma.

𝑆 (𝑛, 𝑛0) ≤
(𝑛
𝑘−1

)
1

𝑤 (𝐸′)
∑
𝑒∈𝐸′ 𝑤 (𝑒)

(𝑛−|𝑒 |
𝑘−1

) · 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) ©«
(𝑛−1
𝑘−1

) (𝑛−|𝑒 |
𝑘−1

)(𝑛0

𝑘−1
) (𝑛0−1

𝑘−1
) ª®¬ =

(𝑛
𝑘−1

) (𝑛−1
𝑘−1

)(𝑛0

𝑘−1
) (𝑛0−1

𝑘−1
) . □

2.3 Probability of success.

We now establish the probability of BranchingContract returning a min-𝑘-cut of hypergraph 𝐻 = (𝑉 , 𝐸). For any
integer 𝑡 ≥ 𝑘 , let

𝑧∗𝑡 =

(𝑡
𝑘−1

)
−

(𝑡−2
𝑘−1

)(𝑡
𝑘−1

) .

Theorem 2.3. Fix a constant integer 𝑘 ≥ 2. Algorithm BranchingContract returns a min-𝑘-cut with probability at

least

1∑𝑛
𝑡=𝑘

𝑧∗𝑡
= Ω

(
1

log𝑛

)
.

Manuscript submitted to ACM

10 Fox, Panigrahi and Zhang

To see that

∑𝑛
𝑡=𝑘

𝑧∗𝑡 = 𝑂 (log𝑛), notice that each term 𝑧∗𝑡 = Θ(1/𝑡), since the numerator is 𝑂

(
𝑡𝑘−2

)
whereas the

denominator is 𝑂

(
𝑡𝑘−1

)
. Now in order to prove the theorem, we need the following observation. In the proof of

Theorem 2.3, we only apply it with𝑤 = 1, but the general statement given below will be useful in the analysis of our

hedgegraph cut algorithm.

Observation 1. Fix integers 𝑘 , 𝑛,𝑤 , and 𝑥 such that 2 ≤ 𝑘 ≤ 𝑛 − 1, 2 ≤ 𝑥 ≤ 𝑛 − 𝑘 + 2, and 1 ≤ 𝑤 ≤ 𝑥 − 1. We have(𝑛
𝑘−1

)
−

(𝑛−𝑥
𝑘−1

)(𝑛
𝑘−1

) ≤
(
𝑥 − 1

𝑥 −𝑤

) 𝑛∑︁
𝑡=𝑛−𝑥+𝑤+1

𝑧∗𝑡

with equality holding when𝑤 = 1 and 𝑥 = 2.

Proof (of Observation 1): We express the left hand side as a telescoping sum and increase the numerators in its terms.(𝑛
𝑘−1

)
−

(𝑛−𝑥
𝑘−1

)(𝑛
𝑘−1

) =

(𝑛
𝑘−1

)
−

(𝑛−2
𝑘−1

)(𝑛
𝑘−1

) +
𝑛−1∑︁

𝑡=𝑛−𝑥+2

(𝑡−1
𝑘−1

)
−

(𝑡−2
𝑘−1

)(𝑛
𝑘−1

)
≤

(𝑛
𝑘−1

)
−

(𝑛−2
𝑘−1

)(𝑛
𝑘−1

) +
𝑛−1∑︁

𝑡=𝑛−𝑥+2

(𝑡
𝑘−1

)
−

(𝑡−2
𝑘−1

)(𝑛
𝑘−1

)
=

𝑛∑︁
𝑡=𝑛−𝑥+2

(𝑡
𝑘−1

)
−

(𝑡−2
𝑘−1

)(𝑛
𝑘−1

) .

Now, observe that

(𝑡
𝑘−1

)
−

(𝑡−2
𝑘−1

)
is increasing in 𝑡 . We replace the smaller terms of the summation with a multiple of

the larger terms. More precisely, if the𝑤 − 1 smallest ones among the 𝑥 − 1 terms are taken out, the summation is left

with 𝑥 −𝑤 terms. Since they are larger than the𝑤 − 1 small terms, multiplying them by a factor of (𝑥 − 1)/(𝑥 −𝑤)
suffices to maintain the inequality. Finally, we reduce the denominators to finish the proof.(𝑛

𝑘−1
)
−

(𝑛−𝑥
𝑘−1

)(𝑛
𝑘−1

) ≤
(
𝑥 − 1

𝑥 −𝑤

) 𝑛∑︁
𝑡=𝑛−𝑥+𝑤+1

(𝑡
𝑘−1

)
−

(𝑡−2
𝑘−1

)(𝑛
𝑘−1

)
≤

(
𝑥 − 1

𝑥 −𝑤

) 𝑛∑︁
𝑡=𝑛−𝑥+𝑤+1

(𝑡
𝑘−1

)
−

(𝑡−2
𝑘−1

)(𝑡
𝑘−1

)
=

(
𝑥 − 1

𝑥 −𝑤

) 𝑛∑︁
𝑡=𝑛−𝑥+𝑤+1

𝑧∗𝑡 . □

We are now ready to prove Theorem 2.3.

Proof (of Theorem 2.3): For any 𝑛-vertex hypergraphs 𝐻 , let 𝑍𝐻 be a indicator random variable on whether Branch-

ingContract returns a min-𝑘-cut. Let 𝑞𝑛 = min𝐻 Pr(𝑍𝐻 = 1) denote the minimum probability over all 𝑛-vertex

hypergraphs of BranchingContract returning a min-𝑘-cut. We will use induction over 𝑛 to prove that 𝑞𝑛 ≥ 1∑𝑛
𝑡=𝑘

𝑧∗𝑡
.

For the base case, 𝑞𝑘 = 1 = 1/((𝑘 − 0)/𝑘).
We now establish a recurrence for 𝑞𝑛 . Fix the hypergraph 𝐻 = (𝑉 , 𝐸), where 𝐻 ∈ argmin𝐻 Pr(𝑍𝐻 = 1), and a

min-𝑘-cut 𝐶 in 𝐻 . The algorithm is correct to add all 𝑘-spanning hyperedges to 𝑆 and eventually return them, because

every 𝑘-spanning hyperedge crosses every 𝑘-cut. For simplicity, we assume 𝐸 has no 𝑘-spanning hyperedges from here

on. We further assume a min-𝑘-cut is returned for 𝐻 with probability at most
1∑𝑛

𝑡=𝑘
𝑧∗𝑡
. If this assumption does not hold,

then the theorem is already true for hypergraph 𝐻 .

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 11

Recall that when our algorithm selects a hyperedge 𝑒 to contract, it also branches with probability exactly 𝑧𝑛 (𝑒).
The edge to contract is chosen with probability proportional to its weight, so the probability of branching is exactly

1

𝑤 (𝐸)
∑
𝑒∈𝐸 𝑤 (𝑒) · 𝑧𝑛 (𝑒). Conditioned on the branch being performed, the branched call to BranchingContract(𝐻, 𝑆)

will then succeed in finding a min-𝑘-cut with probability at least 𝑞𝑛 . Taken together, we see with probability at

least

(
1

𝑤 (𝐸)
∑
𝑒∈𝐸 𝑤 (𝑒) · 𝑧𝑛 (𝑒)

)
𝑞𝑛, the algorithm BranchingContract(𝐻, 𝑆) branches and then finds a min-𝑘-cut

during the recursive call to BranchingContract(𝐻, 𝑆). Let 𝐸 ′ ⊆ (𝐸 \ 𝐶) be the subset of hyperedges that do

not belong to some min-𝑘-cut. By Lemma 2.1, there is at least a

(
1 −

(
1

𝑤 (𝐸)
∑
𝑒∈𝐸 𝑤 (𝑒) · 𝑧𝑛 (𝑒)

))
probability that the

selected hyperedge belongs to 𝐸 ′, implying at least one min-𝑘-cut exists in 𝐻/𝑒 . Conditioned on the event, there

is a 𝑤 (𝑒)/𝑤 (𝐸 ′) probability of any particular hyperedge 𝑒 ∈ 𝐸 ′ being chosen. Finally, given that 𝑒 ∈ 𝐸 ′ is chosen,

using our assumption that BranchingContract returns a min-𝑘-cut with probability at most
1∑𝑛

𝑡=𝑘
𝑧∗𝑡
, we have at

least a

(
1 − 𝑧𝑛 (𝑒)

(
1∑𝑛

𝑡=𝑘
𝑧∗𝑡

))
𝑞𝑛−|𝑒 |+1 probability that a min-𝑘-cut is returned by BranchingContract(𝐻/𝑒, 𝑆) but no

min-𝑘-cut is also returned during a branching call to BranchingContract(𝐻, 𝑆). Taking everything together, we see

𝑞𝑛 ≥
(

1

𝑤 (𝐸)
∑︁
𝑒∈𝐸

𝑤 (𝑒) · 𝑧𝑛 (𝑒)
)
𝑞𝑛+(

1 −
(

1

𝑤 (𝐸)
∑︁
𝑒∈𝐸

𝑤 (𝑒) · 𝑧𝑛 (𝑒)
))

1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(
1 − 𝑧𝑛 (𝑒)

(
1∑𝑛

𝑡=𝑘
𝑧∗𝑡

))
𝑞𝑛−|𝑒 |+1 .

Solving for 𝑞𝑛 and rearranging some terms, we see

𝑞𝑛 ≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(
1 − 𝑧𝑛 (𝑒)

(
1∑𝑛

𝑡=𝑘
𝑧∗𝑡

))
𝑞𝑛−|𝑒 |+1

≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ((
𝑛∑︁
𝑡=𝑘

𝑧∗𝑡

)
− 𝑧𝑛 (𝑒)

)
𝑞𝑛−|𝑒 |+1 .

For each 𝑒 ∈ 𝐸 ′, we use the definition of 𝑧𝑛 (𝑒) and apply Observation 1 with𝑤 = 1 and 𝑥 = |𝑒 |.

𝑞𝑛 ≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«
(
𝑛∑︁
𝑡=𝑘

𝑧∗𝑡

)
−

(𝑛
𝑘−1

)
−

(𝑛−|𝑒 |
𝑘−1

)(𝑛
𝑘−1

) ª®¬𝑞𝑛−|𝑒 |+1
≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«
(
𝑛∑︁
𝑡=𝑘

𝑧∗𝑡

)
− ©«

𝑛∑︁
𝑡=𝑛−|𝑒 |+2

𝑧∗𝑡
ª®¬ª®¬𝑞𝑛−|𝑒 |+1

=
1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«
𝑛−|𝑒 |+1∑︁
𝑡=𝑘

𝑧∗𝑡
ª®¬𝑞𝑛−|𝑒 |+1 .

Finally, we apply induction and simplify to finish the proof.

𝑞𝑛 ≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«
𝑛−|𝑒 |+1∑︁
𝑡=𝑘

𝑧∗𝑡
ª®¬ ©« 1∑𝑛−|𝑒 |+1

𝑡=𝑘
𝑧∗𝑡

ª®¬
≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1∑𝑛
𝑡=𝑘

𝑧∗𝑡

)
=

1∑𝑛
𝑡=𝑘

𝑧∗𝑡
. □

Manuscript submitted to ACM

12 Fox, Panigrahi and Zhang

Suppose 𝐻 is an unweighted cycle graph and 𝑘 = 2, and let 𝐶 be a minimum cut in 𝐻 . Assuming BranchingContract

breaks ties in 𝐶’s favor, it returns 𝐶 with exactly the probability given in Theorem 2.3.

So far, we have established that the branching randomized contraction algorithm for finding min-cuts and min-𝑘-cuts

has an Ω(1/log𝑛) probability of success when given a hypergraph of order 𝑛. In the next two sections, we give efficient

implementations of the algorithm for arbitrary and low rank hypergraphs. It would be natural to boost this probability of

success by repeated runs of the algorithm, but this process needs some care, because the running time of our algorithm

is also randomized and the length of individual runs can be correlated with the success of the algorithm. This is in

contrast with the algorithm of Karger and Stein [20] whose runtime is deterministic. In this case, they may simply

run Θ(log2 𝑛) independent copies of the branching contraction algorithm and returns the smallest cut found.

Our solution is the following. Suppose we implement our branching contraction algorithm to run in 𝑇 time in

expectation. We can find a minimum cut or 𝑘-cut with high probability in worst case 𝑂 (𝑇 log
2 𝑛) time by subtly

modifying Karger and Stein’s approach. We say that a batch is a set of 𝑐 log𝑛 runs of our algorithm for some sufficiently

large constant 𝑐 . We perform a batch of independent runs by doing the runs sequentially until either all 𝑐 log𝑛 runs are

complete or 4𝑐𝑇 log𝑛 units of time have passed. (For example, if the first run takes longer than 4𝑐𝑇 log𝑛 units of time,

then no other run in the batch is executed.) The result of the batch is nothing if the 4𝑐𝑇 log𝑛 time units have passed or

the smallest cut found otherwise. Our overall minimum cut or 𝑘-cut algorithm then returns the smallest cut found over

𝑐 ′ log𝑛 independent batches for some constant 𝑐 ′.

We now prove the following lemma.

Lemma 2.4. Let 𝐻 be a hypergraph of order 𝑛, and suppose BranchingContract is implemented to run in𝑇 time on 𝐻

in expectation. Then, there is an algorithm that runs in worst case 𝑂

(
𝑇 log

2 𝑛

)
time, and returns a min-𝑘-cut of 𝐻 with

high probability.

Proof: The running time bound follows immediately, so we concentrate on the probability bound. Consider a single

batch of runs, and suppose we let them all run to completion. The probability that all 𝑐 log𝑛 runs fail to find a min-𝑘-cut

is at most

1 −
(
1 − Ω

(
1

log𝑛

))𝑐 log𝑛
≤ 1/4

when 𝑐 is sufficiently large. By Markov’s inequality, our algorithm stops a batch for spending too much time with

probability at most 1/4. Therefore, by union bound, there is at most a 1/2 probability that our algorithm fails to return

a min-𝑘-cut during a single batch. Finally, 𝑐 ′ log𝑛 batches all fail to return a min-𝑘-cut with probability at most

1 − (1/2)𝑐
′
log𝑛 = 1 − 1/𝑛𝑐

′′
.

for some constant 𝑐 ′′. □

3 ALGORITHM FOR HYPERGRAPHS OF ARBITRARY RANK

Wenowpresent our𝑂

(
𝑚𝑛2𝑘−2

)
time algorithm for hypergraphs of arbitrary rank.We represent a hypergraph𝐻 = (𝑉 , 𝐸)

as a list of hyperedges as well as pointers between vertices and incident hypergedges.

To select a hyperedge for contraction, we keep an explicit list of every hyperedge in the hypergraph. We check their

weights and select a hyperedge proportional to its weight in 𝑂 (𝑚) time. Now, suppose we select a hyperedge 𝑒 for

contraction. Previous work [6, 12] and our own implementation for constant rank hypergraphs (Section 4) involves

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 13

finding all hyperedges sharing a vertex with 𝑒 and modifying those hyperedges to the newly contracted hypergraph.

When |𝑒 | is large, such a procedure is rather slow. Instead, we essentially create a new copy of the hypergraph during the

contraction. However, we ensure that we only spend time proportional to the total size of the contracted hypergraph.

We contract 𝑒 to create 𝐻/𝑒 = (𝑉 ′, 𝐸 ′) using the following procedure. We initially set 𝑉 ′
:= 𝑉 \ 𝑒 and 𝐸 ′ := 𝐸 \ {𝑒}

by creating copies of the individual vertices and hyperedges. However, we do not (yet) copy over the incidence lists

for the vertices and hyperedges. For each vertex 𝑣 ∈ 𝑉 ′
and for each hyperedge 𝑒 ′ ∈ 𝐸 ′ that is incident to 𝑣 in 𝐻 , we

add 𝑣 to the incidence list for the copy of 𝑒 ′ in 𝐻 \ 𝑒 and vice-versa. We remove any hyperedges 𝑒 ′ ∈ 𝐸 ′ that have no

incidences, because they will all have size 1 after contraction. Next, we add an additional vertex 𝑣𝑒 to 𝑉
′
representing

the contraction of 𝑒 . Any hyperedge 𝑒 ′ ∈ 𝐸 ′ that is incident to fewer vertices in 𝐻/𝑒 than in 𝐻 must have been incident

to a vertex of 𝑒 itself. Therefore, we add 𝑣𝑒 to the incidence lists of those hyperedges and vice-versa. We spend constant

time per hyperedge and incidence in 𝐻/𝑒 , so the entire procedure takes 𝑂 (𝑚(𝑛 − |𝑒 | + 1)) time.

One thing to note about the above procedure is that we make no modifications to 𝐻 itself. Therefore, we do not need

to spend any time copying 𝐻 when we decide to branch. We can discover 𝑘-spanning hyperedges as they are created

during contractions, so doing so adds no overhead to the running time. Our overall algorithm consists of running this

implementation of BranchingContract 𝑂

(
log

2 𝑛

)
times to boost the probability of success as in Lemma 2.4.

Given Lemma 2.2, it it straightforward to analyze our algorithm.

Lemma 3.1. The expected running time of BranchingContract using our implementation for arbitrary hyperedge

sizes is 𝑂
(
𝑚𝑛2 log𝑛

)
if 𝑘 = 2 or 𝑂

(
𝑚𝑛2𝑘−2

)
if 𝑘 ≥ 3.

Proof: The main bottleneck of the algorithm is the time taken to create recursive subproblems. It takes𝑂 (𝑚𝑛0) time to

do these operations to create a subproblem of order 𝑛0. By Lemma 2.2, the expected running time is therefore at most

𝑛∑︁
𝑛0=𝑘

𝑂

((
𝑛

𝑛0

)
2𝑘−2)

·𝑂 (𝑚𝑛0) = 𝑂 (𝑚𝑛2𝑘−2) ·
𝑛∑︁

𝑛0=𝑘

𝑂

(
1

𝑛2𝑘−3
0

)
.

If 𝑘 = 2, the summation comes to 𝑂 (log𝑛). Otherwise, it converges to a constant. □

We apply Lemma 2.4 and obtain our main result for hypergraphs of arbitrary rank.

Theorem 3.2 (Restatement of Theorem 1.1). There exists an algorithm that with high probability computes a mini-

mum 𝑘-cut of a weighted hypergraph with𝑛 vertices and𝑚 hyperedges in𝑂

(
𝑚𝑛2 log3 𝑛

)
time if 𝑘 = 2 or𝑂

(
𝑚𝑛2𝑘−2 log2 𝑛

)
time if 𝑘 ≥ 3.

4 ALGORITHM FOR LOW RANK HYPERGRAPHS

We now present our 𝑂 (𝑛𝑟) time algorithm for finding min-cuts and min-𝑘-cuts in hypergraphs of rank 𝑟 . Throughout,

we assume 𝑟 is a constant independent of 𝑛. We again represent the hypergraph 𝐻 = (𝑉 , 𝐸) as a list of hyperedges as
well as pointers between vertices and incident hyperedges. By merging parallel hyperedges, we can guarantee that our

representation takes 𝑂 (𝑛𝑟) space even as contractions are performed.

Our algorithm begins with an 𝑂 (𝑚 + 𝑛𝑟) time preprocessing step that removes duplicate hyperedges by sorting

hyperedges lexicographically and replacing identical hyperedges with a single hyperedge of their summed weight.

Overloading notation, let 𝐻 = (𝑉 , 𝐸) also denote the hypergraph after preprocessing.

After preprocessing, we run BranchingContract 𝑂

(
log

2 𝑛

)
times as in Lemma 2.4. When we need to branch, we

copy the entire hypergraph we are working with. Hyperedge selection and contraction is performed using the 𝑂 (𝑛𝑟−1)
Manuscript submitted to ACM

14 Fox, Panigrahi and Zhang

time procedure given in the next section, and we find 𝑘-spanning hyperedges as they are created during contractions

with no addition to the overall running time.

4.1 Edge selection and contraction.

Our algorithm needs to perform hyperedge selections and contractions in 𝑂
(
𝑛𝑟−1

)
time each. Similar to Karger and

Stein [20], we rely on some simple data structures to aid in our hyperedge selections instead of naively enumerating

all edges and randomly selecting from them. We store a value 𝐷 (𝑣) on each vertex 𝑣 which is equal to the sum of the

weights of all hyperedges of size exactly 𝑟 containing 𝑣 . We also maintain𝑤 (𝐸), the total sum of hyperedge weights.

To select a hyperedge for contraction, we enumerate all 𝑂
(
𝑛𝑟−1

)
hyperedges of size at most 𝑟 − 1. Let 𝑒1, . . . , 𝑒𝑡 be

this list of hyperedges. With probability ∑𝑡
𝑖=1𝑤 (𝑒𝑖)
𝑤 (𝐸) ,

we pick one of 𝑒1, . . . , 𝑒𝑡 with probability proportional to its weight. If we do not pick one of these hyperedges, we pick

a vertex 𝑣 with probability proportional to 𝐷 (𝑣), and then pick one of the 𝑂
(
𝑛𝑟−1

)
hyperedges of size 𝑟 containing 𝑣

with probability proportional to its weight. The running time of this procedure is dominated by the time it takes to

enumerate the hyperedges involved in a single probabilistic choice. There are at most 𝑂
(
𝑛𝑟−1

)
such edges in each case.

Lemma 4.1. The above procedure picks a hyperedge of 𝐻 with probability proportional to its weight.

Proof: The probability that the procedure picks a fixed hyperedge 𝑒𝑖 of size at most 𝑟 − 1 is exactly∑𝑡
𝑖=1𝑤 (𝑒𝑖)
𝑤 (𝐸) · 𝑤 (𝑒𝑖)∑𝑡

𝑖=1𝑤 (𝑒𝑖)
=
𝑤 (𝑒𝑖)
𝑤 (𝐸) .

Now let 𝑒 = {𝑣1, . . . , 𝑣𝑟 } be a hyperedge of size 𝑟 . The probability of picking hyperedge 𝑒 is

𝑤 (𝐸) − ∑𝑡
𝑖=1𝑤 (𝑒𝑖)

𝑤 (𝐸) ·
∑︁
𝑣∈𝑒

[
𝐷 (𝑣)∑

𝑣′∈𝑉 𝐷 (𝑣 ′) ·
𝑤 (𝑒)
𝐷 (𝑣)

]
=

1

𝑟

∑
𝑣′∈𝑉 𝐷 (𝑣 ′)
𝑤 (𝐸) · 1∑

𝑣′∈𝑉 𝐷 (𝑣 ′) ·
∑︁
𝑣∈𝑒

𝑤 (𝑒) = 𝑤 (𝑒)
𝑤 (𝐸) . □

We now turn to contractions. Suppose our algorithm needs to contract hyperedge 𝑒 =
{
𝑣1, . . . , 𝑣 |𝑒 |

}
. We will contract

𝑒 to one of its vertices, say, 𝑣1 ∈ 𝑒 . First, we list all 𝑂
(
𝑛𝑟−1

)
hyperedges that are incident to any vertex of 𝑒 . Then

remove members of 𝑒 − 𝑣1 from the hyperedges and add 𝑣1 to each hyperedge it does not already appear in. We remove

each hyperedge in the list that consists entirely of 𝑣1. Next, we sort the hyperedges of the list as before, and combine

identical hyperedges of the list, summing their weights. Finally, we recompute 𝐷 (𝑣1) by summing the weights of all

remaining hyperedges in the list. The entire contraction procedure takes 𝑂
(
𝑛𝑟−1

)
time.

4.2 Running time analysis.

Now, we turn to analyzing our implementation of BranchingContract for hypergraphs of constant rank 𝑟 . As we

will see, the total time spent performing contractions is easily determined using the above discussion and Lemma 2.2’s

bound on the number of hypergraphs of different orders in the computation tree. The only other operation we have yet

to analyze is the time spent making copies of hypergraphs while branching. In particular, if there is a hypergraph 𝐻 ′
in

the computation tree with 𝑡 children, then we need to create 𝑡 − 1 copies of 𝐻 ′
.

Lemma 4.2. Suppose the computation tree contains a hypergraph 𝐻 ′
of order 𝑛0. Node 𝐻

′
has 1 +𝑂 (1/𝑛0) children in

expectation. In particular, we spend an expected 𝑂
(
𝑛𝑟−1

)
time creating copies of 𝐻 ′

.

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 15

Proof: Let 𝑡∗ be the expected number of children of node 𝐻 ′
. Because, |𝑒 | ≤ 𝑟 for any hyperedge 𝑒 in 𝐻 ′

, we branch

with probability at most

(𝑛
𝑘−1)−(𝑛−𝑟𝑘−1)
(𝑛
𝑘−1)

. Therefore, we can bound the total expected number of children for node 𝐻 ′
as a

decreasing geometric series:

𝑡∗ ≤
∞∑︁
𝑡=0

((𝑛
𝑘−1

)
−

(𝑛−𝑟
𝑘−1

)(𝑛
𝑘−1

))𝑡
=

1

1 − (𝑛
𝑘−1)−(𝑛−𝑟𝑘−1)
(𝑛
𝑘−1)

=

(𝑛
𝑘−1

)(𝑛−𝑟
𝑘−1

) = 1 +
(𝑛
𝑘−1

)
−

(𝑛−𝑟
𝑘−1

)(𝑛−𝑟
𝑘−1

) = 1 +𝑂
(
1

𝑛

)
.

The lemma now follows from the fact that 𝐻 ′
has total hyperedge size at most 𝑂 (𝑛𝑟). □

Lemma 4.3. The expected running time of BranchingContract using our implementation for constant rank 𝑟 is

𝑂

(
𝑛2𝑘−2 log𝑛

)
if 𝑟 = 2𝑘 − 2 or 𝑂

(
𝑛max{𝑟,2𝑘−2}

)
otherwise.

Proof: Fix any integer 𝑛0 such that 𝑘 ≤ 𝑛0 ≤ 𝑛, and let H𝑛0
denote the set of hypergraphs of order 𝑛0. Consider

an arbitrary hypergraph 𝐻 ′ ∈ H𝑛0
. An 𝑖th copy of 𝐻 ′

appears in the computation tree with some probability 𝑝𝐻 ′,𝑖 .

Conditioned on that copy appearing, we see from Lemma 4.2 that the expected time spent making copies of 𝐻 ′
and

performing contractions on 𝐻 ′
and its copies is 𝑂

(
𝑛𝑟−1
0

)
. Recall, 𝑆 (𝑛, 𝑛0) denotes the maximum expected number of

nodes of order 𝑛0 created in a computation tree for some hypergraph 𝐻 of order 𝑛. Lemma 2.2 implies the total expected

time spent making copies and doing contractions for nodes fromH𝑛0
is given by:∑︁

𝐻 ′∈H𝑛
0
,𝑖≥1

𝑝𝐻 ′,𝑖 ·𝑂
(
𝑛𝑟−1
0

)
≤ 𝑆 (𝑛, 𝑛0) ·𝑂

(
𝑛𝑟−1
0

)
≤ 𝑂

((
𝑛

𝑛0

)
2𝑘−2)

·𝑂
(
𝑛𝑟−1
0

)
= 𝑂

(
𝑛2𝑘−2

)
·𝑂

(
1

𝑛2𝑘−𝑟−1
0

)
.

We finish the proof by summing the above expression over all possible 𝑛0. If 𝑟 < 2𝑘 − 2, then 2𝑘 − 𝑟 − 1 ≥ 2, and

𝑛∑︁
𝑛0=𝑘

𝑂

(
𝑛2𝑘−2

)
·𝑂

(
1

𝑛2𝑘−𝑟−1
0

)
≤ 𝑂

(
𝑛2𝑘−2

) 𝑛∑︁
𝑛0=𝑘

1

𝑛2
0

= 𝑂

(
𝑛2𝑘−2

)
.

If 𝑟 = 2𝑘 − 2, then 2𝑘 − 𝑟 − 1 = 1, and

𝑛∑︁
𝑛0=𝑘

𝑂

(
𝑛2𝑘−2

)
·𝑂

(
1

𝑛2𝑘−𝑟−1
0

)
= 𝑂

(
𝑛2𝑘−2

) 𝑛∑︁
𝑛0=𝑘

1

𝑛0
= 𝑂

(
𝑛2𝑘−2 log𝑛

)
.

Finally, if 𝑟 > 2𝑘 − 2, then 𝑟 − 2𝑘 + 1 ≥ 0, and

𝑛∑︁
𝑛0=𝑘

𝑂

(
𝑛2𝑘−2

)
·𝑂

(
1

𝑛2𝑘−𝑟−1
0

)
= 𝑂

(
𝑛2𝑘−2

) 𝑛∑︁
𝑛0=𝑘

𝑛𝑟−2𝑘+1
0

= 𝑂
(
𝑛𝑟

)
. □

By applying our analysis for boosting the probability of success (Lemma 2.4), we obtain our main results for constant

rank hypergraphs.

Theorem 4.4 (Restatement of Theorem 1.2). There exists an algorithm that with high probability computes a

minimum 𝑘-cut of a weighted hypergraph with𝑛 vertices, constant rank 𝑟 , and total hyperedge size 𝑝 in𝑂

(
𝑝 + 𝑛2𝑘−2 log3 𝑛

)
time if 𝑟 = 2𝑘 − 2 or 𝑂

(
𝑝 + 𝑛max{𝑟,2𝑘−2}

log
2 𝑛

)
time otherwise.

Manuscript submitted to ACM

16 Fox, Panigrahi and Zhang

5 EXTENSION TO HEDGE GRAPHS

Let 𝐻 = (𝑉 , 𝐸) be a hedgegraph. To be consistent with Chandrasekaran, Xu, and Yu [6], we let 𝑠 (𝑒) denote the span of a

hedge 𝑒 ∈ 𝐸 and 𝑟 (𝑒) (for rank) denote the number of vertices incident to the edges in 𝑒 . Let 𝑠 be the span of 𝐻 , defined

as the maximum span over all hedges. Throughout this section, we assume that 𝑠 is a constant.

We modify the branching random contraction algorithm (BranchingContract) for hypergraphs to create a new

algorithm HedgeBranchingContract. We contract a hedge 𝑒 by unifying the vertices within each connected

component of 𝑒 separately and removing all hedges that then have no non-loop edges. Contracting a hedge 𝑒 reduces the

number of vertices from 𝑛 to 𝑛 − 𝑟 (𝑒) + 𝑠 (𝑒). Similar to before, we call hedge 𝑒 a 𝒌-spanning hedge if 𝑟 (𝑒) ≥ 𝑛 − 𝑘 + 2.

Unfortunately, the existence of hedges with span greater than 1 means we may have some 𝑘-spanning hedges that do

not cross any minimum 𝑘-cut. Fortunately, contracting any such hedge leaves a hedgegraph of constant size that can be

checked for minimum 𝑘-cuts by brute force. Similar to before, let

𝑧𝑛 (𝑒) =
(𝑛
𝑘−1

)
−

(𝑛−𝑟 (𝑒)
𝑘−1

)(𝑛
𝑘−1

) .

We now define HedgeBranchingContract. As before, the parameter 𝑆 is empty for the initial call.

HedgeBranchingContract(𝐻, 𝑆) :
If 𝑛 ≤ 𝑘 + 𝑠 − 1, compute a min-𝑘-cut𝐶 by brute force and return𝐶 ∪ 𝑆

For each 𝑘-spanning hedge 𝑒 with 𝑛 − 𝑟 (𝑒) + 𝑠 (𝑒) < 𝑘 , add 𝑒 to 𝑆 and remove 𝑒 from 𝐻

Let𝐶ℎ = 𝐸

For each 𝑘-spanning hedge 𝑒 , set𝐶ℎ to the smaller of𝐶ℎ and HedgeBranchingContract(𝐻/𝑒, 𝑆)
Add all 𝑘-spanning hedges 𝑒 to 𝑆 and remove them from 𝐻

Select a hedge 𝑒 at random with probability proportional to 𝑤 (𝑒)
With probability 𝑧𝑛 (𝑒) ,

return the smallest of the cuts HedgeBranchingContract(𝐻/𝑒, 𝑆) ,
HedgeBranchingContract(𝐻, 𝑆) , and𝐶ℎ

Otherwise, return the smaller of HedgeBranchingContract(𝐻/𝑒, 𝑆) and𝐶ℎ

We proceed by analyzing the success probability of the branching contraction algorithm. Again, for any integer 𝑡 ≥ 𝑘 ,

let

𝑧∗𝑡 =

(𝑡
𝑘−1

)
−

(𝑡−2
𝑘−1

)(𝑡
𝑘−1

) .

Theorem 5.1. Algorithm HedgeBranchingContract returns a minimum hedge-𝑘-cut of a (weighted) hedgegraph

with probability at least

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡
= Ω

(
1

log𝑛

)
.

Notice that this bound matches the one for hypergraphs (span-1 hedgegraphs) up to constant factors.

Proof: Let 𝑞𝑛 denote the minimum probability over all 𝑛-vertex hedgegraphs of HedgeBranchingContract returning

a fixed min-𝑘-cut. We use induction over 𝑛 to show 𝑞𝑛 ≥ 1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡
. For the base case, 𝑞𝑘 = 1 > 1/(2(𝑘 − 0)/𝑘).

If contracting a hedge leaves fewer than 𝑘 vertices, then it must belong to every 𝑘-cut and it is correct to include it in

𝑆 . We check every other 𝑘-spanning hedge 𝑒 to see if any one of them can be excluded from the min-𝑘-cut. Cut 𝐶ℎ is

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 17

the best of these checks. If 𝐶ℎ is not a min-𝑘-cut, then it is correct to include every hedge 𝑒 with 𝑟 (𝑒) ≥ 𝑛 − 𝑘 + 2 in the

cut returned by the algorithm. From here on, we assume there are no hedges 𝑒 with 𝑟 (𝑒) ≥ 𝑛 − 𝑘 + 2.

The probability of destroying a min-𝑘-cut with a single contraction remains the same (Lemma 2.1). However,

𝑛 − 𝑟 (𝑒) + 𝑠 (𝑒) vertices remain after contracting a hedge 𝑒 . Therefore, similar to the proof for hypergraphs, it now

remains to solve the following recurrence relation where 𝐸 ′ ⊆ 𝐸 is the subset of hedges that do not belong to some

min-𝑘-cut.

𝑞𝑛 ≥
(

1

𝑤 (𝐸)
∑︁
𝑒∈𝐸

𝑤 (𝑒) · 𝑧𝑛 (𝑒)
)
𝑞𝑛+(

1 −
(

1

𝑤 (𝐸)
∑︁
𝑒∈𝐸

𝑤 (𝑒) · 𝑧𝑛 (𝑒)
))

1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(
1 − 𝑧𝑛 (𝑒)

(
1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

))
𝑞𝑛−𝑟 (𝑒)+𝑠 (𝑒) .

Solving for 𝑞𝑛 and rearranging some terms, we see

𝑞𝑛 ≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(
1 − 𝑧𝑛 (𝑒)

(
1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

))
𝑞𝑛−𝑟 (𝑒)+𝑠 (𝑒)

=
1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ((
2

𝑛∑︁
𝑡=𝑘

𝑧∗𝑡

)
− 𝑧𝑛 (𝑒)

)
𝑞𝑛−𝑟 (𝑒)+𝑠 (𝑒) .

For each 𝑒 ∈ 𝐸 ′, we use the definition of 𝑧𝑛 (𝑒) and apply Observation 1 with𝑤 = 𝑠 (𝑒) and 𝑥 = 𝑟 (𝑒).

𝑞𝑛 ≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«
(
2

𝑛∑︁
𝑡=𝑘

𝑧∗𝑡

)
−

(𝑛
𝑘−1

)
−

(𝑛−𝑟 (𝑒)
𝑘−1

)(𝑛
𝑘−1

) ª®¬𝑞𝑛−𝑟 (𝑒)+𝑠 (𝑒)
≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«
(
2

𝑛∑︁
𝑡=𝑘

𝑧∗𝑡

)
− ©«

(
𝑟 (𝑒) − 1

𝑟 (𝑒) − 𝑠 (𝑒)

) 𝑛∑︁
𝑡=𝑛−𝑟 (𝑒)+𝑠 (𝑒)+1

𝑧∗𝑡
ª®¬ª®¬𝑞𝑛−𝑟 (𝑒)+𝑠 (𝑒) .

Observe that 𝑠 (𝑒) ≤ ⌊𝑟 (𝑒)/2⌋ for any hedge 𝑒 ∈ 𝐸 ′. We apply this observation, use induction, and simplify to finish

the proof.

𝑞𝑛 ≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«
(
2

𝑛∑︁
𝑡=𝑘

𝑧∗𝑡

)
− ©«2

𝑛∑︁
𝑡=𝑛−𝑟 (𝑒)+𝑠 (𝑒)+1

𝑧∗𝑡
ª®¬ª®¬𝑞𝑛−𝑟 (𝑒)+𝑠 (𝑒)

=
1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«2
𝑛−𝑟 (𝑒)+𝑠 (𝑒)∑︁

𝑡=𝑘

𝑧∗𝑡
ª®¬𝑞𝑛−𝑟 (𝑒)+𝑠 (𝑒)

≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

) ©«2
𝑛−𝑟 (𝑒)+𝑠 (𝑒)∑︁

𝑡=𝑘

𝑧∗𝑡
ª®¬ ©« 1

2

∑𝑛−𝑟 (𝑒)+𝑠 (𝑒)
𝑡=𝑘

𝑧∗𝑡

ª®¬
≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡

)
=

1

2

∑𝑛
𝑡=𝑘

𝑧∗𝑡
. □

We now bound the size of the computation tree for hedgegraphs. Let 𝑆 (𝑛, 𝑛0) denote the maximum expected number

of nodes of order 𝑛0 created in a computation tree for some hedgegraph 𝐻 of order 𝑛.

Manuscript submitted to ACM

18 Fox, Panigrahi and Zhang

Lemma 5.2. Fix an integer 𝑛0 such that 𝑘 ≤ 𝑛0 ≤ 𝑛. We have

𝑆 (𝑛, 𝑛0) ≤
(𝑛
𝑘−1

) (𝑛−1
𝑘−1

)
· · ·

(𝑛−𝑠
𝑘−1

)(𝑛0

𝑘−1
) (𝑛0−1

𝑘−1
)
· · ·

(𝑛0−𝑠
𝑘−1

) = 𝑂

((
𝑛

𝑛0

) (𝑠+1) (𝑘−1))
.

Proof: We will prove the lemma using induction on 𝑛. For 𝑛 = 𝑛0, we have 𝑆 (𝑛, 𝑛0) = 1, because only the root’s single

child node has order 𝑛.

As before, let 𝐸 ′ ⊆ 𝐸 be the subset of hedges that may be randomly contracted to leave at least 𝑛0 vertices. It now

remains to solve the following recurrence relation.

𝑆 (𝑛, 𝑛0) ≤
1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) (𝑧𝑛 (𝑒) · 𝑆 (𝑛, 𝑛0) + 𝑆 (𝑛 − 𝑟 (𝑒) + 𝑠 (𝑒), 𝑛0)) .

Solving for 𝑆 (𝑛, 𝑛0) and applying the inductive hypothesis, we find

𝑆 (𝑛, 𝑛0) ≤
(𝑛
𝑘−1

)
1

𝑤 (𝐸′)
∑
𝑒∈𝐸′ 𝑤 (𝑒)

(𝑛−𝑟 (𝑒)
𝑘−1

) · 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) 𝑆 (𝑛 − 𝑟 (𝑒) + 𝑠 (𝑒), 𝑛0)

≤
(𝑛
𝑘−1

)
1

𝑤 (𝐸′)
∑
𝑒∈𝐸′ 𝑤 (𝑒)

(𝑛−𝑟 (𝑒)
𝑘−1

) · 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) ©«
(𝑛−𝑟 (𝑒)+𝑠 (𝑒)

𝑘−1
) (𝑛−𝑟 (𝑒)+𝑠 (𝑒)−1

𝑘−1
)
· · ·

(𝑛−𝑟 (𝑒)+𝑠 (𝑒)−𝑠
𝑘−1

)(𝑛0

𝑘−1
) (𝑛0−1

𝑘−1
)
· · ·

(𝑛0−𝑠
𝑘−1

) ª®¬ .
Since 𝑟 (𝑒) ≥ 𝑠 (𝑒) + 1 and 𝑠 ≥ 𝑠 (𝑒) for all 𝑒 ∈ 𝐸,

𝑆 (𝑛, 𝑛0) ≤
(𝑛
𝑘−1

)
1

𝑤 (𝐸′)
∑
𝑒∈𝐸′ 𝑤 (𝑒)

(𝑛−𝑟 (𝑒)
𝑘−1

) · 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) ©«
(𝑛−1
𝑘−1

) (𝑛−2
𝑘−1

)
· · ·

(𝑛−𝑠
𝑘−1

)
·
(𝑛−𝑟 (𝑒)

𝑘−1
)(𝑛0

𝑘−1
) (𝑛0−1

𝑘−1
)
· · ·

(𝑛0−𝑠
𝑘−1

) ª®¬
=

(𝑛
𝑘−1

) (𝑛−1
𝑘−1

)
· · ·

(𝑛−𝑠
𝑘−1

)(𝑛0

𝑘−1
) (𝑛0−1

𝑘−1
)
· · ·

(𝑛0−𝑠
𝑘−1

) . □
We now discuss implementations of HedgeBranchingContract to get concrete running times. First, suppose

the rank of 𝐻 is arbitrary. We observe that for a subset of vertices 𝑆 ⊆ 𝑉 , contracting a hedge 𝑒 will destroy the cut

(𝑆,𝑉 \ 𝑆) if and only if at least one of 𝑒’s connected components contains vertices from both 𝑆 and 𝑉 \ 𝑆 . Therefore, we
do not worry about the specific edges included in 𝑒 and instead store 𝑒 as a collection of disjoint vertex subsets, similar

to a hyperedge. We assume there are pointers between vertices and these components and vice versa.

The key change from our implementation for hypergraphs is that we also store an 𝑠𝑚 × 𝑠𝑚 hedge component
adjacency matrix as well where an entry is 1 if the hedge components corresponding to its row and column share

a vertex and is 0 otherwise. The adjacency matrix will prove useful for helping us identify which vertices from a

contracted hedge 𝑒 belong to the other hedges.

We now describe how to contract a randomly selected hedge 𝑒 to form hedgegraph 𝐻 ′ = (𝑉 ′, 𝐸 ′) in 𝑂 (𝑚𝑛0 +𝑚2)
time, where 𝑛0 is the order of 𝐻

′
. Like in hypergraphs, we initially set 𝑉 ′

:= 𝑉 \ 𝑒 and 𝐸 ′ := 𝐸 \ {𝑒} by copying vertices

and hedges but not their incidence lists. For each vertex 𝑣 ∈ 𝑉 ′
and for each hedge 𝑒 ′ ∈ 𝐸 ′ that is incident to 𝑣 in

𝐻 , we add 𝑣 to the appropriate incidence list for the copy of 𝑒 ′ in 𝐻 ′
and vice versa. We now add additional vertices

𝑣𝑒,1, 𝑣𝑒,2, . . . , 𝑣𝑒,𝑥 where 𝑥 ≤ 𝑠 to represent the contraction of 𝑒’s 𝑥 components. We add an incidence between 𝑣𝑒,𝑖 and

the 𝑗th component of another hedge 𝑒 ′ if and only if the 𝑖th component of 𝑒 and the 𝑗th component of 𝑒 ′ shared a

vertex before contraction. We then go through each hedge to find components that share one of these contraction

vertices so as to merge the component’s incidence lists. There are at most 𝑠 members in common per list, so we can

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 19

do the merges in time linear in the total size of the lists. We remove any hedges from 𝐸 ′ that have a single incident

vertex. Finally, we go through each of the contracted vertices to see if there are any new adjacencies between hedge

components thanks to these vertices. We spend constant time per hedge-vertex incidence in 𝐻 ′
as well as 𝑂

(
𝑚2

)
time

checking for new hedge component adjacencies for 𝑂
(
𝑚𝑛0 +𝑚2

)
time total.

When contracting a 𝑘-spanning hedge, we immediately end up in the base case. Therefore, we do not bother to

recompute the hedge component adjacency matrix during these contractions, meaning we perform the contraction

and handle the base case in 𝑂 (𝑚) time. During any one call to HedgeBranchingContract, there are 𝑂 (𝑚) such
contractions and brute force minimum hedge-𝑘-cut computations, so we spend 𝑂 (𝑚2) time total performing them. In

total, we can charge𝑂
(
𝑚𝑛0 +𝑚2

)
time to each node of the computation tree, accounting for both the time to create that

node and the time spent doing checks for the 𝑘-spanning hedges. Summing over the expected number of hedgegraphs

of each order 𝑛0 (Lemma 5.2) for the running time, and applying our boosting procedure (Lemma 2.4), we get the

following theorem.

Theorem 5.3. There exists an algorithm that with high probability computes a minimum hedge-𝑘-cut of a weighted

hedgegraph with 𝑛 vertices,𝑚 hedges, and constant span 𝑠 ≥ 2 in 𝑂

(
𝑚2𝑛 (𝑠+1) (𝑘−1) log2 𝑛

)
time.

For hedgegraphs of constant rank 𝑟 , we need to modify HedgeBranchingContract so that its base case occurs

when there are at most 𝑘 +𝑟 − 2 vertices remaining. Doing so guarantees there are no 𝑘-spanning hedges to worry about,

even though the base case can still be handled in constant time. We no longer need the hedge component adjacency

matrix. Like our algorithm for hypergraphs, though, we do a prepossessing step of identify hedges with the same

induced graph, leading to a total hedgegraph size of 𝑂 (𝑛𝑟) (here, the big-Oh is hiding constants exponential in 𝑟).

Random selection and contraction of a hedge 𝑒 can still be done in 𝑂
(
𝑛𝑟−1

)
time, because we only need to modify the

𝑂
(
𝑛𝑟−1

)
hedges that share a vertex with 𝑒 . When branching, we still copy the entire hedgegraph in 𝑂 (𝑛𝑟) time, but in

expectation we spend 𝑂

(
𝑛𝑟−1
0

)
doing these copies for any node of order 𝑛0 in the computation tree (see Lemma 4.2).

We charge 𝑂

(
𝑛𝑟−1
0

)
to each computation tree node of order 𝑛0, sum over the expected number of nodes of each order

𝑛0, and apply our probability boosting procedure to get the following theorem.

Theorem 5.4. There exists an algorithm that with high probability computes a minimum hedge-𝑘-cut of a weighted

hedgegraph with 𝑛 vertices, constant rank 𝑟 , constant span 𝑠 , and total hedge size 𝑝 in 𝑂

(
𝑝 + 𝑛 (𝑠+1) (𝑘−1) log3 𝑛

)
time if

𝑟 = (𝑠 + 1) (𝑘 − 1) or 𝑂
(
𝑝 + 𝑛max{𝑟,(𝑠+1) (𝑘−1) }

log
2 𝑛

)
time otherwise.

REFERENCES
[1] Calvin Beideman, Karthekeyan Chandrasekaran, Sagnik Mukhopadhyay, and Danupon Nanongkai. Faster connectivity in low-rank hypergraphs via

expander decomposition. In International Conference on Integer Programming and Combinatorial Optimization (IPCO), pages 70–83, 2022.

[2] Calvin Beideman, Karthekeyan Chandrasekaran, and Weihang Wang. Counting and enumerating optimum cut sets for hypergraph k-partitioning

problems for fixed k. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,, volume 229, pages 16:1–16:18, 2022.

[3] Calvin Beideman, Karthekeyan Chandrasekaran, and Weihang Wang. Deterministic enumeration of all minimum k-cut-sets in hypergraphs for

fixed k. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2208–2228, 2022.

[4] Karthekeyan Chandrasekaran and Chandra Chekuri. Hypergraph 𝑘-cut for fixed 𝑘 in deterministic polynomial time. In 2020 IEEE 61st Annual

Symposium on Foundations of Computer Science (FOCS), pages 810–821. IEEE, 2020.

[5] Karthekeyan Chandrasekaran and Chandra Chekuri. Min-max partitioning of hypergraphs and symmetric submodular functions. In Proceedings of

the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1026–1038. SIAM, 2021.

[6] Karthekeyan Chandrasekaran, Chao Xu, and Xilin Yu. Hypergraph 𝑘-cut in randomized polynomial time. In Proc. 29th Ann. ACM-SIAM Symp. Disc.

Algo. (SODA), pages 1426–1438, 2018.

[7] Chandra Chekuri and Kent Quanrud. Isolating cuts,(bi-) submodularity, and faster algorithms for connectivity. In 48th International Colloquium on

Automata, Languages, and Programming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

Manuscript submitted to ACM

20 Fox, Panigrahi and Zhang

[8] Chandra Chekuri, Kent Quanrud, and Chao Xu. LP relaxation and tree packing for minimum k-cuts. In Proc. 2nd Annu. Symp. Simplicity Algo., 2019.

[9] Chandra Chekuri and Chao Xu. Computing minimum cuts in hypergraphs. In Proc. 28th Ann. ACM-SIAM Symp. Disc. Algo., 2017.

[10] Kyle Fox, Debmalya Panigrahi, and Fred Zhang. Minimum cut and minimum k-cut in hypergraphs via branching contractions. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 881–896, 2019.

[11] Takuro Fukunaga. Computing minimum multiway cuts in hypergraphs. Discrete Optimization, 10(4):371 – 382, 2013.

[12] Mohsen Ghaffari, David Karger, and Debmalya Panigrahi. Random contractions and sampling for hypergraph and hedge connectivity. In Proc. 28th

Ann. ACM-SIAM Symp. Disc. Algo. (SODA), 2017.

[13] Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut problem for fixed k. Mathematics of Operations Research,

19(1):24–37, 1994.

[14] Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for k-cut. In IEEE 59th Annual Symposium on Foundations of

Computer Science (FOCS), pages 113–123. IEEE, 2018.

[15] Anupam Gupta, Euiwoong Lee, and Jason Li. The karger-stein algorithm is optimal for k-cut. In Proceedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing (STOC), pages 473–484, 2020.

[16] Yoko Kamidoi, S Wakabayashi, and Noriyoshi Yoshida. A divide-and-conquer approach to the minimum k-way cut problem. Algorithmica,

32(2):262–276, 2002.

[17] Yoko Kamidoi, Noriyoshi Yoshida, and Hiroshi Nagamochi. A deterministic algorithm for finding all minimum k-way cuts. SIAM Journal on

Computing, 36(5):1329–1341, 2006.

[18] David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In Proceedings of the 4th Annual ACM/SIGACT-SIAM

Symposium on Discrete Algorithms (SODA), pages 21–30, 1993.

[19] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.

[20] David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601–640, 1996.

[21] David R Karger and David P Williamson. Recursive random contraction revisited. In Symposium on Simplicity in Algorithms (SOSA), pages 68–73,

2021.

[22] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic global minimum cut of a simple graph in near-linear time. In Proc. 47th Annu. ACM

Symp. Theory Comput. (STOC), pages 665–674, 2015.

[23] Regina Klimmek and Frank Wagner. A simple hypergraph min cut algorithm. Technical Report B 96-02, Bericht FU Berlin Fachbereich Mathematik

und Informatik, 1996.

[24] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proc. Conf. Inno. Theory. Comput. Sci. (ITCS), pages 367–376,

2015.

[25] Wai-Kei Mak and D. F. Wong. A fast hypergraph min-cut algorithm for circuit partitioning. Integr. VLSI J., 30(1):1–11, November 2000.

[26] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Disc. Math., 5(1):54–66,

1992.

[27] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph.

Algorithmica, 7(5&6):583–596, 1992.

[28] Maurice Queyranne. Minimizing symmetric submodular functions. Math. Program., 82:3–12, 1998.

[29] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591, 1997.

[30] Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Proceedings of the Fortieth Annual ACM Symposium on Theory of

Computing, STOC ’08, pages 159–166, New York, NY, USA, 2008. ACM.

[31] Mingyu Xiao. An improved divide-and-conquer algorithm for finding all minimum k-way cuts. In International Symposium on Algorithms and

Computation, pages 208–219. Springer, 2008.

[32] Mingyu Xiao. Finding minimum 3-way cuts in hypergraphs. Inf. Process. Lett., 110(14-15):554–558, July 2010.

Manuscript submitted to ACM

Minimum Cut and Minimum 𝑘-Cut in Hypergraphs via Branching Contractions 21

APPENDIX

A SIMPLE ANALYSIS FOR NON-BRANCHING ALGORITHMS

In this appendix, we present a simple non-branching randomized contraction algorithm for minimum 𝑘-cut based on

the idea of redoing hyperedge selections with a probability dependent on their size. As before, let

𝑧𝑛 (𝑒) =
(𝑛
𝑘−1

)
−

(𝑛−|𝑒 |
𝑘−1

)(𝑛
𝑘−1

) for any hyperedge 𝑒 ∈ 𝐸.

We say a hyperedge 𝑒 is 𝒌-spanning if it contains at least 𝑛 − 𝑘 + 2 vertices, implying it spans every 𝑘-cut.

We formally describe the algorithm SimpleContract below. Procedure SimpleContract initially takes the empty

set as its second parameter.

SimpleContract(𝐻, 𝑆) :
For each 𝑘-spanning hyperedge 𝑒 , add 𝑒 to 𝑆 and remove 𝑒 from 𝐻

If 𝐸 = ∅, return 𝑆

Repeat

Select a hyperedge 𝑒 at random proportional to its weight

With probability 1 − 𝑧𝑛 (𝑒) , return SimpleContract(𝐻/𝑒, 𝑆)
As mentioned in Section 2, this algorithm is almost the same as the one by Chandrasekaran, Xu, and Yu [6] when

specialized to hypergraphs. In fact, the probabilities of contracting any given hyperedge 𝑒 are identical. We can use our

interpretation of the algorithm to derive another proof that it returns a fixed min-𝑘-cut with decent probability.

Theorem A.1. Algorithm SimpleContract returns a fixed minimum 𝑘-cut of a (weighted) hypergraph with probability

at least
𝑘

(𝑛
𝑘−1) (𝑛−1𝑘−1)

= Ω
(
1/𝑛2𝑘−2

)
.

Proof: Let 𝑞𝑛 denote the minimum probability over all 𝑛-vertex hypergraphs of SimpleContract returning a fixed

min-𝑘-cut. We use induction over 𝑛 to show 𝑞𝑛 ≥ 𝑘

(𝑛
𝑘−1) (𝑛−1𝑘−1)

. For the base case, 𝑞𝑘 = 1 = 𝑘

(𝑘
𝑘−1) (𝑘−1𝑘−1)

. Fix hypergraph

𝐻 and minimum cut 𝐶 . All spanning hyperedges must belong to 𝐶 , so the algorithm is correct to add them to 𝑆 and

eventually return them. For simplicity, we assume from here on that 𝐸 and 𝐶 already have their 𝑘-spanning edges

removed.

With probability at least

(
1

𝑤 (𝐸)
∑
𝑒∈𝐸 𝑤 (𝑒) · 𝑧𝑛 (𝑒)

)
𝑞𝑛 , the algorithm SimpleContract(𝐻, 𝑆) randomly selects a

hyperedge 𝑒 for contraction, decides not to contract 𝑒 right away, and then finds a min-𝑘-cut afterward at some point in

the future. Let 𝐸 ′ = 𝐸 \𝐶 . By Lemma 2.1, there is at least a

(
1 −

(
1

𝑤 (𝐸)
∑
𝑒∈𝐸 𝑤 (𝑒) · 𝑧𝑛 (𝑒)

))
probability that the selected

hyperedge belongs to 𝐸 ′, implying𝐶 still exists in𝐻/𝑒 . Conditioned on that event, there is a 1

𝑤 (𝐸′)
∑
𝑒∈𝐸′ 𝑤 (𝑒) probability

of any particular hyperedge 𝑒 ∈ 𝐸 ′ being chosen. Finally, given that 𝑒 ∈ 𝐸 ′ is chosen, there is at least a (1 − 𝑧𝑛 (𝑒)) 𝑞𝑛−|𝑒 |+1
probability that SimpleContract does contract 𝑒 and𝐶 is returned by BranchingContract(𝐻/𝑒, 𝑆). Note that these
two ways of returning 𝐶 (redoing hyperedge selection and going ahead with the contraction) are mutually exclusive

events.

Taking everything together, we see

𝑞𝑛 ≥
(

1

𝑤 (𝐸)
∑︁
𝑒∈𝐸

𝑤 (𝑒) · 𝑧𝑛 (𝑒)
)
𝑞𝑛

+
(
1 − 1

𝑤 (𝐸)
∑︁
𝑒∈𝐸

𝑤 (𝑒) · 𝑧𝑛 (𝑒)
)

1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) · (1 − 𝑧𝑛 (𝑒)) · 𝑞𝑛−|𝑒 |+1

Manuscript submitted to ACM

22 Fox, Panigrahi and Zhang

Solving for 𝑞𝑛 , we see

𝑞𝑛 ≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) · (1 − 𝑧𝑛 (𝑒)) · 𝑞𝑛−|𝑒 |+1 .

We now apply induction, use the fact that |𝑒 | ≥ 2, and simplify.

𝑞𝑛 ≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) ©«
(𝑛−|𝑒 |
𝑘−1

)(𝑛
𝑘−1

) ª®¬ ©« 𝑘(𝑛−|𝑒 |+1
𝑘−1

) (𝑛−|𝑒 |
𝑘−1

) ª®¬
≥ 1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒) ©«
(𝑛−|𝑒 |
𝑘−1

)(𝑛
𝑘−1

) ª®¬ ©« 𝑘(𝑛−1
𝑘−1

) (𝑛−|𝑒 |
𝑘−1

) ª®¬
=

1

𝑤 (𝐸 ′)
∑︁
𝑒∈𝐸′

𝑤 (𝑒)
(

𝑘(𝑛
𝑘−1

) (𝑛−1
𝑘−1

))
=

𝑘(𝑛
𝑘−1

) (𝑛−1
𝑘−1

) .
□

Note that we can give a similarly short analysis for a non-branching algorithm for minimum hedge-𝑘-cuts. However,

the algorithm itself is necessarily more complicated due to the hedgegraph analogy of 𝑘-spanning hedges not necessarily

appearing in all hedge-𝑘-cuts. These issues are discussed in more detail in Section 5.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 Randomized contractions in graphs
	1.2 Randomized contractions in hypergraphs
	1.3 Our results
	1.4 Extension to hedgegraphs
	1.5 Techniques and organization
	1.6 Related work
	1.7 Subsequent work

	2 Branching contractions
	2.1 Algorithm details
	2.2 Computation tree.
	2.3 Probability of success.

	3 Algorithm for hypergraphs of arbitrary rank
	4 Algorithm for low rank hypergraphs
	4.1 Edge selection and contraction.
	4.2 Running time analysis.

	5 Extension to hedge graphs
	References
	A Simple analysis for non-branching algorithms

