
Trajectory Planning for an Articulated Probe?

Ka Yaw Teo†, Ovidiu Daescu, Kyle Fox

Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA.

Abstract

We consider a new trajectory planning problem involving a simple articulated
probe. The probe is modeled as two line segments ab and bc, with a joint
at the common point b, where bc is of fixed length r and ab is of arbitrarily
large length. Initially, ab and bc are collinear. Given a set of obstacles in
the form of n line segments and a target point t, the probe is to first be
inserted in straight line, followed possibly by a rotation of bc, so that in the
final configuration c coincides with t, all while avoiding intersections with
the obstacles. We prove that a feasible probe trajectory can be determined
in O(n2 log n) time using O(n log n) space (in fact, our algorithm finds a set
of “extremal” feasible configurations). We also show that, for any constant
δ > 0, a feasible probe trajectory with a clearance δ can be determined in
O(n2 log n) time using O(n2) space. Furthermore, we demonstrate that our
algorithms can be extended to the case of h polygonal obstacles, where we can
find a feasible solution in O(n2 + h2 log n) time using O(n log n) space when
there is no clearance requirement or O(n2) space otherwise. In the process
of describing the algorithms, we address and solve some other interesting
problems, such as circular sector emptiness queries and a special case of
circular arc ray shooting queries for line segments and circular arcs in the
plane.

Keywords: articulated probe trajectory, motion planning, circular sector
intersection, circular arc intersection, circular sector emptiness, clearance

?Preliminary versions of this work were presented at the 30th Annual Canadian Con-
ference on Computational Geometry [1] and the 28th Annual Fall Workshop on Compu-
tational Geometry [2].

†Corresponding author
Email addresses: ka.teo@utdallas.edu (Ka Yaw Teo),

ovidiu.daescu@utdallas.edu (Ovidiu Daescu), kyle.fox@utdallas.edu (Kyle Fox)

Preprint submitted to CGTA March 3, 2020

1. Introduction

Consider the following trajectory (or motion) planning problem. An ar-
ticulated needle-like probe is modeled in R2 as two line segments, ab and bc,
joined at point b. Line segment bc may rotate around point b. The length
of line segment ab can be arbitrary large, while line segment bc has a fixed
length r (e.g., unit length). A two-dimensional workspace is defined as the
region bounded by a circle S, which encloses a set P of n disjoint line segment
obstacles (see Figure 1). Let t be a given point in the free space (i.e., inside
S and outside P). Without loss of generality, let S be a circle centered at t.

Figure 1: Trajectory planning for an articulated probe. After a straight insertion of line
segment abc, in order to reach point t in the midst of obstacles, line segment bc may be
required to rotate from its intermediate position (dashed line) to the final position (solid
line).

In the beginning, the probe assumes a straight unarticulated configura-
tion; that is, line segments ab and bc are collinear, and point b lies between
points a and c. Starting from outside S, the unarticulated probe, represented
by straight line segment abc, may be inserted into S as long as no obstacle
is intersected by abc. After the insertion has completed, line segment bc may
be rotated around point b up to π/2 radians in either direction, provided
that line segment bc does not collide with any obstacle. If a rotation of
line segment bc is performed, then the probe is said to have an articulated
configuration. An intermediate configuration of the probe is defined as the

2

probe configuration after inserting straight line segment abc into S and before
rotating line segment bc.

A feasible probe trajectory consists of an initial insertion of straight line
segment abc, possibly followed by a rotation of line segment bc around point
b, such that point c ends at the target point t, while avoiding the obstacles
in the process of insertion and rotation.

The objective of the problem is to determine a feasible probe trajec-
tory, if one exists. As far as the authors are aware, no previous geometric-
combinatorial algorithm is known for this problem (except [1, 2]).

Since line segment bc may only rotate as far as π/2 radians in either
direction, it is easy to observe that, for any feasible probe trajectory, point b
is the first intersection between segment ab and a circle C of radius r centered
at point t. As illustrated in Figure 1, when line segment bc rotates around
point b, the area swept by line segment bc is a sector of a circle (i.e., a portion
of a disk enclosed by two radii and a circular arc) with its center located on
C, a radius r, and the endpoint of one of its bounding radii located at point
t. For conciseness, the center of the circle on which a circular sector is based
is referred to herein as the center of the circular sector.

Related work

The motion of a linkage – that is, a sequence of fixed-length edges con-
nected consecutively through joints – has been formerly studied from various
perspectives, ranging from basic properties and questions (e.g., reachability,
reconfiguration, and locked decision) with strong geometric and topological
aspects [3, 4] to application-driven robotic arm modeling and motion plan-
ning problems [5, 6].

The overall objective of a robotic motion planning problem is to determine
a plan specifying a sequence of actions to be taken by a robot, starting from
an initial state, in order to arrive at a desired final state without colliding into
obstacles. In the case of a rigid polygonal robot in a workspace populated
with polygonal obstacles, it is relatively practical to compute a feasible path
by using a combinatorial (i.e., complete) planning approach without resorting
to approximation [7, 8, 9]. However, inexact approaches based on sampling
[10, 11] and subdivision [12, 13, 14] have been commonly used to obtain
solutions for path finding problems involving complex robots with a high-
dimensional configuration space, which are typically challenging to solve in
a reasonable time by using exact geometric approaches in the continuous
domain.

3

A sampling-based algorithm, such as Probabilistic Roadmap (PRM) [10]
and Rapidly-Exploring Random Tree (RRT) [11], constructs a solution path
in the free space by randomly sampling the configuration space without ex-
plicitly computing the boundary of the configuration space obstacles. A
sampling-based planner may fail to find a feasible path even when one exists.
A sampling-based method has been shown at best, under certain assump-
tions, to be probabilistically complete – that is, the planner eventually finds
a solution path if one exists. In addition, sampling-based planners have been
known to be associated with two critical issues – i) the difficulty of finding
feasible paths through narrow passages in the free space [15, 16, 17], and ii)
the incapability of detecting the non-existence of any collision-free path [10].

On the other hand, a subdivision-based (or approximate cell decomposi-
tion) algorithm [12, 13, 14] divides the configuration space into cells using
an octree or a lattice, and classifies each cell as “full” if it lies entirely in
the configuration space obstacles, “empty” if it lies within the free space, or
“mixed” otherwise. The algorithm then performs a search to find a collision-
free path. Clearly, a subdivision-based method is resolution complete – that
is, the planner is complete only at the resolution of the chosen decomposition
(lattice).

These approximate methods are generally effective in solving a wide range
of motion planning problems, but not in planning manipulation tasks for
multi-link robots with multiple constraints. Spatial constraints on the links
or joints of a manipulator impose restrictions on its free configuration space,
and it remains challenging for approximate methods to find valid paths in
the sub-manifold describing the restricted free configuration space [18].

Our paper is concerned with finding a collision-free path of motion for
a two-bar linkage constrained to an ordered sequence of motions – namely,
a straight insertion (of the linkage) followed by a rotation (at the joint).
Furthermore, one of the links is considered to be unbounded in length. Thus,
the problem is different in structure from previous work. Given the problem,
as one shall see later, has such a rich geometric and combinatorial structure,
it is important to examine the problem in detail from a rigorous mathematical
point of view and explore its intrinsic structure for algorithmic improvements.
Heuristics and approximations may be necessary in practice; nevertheless, in
order to advance or take full advantage of their efficacy, the exact solution
and its limitations must be well understood.

4

Motivation

The problem setting described in the current study has practical relevance
in the field of robotics, particularly in minimally invasive robotic surgery [19],
where the plane of insertion for a surgical probe can be defined based on var-
ious medical imaging techniques. In minimally invasive surgical approaches,
a small incision is made, and the surgical operation is performed by using
specialized tools inserted through the incision.

Most conventional surgical devices are straight, rigid, or flexible. A simple
articulated probe such as one defined herein could be useful in minimally in-
vasive surgery for reaching previously unattainable targets by circumventing
critical structures, and for reaching multiple targets from a single insertion
site while minimizing healthy tissue damage.

Results and contributions

We at first describe an algorithm that finds a feasible probe trajectory in
O(n2 log n) time using O(n log n) space. In fact, our algorithm finds a set of
so-called “extremal” feasible probe configurations. In such a configuration,
one or two obstacle endpoints are tangent to the probe (see Figures 2 and 3,
and Lemma 2.1).

In addition, we address a more general version of the problem, which
asks for a feasible probe trajectory of a given clearance δ from the obstacles,
for any constant δ > 0 (a δ-clearance probe trajectory for short). A feasible
probe trajectory is claimed to have a clearance δ from the obstacles if and
only if every point of the trajectory is of at least distance δ from its nearest
obstacle. We propose an algorithm that finds a δ-clearance probe trajectory
in O(n2 log n) time using O(n2) space.

In the process of describing our solution, we solve some special cases of
a number of fundamental problems of theoretical interest in computational
geometry, such as circular sector intersection and circular sector emptiness
queries. In particular, we present a data structure of near-linear size with
logarithmic query time for solving a special instance of the circular arc in-
tersection query problem (i.e., for a query circular arc with a fixed radius r
and a fixed endpoint t).

Furthermore, we extend our algorithms for articulated probe trajectory
planning to the case of polygonal obstacles, where we exploit output sensitive
algorithms with respect to the number of polygons and the complexity of the
visibility (to infinity) from a given point. We show that a feasible probe
trajectory among h polygonal obstacles with a total of n vertices can be

5

determined in O(n2+h2 log h) time using O(n log n) space. When a clearance
δ from the obstacles is required, a feasible trajectory can be obtained in
O(n2 + h2 log h) time using O(n2) space.

The current paper is organized as follows. In Section 2, we show and
prove the existence of the so-called extremal feasible probe trajectories. In
Section 3, we present an algorithm for finding an extremal feasible probe tra-
jectory among obstacle line segments. Section 4 addresses the circular sector
intersection query problem involved in finding a feasible probe trajectory.
In Section 5, we extend the preceding algorithm by requiring to compute a
probe trajectory with a given clearance δ from the obstacle line segments.
In Section 6 and 7, we describe the extensions of the previous algorithms,
with and without the consideration of a clearance δ, for the case of polygonal
obstacles. We conclude in Section 8 by summarizing our results and stating
some remaining open problems.

2. Extremal feasible probe trajectories

Depending on how the obstacles are arranged, there may be an infinite
number of feasible probe trajectories. In the lemma below, we discuss how
any of these trajectories may be perturbed, while remaining feasible, into one
of a finite number of probe trajectories where one or two obstacle endpoints
lie tangent to the probe. We refer to these trajectories as extremal (see
Figures 2 and 3). It then suffices for our algorithm to test feasibility of only
the extremal trajectories; assuming a feasible probe trajectory exists at all,
our algorithm will find its perturbation.

Lemma 2.1. There exists a feasible probe trajectory such that the probe
assumes either I) an unarticulated final configuration (i.e., a straight line
segment abc with c = t) that passes through an obstacle endpoint, or II) an
articulated final configuration (i.e., line segments ab and bc are not collinear
and c = t) that passes through an obstacle endpoint outside C and another
obstacle endpoint inside or outside C.

Proof. The existence of feasible probe trajectories for cases I and II can be
proven using simple perturbation arguments.

For case I, suppose that a feasible probe trajectory T exists such that the
final pose of the probe is unarticulated and point c coincides with point t. In
other words, t has an unobstructed vision to some points on the bounding
circle S. Let T ′ be the trajectory resulting from rotating T around point t

6

Figure 2: Extremal feasible unarticulated probe trajectory with a final configuration that
is tangent to (at least) one obstacle endpoint.

in clockwise direction until T becomes tangent to an obstacle endpoint v. It
follows that T ′ is also a feasible trajectory, and its articulation point b′ is the
intersection of segment at and circle C.

For case II, assume that a feasible probe trajectory T exists such that
the final pose of the probe is articulated (i.e., line segments ab and bc are
not collinear) and point c coincides with point t (Figure 4). Suppose probe
trajectory T rotates segment bc clockwise around b to reach point t; the
other case uses symmetric arguments. Let T ′ be the trajectory resulting
from rotating line segment ab of T around point b in clockwise direction
until line segment ab intersects an obstacle endpoint v1 outside C. Given
that the area swept by line segment bc of T ′ (to reach t) is within that of T
(indicated by the shaded circular sectors in Figure 4), T ′ is also a feasible
trajectory.

Now, let T ′′ be the trajectory obtained by moving b counter-clockwise
along C while maintaining that v1 lies on ab. The movement stops when
either i) abt becomes a line segment (i.e., the final pose of the probe becomes
unarticulated, where ab and bc are collinear and c = t), ii) ab intersects an
obstacle endpoint that, immediately before the intersection, was to the left
or right of ab’s supporting line oriented from a to b, or iii) bt intersects some
obstacle endpoint that was to the right of bt’s supporting line oriented from
b to t. Let v2 denote this obstacle endpoint if either of the latter two cases
applies. Let b′′ be the new position of b after the movement stops. If abt
becomes a line segment, we have achieved case I of the lemma. We now

7

Figure 3: Extremal feasible articulated probe trajectory with a final configuration that is
tangent to (A) one obstacle endpoint inside C and another outside C, or (B) two obstacle
endpoints outside C.

assume otherwise.
Observe that every point of the circular sector centered at b′′ lies to the

side of the line through v1 and b that contains t. They also lie to the side
of the line through b′′ and t that contains b. Therefore, these points either
lie in the circular sector of radius r centered at t with arc endpoints at b
and b′′, or they lie in the wedge emanating from the circular sector centered
at b. We know that the sector centered at t is empty because it was swept
while constructing T ′′. We now argue that the remaining points of the sector
centered at b′′ not only lie in the wedge from b, but they actually lie in the
circular sector centered at b. Since T ′ is a feasible probe trajectory, the sector
at b and therefore the whole sector at b′′ is empty as well, and T ′′ is a feasible
probe trajectory.

Indeed, let x be a point of the sector centered at b′′ that lies in the wedge
at b. Let o be the intersection of the line segments bt and b′′x (Figure 5). By

8

Figure 4: Case II of Lemma 2.1. T ′′ represents a feasible articulated probe trajectory such
that the final configuration of the probe intersects an obstacle endpoint v1 outside C and
an obstacle endpoint v2 inside C.

Figure 5: Point x lies inside the circular sector centered at b.

the triangle inequality,

|bx| ≤ |bo|+ |ox|
= |bt| − |ot|+ |b′′x| − |b′′o|
≤ |bt|+ |b′′x| − |b′′t|
= |b′′x|
≤ r

If v2 is inside circle C, then point b′′ is the intersection between circle C and
a ray emanating from point t through v2. Otherwise, both v1 and v2 lie on
the line segment ab′′.

9

3. Finding extremal trajectories

Based on the observation stated in Lemma 2.1, the set of extremal feasible
probe trajectories can be obtained using the following approach. For the
purpose of analysis and clarity, the line segments of P are divided into those
lying inside C and those lying outside C. Since a line segment may intersect C
at most two times, a line segment may be partitioned by C into at most three
line segments. Let Pin (resp. Pout) be the set of line segments lying inside
(resp. outside) C. In addition, let V , Vin, and Vout denote the set of endpoints
of the line segments of P , Pin, and Pout, respectively. Let nin = |Vin| and
nout = |Vout|. We have nin + nout = O(n).

Case I. Feasible unarticulated probe trajectory

We compute the set R of O(n) rays, each of which originates at point t,
passes through a vertex of V , and does not intersect any line segment of P .
Each ray γ ∈ R represents a feasible unarticulated probe trajectory.

The problem of finding the set R of rays (as well as some others that
follow) can be reduced to the following radial visibility problem.

Problem 3.1. Given a fixed point t and a real number r, let S be a circle of
radius r centered at t. Given a set P of n obstacles of constant complexity
inside S, return the portion of S visible from t.

A simple algorithm for solving the radial visibility problem is described
next. At first, find the two tangent lines from t to each obstacle in O(n)
time. Assume that t is located at (0, 0), and let θ be the angle of any said
tangent line relative to the x-axis. Then, the pair of tangent lines to an
obstacle defines a (possibly empty) occluded θ-interval I = (θs, θf), within
which circle S is invisible from t due to the obstruction by the obstacle, where
0 ≤ θs ≤ θf < 2π. In order to ensure that all such occluded θ-intervals are
defined over the range [0, 2π), any θ-interval I = (θs, θf) that contains θ = 0
is divided into two corresponding θ-intervals (θs, 2π) and [0, θf).

The resulting O(n) occluded θ-intervals, possibly overlapping, can be
sorted by increasing value of θs in O(n log n) time, and can then be merged
in O(n) time to yield a set of non-overlapping occluded θ-intervals. The com-
plement of these occluded θ-intervals is the set of radial visibility intervals
that indicates the portion of S visible from t.

Lemma 3.1. Given a fixed point t and a real number r, let S be a circle of
radius r centered at t. Given a set P of n obstacles of constant complexity

10

inside S, the portion of S visible from t can be determined in O(n log n) time
using O(n) space.

The set R of rays is given by the endpoints of the radial visibility inter-
vals. Thus, based on Lemma 3.1, the total time required to compute R is
O(n log n).

Lemma 3.2. The set of extremal feasible unarticulated probe trajectories can
be determined in O(n log n) time.

Case II. Feasible articulated probe trajectory

For ease of exposition, the two subcases of Case II, depending on whether
an articulated final configuration intersects 1) an obstacle endpoint outside
C and an obstacle endpoint inside C, or 2) two obstacle endpoints outside
C, are treated separately.

Subcase 1. In order to find a feasible probe trajectory with an articulated
final configuration that intersects an obstacle endpoint outside C and an
obstacle endpoint inside C, we at first determine a feasible articulated final
configuration in the following manner.

We compute the set Rin of rays, each of which originates at point t, passes
through an endpoint of Vin, and does not intersect any line segment of Pin.
By using the same algorithm for computing the set R of rays in Case I, Rin

can be obtained in O(nin log nin) time.
Recall, in any feasible probe trajectory, the line segment bc is rotated

no more than π/2 radians from its initial configuration. Therefore, ab does
not enter C, and it is unnecessary to check for intersections between ab and
line segments of Pin. For each ray γin ∈ Rin, we i) find the intersection
point b of γin and C in O(1) time, and ii) compute the set Rout of rays,
each of which originates at point b, passes through an endpoint of Vout, and
does not intersect any line segment of Pout. This can be accomplished in
O(nout log nout) time.

A pair of rays γin ∈ Rin and γout ∈ Rout intersecting at a point b de-
fines a feasible final configuration of an articulated probe trajectory, which
intersects an endpoint outside C and an endpoint inside C. Given that the
number of rays in Rin is bounded by O(nin), the worst-case running time
for finding the final configuration pairs of rays γin and γout, intersecting at a
point b, is in the order of O(nin log nin + ninnout log nout).

11

Subcase 2. In order to find a feasible probe trajectory with an articulated
final configuration that intersects two obstacle endpoints outside C, we de-
termine a feasible intermediate configuration using the following procedure.

We define the reversal of a ray γ originating at a point p as the ray
originating at p but going in the opposite direction of γ. For each endpoint
v ∈ Vout, we compute the set R of rays, each of which has the following
properties: it originates at endpoint v, passes through an endpoint of Vout \
{v}, does not intersect any line segment of P , and its reversal intersects C
and goes at least a distance r beyond the intersection point with C without
intersecting any line segment of P . R can be obtained in O(n log n) time by
computing the visibility polygon from v [20, 21, 22]. For each ray γ ∈ R, in
O(1) time, we find the first intersection point b of C with the reversal of γ.

A ray γ ∈ R whose reversal intersects C at a point b and satisfies the
obstacle free restriction above represents a feasible intermediate configura-
tion of an articulated probe trajectory that intersects two vertices outside C.
Since |Vout| = nout, the worst-case running time for finding such a ray γ is
O(noutn log n).

An articulated probe trajectory with a feasible final or intermediate con-
figuration is feasible if and only if the area swept by segment bc after the
initial insertion (i.e., a circular sector) is not intersected by any obstacle.
Thus, the remainder of Case II entails a circular sector intersection problem,
detailed in the next section.

4. Circular sector intersection queries

The general line segment-circular sector intersection query problem can
be formally stated as follows.

Given a set P of n line segments, preprocess it so that, for a query circular
sector σ, one can efficiently determine whether σ intersects P .

For our purposes, it suffices to solve a special case of this problem where
the radius of the circular sector is fixed to r and one endpoint of the circular
arc of the sector is fixed at t. The intersection of a line segment and a circular
sector can only occur as one of the three basic scenarios: (A) The segment
intersects both radii of the sector. (B) The segment intersects both a radius
of the sector and the sector’s circular arc, or intersects the sector’s circular

12

arc twice. (C) At least one endpoint of the segment lies inside the sector.
The three scenarios are depicted in Figure 6.

Figure 6: Basic scenarios of a line segment intersecting with a circular sector. (A) The
segment crosses both radii of the sector. (B) The segment crosses a radius and the sector’s
circular arc, or crosses the sector’s circular arc twice. (C) At least one endpoint of the
segment lies inside the sector.

Recall that a feasible final or intermediate configuration for an articulated
probe trajectory has been found in the previous section. Thus, one of the
radii of the query circular sector is surely not intersected by any line segment
of P . Therefore, scenario (A) can be eliminated from consideration.

Hence, our case of the circular sector intersection problem reduces to the
following two problems: i) Circular arc intersection query – for detecting
scenario (B). ii) Circular sector emptiness query – for detecting scenario
(C). Note that a circular arc intersection query also rules out the instance of
scenario (C) where the segment crosses the sector’s circular arc once. Indeed,
a circular arc intersection query addresses all scenarios where the segment
crosses the sector’s circular arc at least once.

4.1. Circular arc intersection queries

Consider the following circular arc intersection problem.

Problem 4.1. Given a set P of n line segments, a fixed point t, and a fixed
radius r, preprocess them so that, for a query circular arc γ of radius r that
originates at t, one can efficiently determine if γ intersects P .

Notice that since a query circular arc γ originates from a fixed point t
and has a fixed radius r, the center of the circle supporting the circular arc
γ is always located on a circle C of radius r centered at point t.

Let D be a circle of radius r centered at any point p ∈ C (Figure 7). Note
that circle D passes through the center t of circle C. Let θ be the angle of
tp relative to the x-axis; D is uniquely determined by θ as p lies on C. We

13

Figure 7: Counter-clockwise circular arcs `Ss and `Ls emanating from point t.

consider only query arcs that emanate counter-clockwise from t. The other
case can be handled symmetrically.

Fix a line segment s, and let hs be its supporting line. We define two
partial functions `Ss , `

L
s : [0, 2π) → R≥0 that describe the lengths of (S)hort

and (L)ong counter-clocwise arcs of D from t to intersections of the arcs with
line segment s (more details to follow shortly). Specifically, let θ ∈ [0, 2π),
and let D be the circle for that θ as defined above. If D does not intersect
hs, then neither `Ss (θ) nor `Ls (θ) are defined. Otherwise, there are two inter-
sections between D and hs. These intersections coincide if D lies tangent to
hs. Consider the first intersection with hs when traveling along D counter-
clockwise from t. If this intersection occurs on segment s, then `Ss (θ) is the
length of that counter-clockwise arc from t to the intersection. Otherwise,
`Ss (θ) is undefined. Similarly, if the second intersection with hs occurs on s,
then `Ls (θ) is the length of the arc from t to the second intersection. Oth-
erwise, it is undefined. We emphasize that functions `Ss and `Ls are defined
based on the first and second intersections of the arc with hs and whether
those intersections occur on s (as opposed to the first and second intersec-
tions of the arc with s). We observe the following properties of `Ss (Figures
8 and 9). The same statements apply to `Ls as well.

Lemma 4.1. Function `Ss is defined over at most two maximal contiguous
subsets of [0, 2π).

Proof. For the sake of this proof, we extend the domain of `Ss to include all
real numbers. By the definition of D, function `Ss is periodic with a period of
2π. Fix a value θ0 ∈ [0, 2π) such that D does not intersect hs, and consider

14

the process of continuously increasing θ from θ0 to θ0 + 2π (see Figure 8). If
D never intersects hs, then `Ss is undefined for all θ ∈ [θ0, θ+2π). Otherwise,
D remains disjoint from hs until it becomes tangent at some value θ1 for θ.
Both intersections of D with hs then travel monotonically along hs until D
becomes tangent with hs again at some value θ2 for θ. Finally, D remains
disjoint from hs until θ reaches θ0 + 2π. Function `Ss is defined during the
(possibly empty) contiguous subset of [θ1, θ2] for which the first intersection
of D with hs monotonically travels along s. We conclude there is at most
one maximal contiguous subset of [θ0, θ0 + 2π) during which `Ss is defined.
Recalling `Ss is periodic with a period of 2π, we conclude the lemma.

Figure 8: Illustration of Lemma 4.1. Circle D rotates counter-clockwise around t as θ
increases from θ0 to θ0 +2π. Initially being disjoint from hs at θ0, D first becomes tangent
to hs at θ1. D intersects hs in two points when θ ∈ (θ1, θ2). D becomes tangent to hs
again at θ2, after which D remains disjoint from hs as θ increases to θ0 + 2π. `Ss is defined
only when the first intersection of D with hs occurs on s – that is, in this example, given
by the lengths of the red arcs sweeping along s during a contiguous subset of [θ1, θ2]. Thus,
`Ss is defined over at most one contiguous subset of [θ0, θ0 + 2π).

Lemma 4.2. Given two segments si, sj, we have `Ssi(θ) = `Ssj(θ) for at most
one value of θ. Specifically, it is at the common endpoint of two maximal
contiguous subsets of [0, 2π) for which `Ssi and `Ssj are defined.

15

Proof. We must have θ such that D’s shorter counter-clockwise arc ends at
the intersection of si and sj. Segments si and sj only intersect at their
endpoints, implying the property (see Figure 9 for an illustration).

Figure 9: Illustration of Lemma 4.2. (A) The shorter counter-clockwise arcs of D sweep
along s1 and s2 as θ increases. (B) The lengths of these sweeping arcs from t to their first
intersections with the segments induce partially-defined piecewise continuous curves `Ss1
and `Ss2 . Curves `Ss1 and `Ss2 intersect at θ1 (and at most once) because their corresponding
line segments s1 and s2 intersect at their endpoints.

The lower envelope of n segments in the plane has complexity bounded
by the third-order Davenport-Schinzel sequence, which is O(nα(n)), where
α(n) is the inverse of the Ackermann function [23]. The lower envelope can
be computed by a worst-case optimal divide-and-conquer algorithm running
in O(n log n) time [24]. Let V S be the lower envelope of the curves `Ssi for
all given line segments si ∈ P . Given any pair of curves `Ssi and `Ssj intersect
at most once in their endpoints (as stated in Lemma 4.2), the size of lower
envelope V S is actually bounded by the second-order Davenport-Schinzel
sequence, which is O(n) in length, and we can compute it in O(n log n) time
[23, 24]. We define and compute V L similarly for the curves `Lsi .

In order to determine whether a query circular arc γ intersects P , the
angle θ of center p of circular query arc γ from point t is looked up in V S and
V L by using two binary searches that take O(log n) time. If the length of γ is
less than `Ssi(θ) and `Lsi(θ) for all si, then γ does not intersect any line segment

16

of P . Otherwise, it intersects the segment that lies on a lower envelope at
θ. Thus, we obtain the following result, which can be easily shown to be
worst-case optimal (see [22]).

Theorem 4.3. A set P of n non-crossing line segments can be preprocessed
in O(n log n) time into a data structure of size O(n) so that, for a query
circular arc γ that originates at a fixed point t and has a fixed radius r, one
can determine whether γ intersects P in O(log n) time.

4.2. Circular sector emptiness queries

Our special case of the circular sector emptiness problem can be stated
as follows.

Problem 4.2. Given a set P of n points in the plane, a fixed point t, and a
fixed radius r, preprocess them so that, for a query circular sector σ of radius
r whose arc originates at t, one can efficiently determine whether σ contains
any point of P .

Circular sector σ can be partitioned into i) a triangle 4bct and ii) a
circular segment bounded by arc ct and the chord connecting the endpoints
of the arc. Notice that circular sector σ is void of P if and only if both
the triangle and circular segment are void of P . Thus, Problem 4.2 can be
reduced to the following two subproblems – 1) restricted triangular emptiness
query and 2) restricted circular segment emptiness query.

Consider the restricted triangular emptiness problem stated below.

Subproblem 4.2.1. Given a set P of n points in the plane and a fixed point
t, preprocess them so that, for a query triangle 4 with a vertex incident on
t, one can efficiently determine whether 4 contains any point of P .

As proposed by Benbernou et al. [25], Subproblem 4.2.1 can be solved
as follows. The points of P can be at first sorted around point t in counter-
clockwise order. Consider a wedge formed by two rays emanating from point
t. Let i and j be the first and last points, respectively, within the wedge
in counter-clockwise order. Points i and j can be determined for any given
wedge in O(log n) time. Based on this observation, with O(n log n) pre-
processing space and time, a restricted triangular emptiness query can be
answered in O(log n) time. Daescu et al. [26] also used a similar idea to
build a data structure for halfplane farthest-point queries.

The result for Subproblem 4.2.1 is summarized in the following lemma.

17

Lemma 4.4. A set P of n points in the plane and a fixed point t can be
preprocessed in O(n log n) time into a data structure of size O(n log n) so
that, for a query triangle 4 with a vertex incident on t, one can determine
whether 4 contains any point of P in O(log n) time.

The restricted circular segment emptiness problem is given as follows.

Subproblem 4.2.2. Given a set P of n points in the plane and a fixed
point t, preprocess them so that for a query circular segment s, bounded by a
circular arc originating from t and the chord connecting the endpoints of the
arc, one can efficiently determine if s contains any point of P .

Figure 10: (A) Circular segment sct and its “enclosing” circular segment spt. (B) Circular
segment spt and its corresponding event interval indicated by [i, j].

Let sct be a query circular segment bounded by circular arc ct (of a circle C
of radius r) and the chord connecting points c and t. In order to determine if
sct contains any point of P , we begin by finding its corresponding “enclosing”
circular segment (or semi-circle) spt as illustrated in Figure 10(A). spt is a
circular segment bounded by arc pt and the chord connecting points p and t.
Given circular arc ct emanating from point t and running counter-clockwise,
spt can be determined by extending the arc until it intersects with a circle D
of radius 2r centered at point t. The case of clockwise circular segments can
be handled symmetrically.

Let Ppt ⊆ P be the set of points in spt, and let CH(Ppt) be the convex
hull of Ppt. As shown in Figure 10(B), at most two tangent lines on the
convex hull pass through point t. Let q be the intersection point between
arc pt and the first of the two tangents, denoted as τ , in counter-clockwise
order. If point c is located on arc qt, then sct is empty of P .

18

We now describe a preprocessing procedure based on the earlier observa-
tions. At first, observe that, as spt rotates around point t counter-clockwise, a
point of P may enter and leave spt. Each of these point-entering and -leaving
events can be determined in O(1) time by computing the intersections be-
tween the boundary of spt and each point of P . Since a point of P can enter
and leave spt at most once, the total number of point-entering and -leaving
events is bounded by 2n. These events can be sorted in counter-clockwise
order in O(n log n) time.

Let sit and sjt be the circular segments associated with any two consecu-
tive events in sorted order, where i and j are the endpoints of the bounding
arcs (emanating from point t) for sit and sjt, respectively (see Figure 10(B)).
Notice that the set Ppt of points in spt remains constant within this event
interval. For each of these event intervals [i, j], the set Ppt of points of in-
terest, their convex hull, and ultimately tangent line τi,j can be determined
by using a dynamic convex hull data structure [27, 28], which requires O(n)
space, O(n log n) preprocessing time, O(log n) time per update operation,
and O(log n) time for tangent queries. A simple O(log n) query-time data
structure of linear size can then be built to store tangent lines τi,j for all
event intervals [i, j].

Thus, given a query circular segment sct, point p can be computed in
O(1) time, followed by a look-up of the event interval [i, j] that contains p
in O(log n) time. We then compute the intersection point q between arc pt
and tangent line τi,j. If the endpoint c of sct is located within arc qt, then sct
does not contain any point of P .

Lemma 4.5. For a fixed point t, a set P of n points in the plane can be
preprocessed in O(n log n) time into a data structure of size O(n) so that,
given a query circular segment s, bounded by a circular arc originating from t
and the chord connecting the endpoints of the arc, one can determine whether
s contains any point of P in O(log n) time.

Altogether, the following result is obtained for Problem 4.2.

Theorem 4.6. For a positive number r and a fixed point t, a set P of n points
in the plane can be preprocessed in O(n log n) time into a data structure of
size O(n log n) so that, given a query circular sector σ with a fixed radius r
and an endpoint of its arc located at t, one can determine whether σ contains
any point of P in O(log n) time.

19

Remark. We can solve the general circular sector emptiness problem without
a fixed radius or point t on the arc using a multi-level data structure similar
to one by Matous̆ek [29] for counting points in the intersection of halfspaces
(see also [26] for a similar approach on a related problem). Specifically, the
first level is constructed for halfplane range queries to select the points of
P lying on the σ side of the line supporting bc, and the second level is for
halfplane range queries on the resulting points to select those lying on the σ
side of bt. Thus, these two levels are used to find the points inside the wedge
centered at b. Each subset of P on the second level is further preprocessed for
nearest neighbor queries by computing its Voronoi diagram and augmenting
it for point location. At query time, we can locate b in this data structure
in logarithmic time. If the closest point is within distance r of b, then the
circular sector is not empty of P . By following the strategy outlined in the
first half of [29, Theorem 6.2], we can create a trade-off between space and
time usage by our data structure.

Theorem 4.7. Let P be a set of n points. For any ε > 0 and m such
that n1+ε ≤ m ≤ n2, set P can be preprocessed into a data structure of size
O(m) in O(m log n) time so that, for a query circular sector σ of radius r
centered at point p, one can determine whether σ contains any points of P
in O(n/m1/2 log5/2 n) time.

Finishing up.

According to Theorems 4.3 and 4.6, the result for our case of the circular
sector intersection problem can be stated as follows.

Theorem 4.8. For a positive value r and a fixed point t, a set P of n line
segments can be preprocessed in O(n log n) time into a data structure of size
O(n log n) so that, given a query circular sector σ with a fixed radius r whose
circular arc has an endpoint at t, one can determine whether σ intersects P
in O(log n) time.

Recall, V denotes the set of endpoints of line segments of P . Let ns be
the number of endpoints in V within distance 2r from point t. Then, in Case
II, given that O(ninnout + n2

out) queries are to be processed in the worst case
and we only need to worry about endpoints lying sufficiently close to t, the
following result is obtained.

Lemma 4.9. A feasible articulated probe trajectory can be determined in
O((ninnout + n2

out) log ns) time using O(ns log ns + n) space.

20

Given that the space/time complexity of Case II (Lemma 4.9) is dominant
over that of Case I (Lemma 3.2), the solution approach proposed herein for
finding a feasible probe trajectory leads to the following theorem.

Theorem 4.10. A feasible probe trajectory can be determined in O((ninnout+
n2
out) log ns) time using O(ns log ns + n) space.

Recall that nin, nout, ns ≤ n. Thus, the running time and space usage are
bounded by O(n2 log n) and O(n log n), respectively.

5. δ-clearance probe trajectory

Our algorithm for finding a δ-clearance probe trajectory follows the gen-
eral framework of the solution approach described in Sections 3 and 4. We
begin with the following observation, which is a generalization of Lemma 2.1.

Lemma 5.1. There exists a feasible probe trajectory such that the probe
assumes either I) an unarticulated final configuration (i.e., a straight line
segment abc with c = t) that is tangent to an obstacle, or II) an articulated
final configuration (i.e., line segments ab and bc are not collinear and c = t)
that is tangent to an obstacle outside C and another obstacle inside or outside
C.

Proof. The lemma can be proven by using the same set of perturbation argu-
ments as in Lemma 2.1. We previously argued that, amidst a set of obstacle
line segments, a feasible probe trajectory, if one exists, can be perturbed into
another that intersects one or two obstacle endpoints. Recall that any pertur-
bation operation performed in proving Lemma 2.1 always involves rotating
a segment of the probe (with respect to some point) until the segment inter-
sects with an obstacle endpoint. Obviously, in the midst of other types of
geometric obstacles (such as those whose boundaries consist of line segments
and circular arcs), a similar conclusion can also be reached by applying the
same set of perturbation operations. The only differences are as follows: i)
In addition to rotating around a given point, a perturbation operation may
rotate a segment of the probe along a circular arc boundary of an obsta-
cle (i.e., changing the slope of the segment while keeping it tangent to the
arc). ii) Each rotational perturbation step stops when the probe becomes
tangent to an obstacle (instead of intersecting with an obstacle endpoint
specifically).

21

Based on Lemma 5.1, the set of extremal feasible probe trajectories with
a given clearance δ can be obtained using the following approach.

For each obstacle line segment s of P , we define H(s, δ) = s⊕Bδ to be the
dilation of s by a distance δ, where Bδ is a closed disk of radius δ, and s⊕Bδ

denotes the Minkowski sum of s and Bδ. A dilated line segment H(s, δ) has
the shape of a stadium – a rectangle with two semi-circles attached to its
sides (see Figure 11). Let Q = {H(s, δ)|s ∈ P} denote the resulting set of
dilated line segments. Notice that the total number of vertices (and edges)
of the dilated line segments of Q is O(n).

Figure 11: Planning a trajectory of a given clearance from obstacles for an articulated
probe. Each obstacle line segment is “dilated” by a distance δ > 0 using Minkowski sum
to ensure that any computed feasible probe trajectory has a clearance of at least δ from
the obstacles.

For the purpose of analysis and clarity, the dilated line segments of Q
are divided into those lying inside C and those lying outside C. Since the
boundary of a dilated line segment may intersect C at most four times, a
dilated line segment may be partitioned by C into at most four open (piece-
wise) curves, each of which may consist of line segments and circular arcs.
Let Qin be the set of curves lying inside C with nin = |Qin|, and let Qout be
the set outside C with nout = |Qout|. Note that nin + nout = O(n).

The complexity of each dilated line segment of Q is O(1); that is, the
tangent line from a point to a dilated line segment, as well as the common
tangent lines of two dilated line segments, can be computed in O(1) time.
For the sake of brevity, a dilated line segment obstacle is henceforth referred
to as simply an obstacle.

22

The main added difficulty, when compared to the preceding case without
clearance, is that after enlarging the obstacle line segments with a disk of
radius δ to account for the required clearance, we have to work with obsta-
cles with circular arc edges. That imposes a change on the data structures
needed to handle various operations, particularly for visibility computation
and circular arc queries, as detailed next.

Case I. δ-clearance unarticulated probe trajectory

As in the case without clearance, we compute the set R of O(n) rays, each
of which i) originates at point t, ii) is tangent to an obstacle of Q, and iii)
does not intersect any obstacle of Q. Each ray γ ∈ R represents an extremal
δ-clearance unarticulated probe trajectory. According to Lemma 3.1, the set
R of rays can be computed in O(n log n) time.

Lemma 5.2. The set of extremal δ-clearance unarticulated probe trajectories
can be determined in O(n log n) time.

Case II. δ-clearance articulated probe trajectory

We consider separately the two subcases of Case II, providing whether an
articulated final configuration is tangent to 1) an obstacle outside C and an
obstacle inside C, or 2) two obstacles outside C.

Subcase 1. In order to find a feasible probe trajectory with an articulated
final configuration that is tangent to an obstacle outside C and another ob-
stacle inside C, we at first compute a feasible articulated final configuration
by using the same method as the case without clearance. Recall that finding
such a final configuration, represented by a pair of rays γin and γout inter-
secting at a point b, takes O(nin log nin + ninnout log nout) time in the worst
case.

After finding a probe trajectory with a feasible articulated final configura-
tion, we examine the feasibility of its associated intermediate configuration.

For each computed point b, we consider a circle B of radius r centered
at b, and find the radial visibility intervals in O(nb log nb) time (see Lemma
3.1), where nb is the number of obstacles lying within B. Note that nb ≤ ns
for any point b ∈ C, where ns is the number of obstacles within distance
2r from point t. Recall that the size of Rin is bounded by O(nin) (i.e., the
upper bound on the number of distinct points b computed). Thus, the total

23

time required to find the radial visibility intervals for all computed points b
is O(ninns log ns).

After finding the radial visibility intervals for a point b, one can determine
if a given radius of circle B intersects with any obstacle inside B in O(log ns)
time by using a binary search. Hence, it takes O(log ns) time to determine if
a segment bc (of an intermediate configuration) intersects with any obstacle.
Since there could be O(ninnout) such segments bc, the worst-case running
time for finding a feasible final configuration (that is tangent to an obstacle
inside C and another obstacle outside C) with a feasible intermediate con-
figuration is O(nin log nin +ninnout log nout) +O(ninns log ns +ninnout log ns).

Subcase 2. In order to find a feasible probe trajectory with an articulated
final configuration that is tangent to two obstacles outside C, we at first
determine a feasible intermediate configuration in the following manner.

We compute the set R of rays, each of which i) originates from some
point on circle S, ii) is a common tangent line between two obstacles of Qout,
iii) does not intersect any obstacle of Qout, iv) intersects C, and v) goes at
least distance r beyond the intersection point with C without intersecting
any obstacle of Q.

R can be obtained by using the visibility complex of Q. The visibility
complex is a two-dimensional subdivision in which each cell corresponds to
a collection of rays with the same visibility properties [30]. For a simple
scene of n obstacles with constant complexity, the visibility complex can be
computed in O(n log n + k) time using O(k) space, where k is the size of
the visibility complex (or the corresponding tangent visibility graph). In the
worst case, k = O(n2). After the visibility complex of Q is built, we can find
the set R of rays (i.e., the set of bitangent lines that satisfy the obstacle-free
restriction above) by simply traversing the cells of the visibility complex in
O(n2) time.

After finding a probe trajectory with a feasible intermediate configura-
tion, we determine if its associated final configuration is feasible.

Lemma 3.1 can be applied as follows in determining whether a segment
bt (of a final configuration) intersects with any obstacle. The radial visibil-
ity intervals are computed with respect to circle C centered at point t in
O(nin log nin) time. Given that O(n2

out) such segments bt are to be examined
(using binary searches), the worst-case running time for finding a feasible
intermediate configuration (that is tangent to two obstacles outside C) with
a feasible final configuration is O(n2) +O(nin log nin + n2

out log nin).

24

An articulated probe trajectory with both a feasible final configuration
and a feasible intermediate configuration is feasible if and only if the area
swept by segment bc after the initial insertion (i.e., a circular sector) is not
intersected by any obstacle. Thus, the remainder of Case II involves a circu-
lar sector intersection problem.

Circular sector intersection queries. Similar as before, instead of ad-
dressing the general problem, it is sufficient to solve the special case in which
the radius of the circular sector is fixed at r and one endpoint of the circular
arc of the sector is incident at t.

Recall that we have previously found a pair of feasible final and interme-
diate configurations for an articulated probe trajectory. Thus, both radii of
the query circular sector are certainly not intersected by any obstacle of Q.
Therefore, an obstacle can only intersect with a query circular sector by i)
intersecting the sector’s arc, or ii) lying completely inside the sector. As a
result, our case of the circular sector intersection problem can be reduced to
the following two problems – i) circular arc intersection query, and ii) circular
sector emptiness query.

Circular arc intersection queries. Consider the following circular arc
intersection problem.

Problem 5.1. Given a set Q of n line segments and semi-circular arcs,
preprocess it so that, for a query circular arc γ that originates at a fixed
point t and has a fixed radius r, one can efficiently determine if γ intersects
Q.

Problem 5.1 can be solved by using a similar data structure (i.e., lower
envelopes) as constructed in the case without clearance (Section 4.1). Given
that two semi-circular arcs (or an arc and a line segment, or two line seg-
ments) of Q can intersect at most twice, the size of the lower envelope is
bounded by the fourth-order Davenport-Schinzel sequence, which is O(n ·
2α(n)). The lower envelope can be computed in O(nα(n) log n) time [23, 24].
A binary search can be performed on the lower envelope to determine if a
query circular arc γ intersects Q. Thus, the following result is obtained.

Lemma 5.3. A set Q of n line segments and circular arcs can be preprocessed
in O(nα(n) log n) time into a data structure of size O(n · 2α(n)) so that, for a

25

query circular arc γ that originates at a fixed point t and has a fixed radius
r, one can determine whether γ intersects Q in O(log n) time.

Circular sector emptiness queries. This query problem is exactly the
same as that previously described in Section 4.2, and the result is summa-
rized in Theorem 4.6.

Recall that ns is the number of obstacles within distance 2r from point
t. In Case II, since we need to process O(ninnout + n2

out) queries in the worst
case and we are only concerned with obstacles lying sufficiently close to t,
the following result is obtained.

Lemma 5.4. A δ-clearance articulated probe trajectory can be determined in
time O(nin log nin+ninnout log nout)+O(ninns log ns+ninnout log ns)+O(n2)+
O(nin log nin+n2

out log nin)+O((ninnout+n2
out) log ns) using O(n2 +ns log ns)

space.

Theorem 5.5. A δ-clearance probe trajectory can be determined in O(n2 log n)
time using O(n2) space.

6. Extremal feasible probe trajectory amidst polygonal obstacles

We can extend the algorithms presented in the prior sections to the case
of simple polygonal obstacles. Let P be a set of h simple polygonal obstacles
with a total of n vertices.

Case I. Feasible unarticulated probe trajectory

In the radial visibility problem, as previously defined in Problem 3.1, when
P is a set of h polygonal obstacles with n vertices in total, O(h) occluded
intervals (each of which is delimited by a pair of tangent lines from t to an
obstacle) can be computed in O(n) time. These occluded intervals can then
be sorted and merged in O(h log h) time to yield the visibility intervals. The
following lemma is obtained as a result.

Lemma 6.1. Given a fixed point t and a real number r, let S be a circle
of radius r centered at t. Given a set P of h polygonal obstacles (with n
vertices in total) inside S, the portion of S visible from t can be determined
in O(n+ h log h) time.

26

Note that, after finding the visibility intervals, one can determine if a
given radius of circle S intersects with any polygonal obstacle inside S in
O(log h) time by using a binary search. Thus, the total time required for
determining the set of extremal feasible unarticulated probe trajectories in
the midst of h simple polygonal obstacles is O(n+ h log h).

Case II. Feasible articulated probe trajectory

The polygonal obstacles of P can be divided into those lying inside C
and those lying outside C. Let Pin (resp. Pout) be the set of simple polygons
lying inside (resp. outside) C. Let hin = |Pin| and hout = |Pin|. Note that
hin + hout = O(h). In addition, let nin (resp. nout) denote the number of
vertices of the polygons in Pin (resp. Pout).

For the purpose of subsequent computations, a simple polygon Γ ∈ P that
intersects C can be pseudo-partitioned into a chain Γin (of line segments and
possibly circular arcs) and a simple polygonal chain Γout, as illustrated in
Figure 12.

Figure 12: Pseudo-partitioning of (A) a simple polygon Γ intersecting C into (B) a chain
Γin of line segments and circular arcs and a simple polygonal chain Γout.

Let polygon Γ be represented by a sequence of k vertices v1, v2, ..., vk
(vk+1 = v1) going counter-clockwise around the polygon. Let ei be the i-th
(directed) edge from vertex vi to vertex vi+1 for i = 1, ..., k. An edge ei
may intersect C at most twice. When an edge ei intersects C only once, the
intersection between ei and C is called an in-out (resp. out-in) intersection

27

if vi is inside (resp. outside) C and vi+1 is outside (resp. inside) C. When an
edge ei intersects C twice, ei can be considered as two end-to-end collinear
edge segments viu and uvi+1, where point u ∈ ei lies inside C, yielding a pair
of out-in and in-out intersection points.

By using a brute-force method, one can find the set of all (in-out and
out-in) intersection points between Γ and C in O(k) time. As depicted in
Figure 12, let a and b be the extreme in-out and out-in intersection points,
respectively.

Let γ[pi, pj] represent the polygonal subchain of Γ from point pi to pj
in counter-clockwise direction. Γin is constructed from γ[b, a] as follows.
Let (α, β) denote a pair of consecutive in-out and out-in intersection points
between γ[b, a] and C (in counter-clockwise direction), if any. For each (α, β)
between γ[b, a] and C, replace the (counter-clockwise) polygonal chain of
γ[b, a] from α to β with the (counter-clockwise) circular arc of C from α to
β. Γin is the resulting γ[b, a] after chain modification. On the other hand,
Γout is simply the polygonal subchain γ[a, b] of Γ.

As a result of the pseudo-partitioning process, a polygon Γ that intersects
C is “divided” into Γin ∈ Pin and Γout ∈ Pout. Since the pseudo-partitioning
of a simple polygon intersecting C results in two polygonal chains, each of
which has at most O(n) vertices, |Pin| and |Pout| are bounded by O(n), and
nin + nout = O(n). Besides, the pseudo-partitioning ensures that the geo-
metric procedure previously established for obstacle line segments (divided
into those inside and outside C) continues to work for the case of polygonal
obstacles. Recall that the only geometric operations that call for a partition-
ing of the obstacles are those used for finding feasible intermediate and final
configurations in the first half of the algorithm (see Section 3 for instance).
One can easily figure that those geometric operations, which mostly consist
of finding radial visibility intervals with respect to some given point, remain
valid in the case of polygonal obstacles after being pseudo-partitioned into
those inside and outside C.

Subcase 1. We proceed similarly and use the same notations as in the
case of obstacle line segments. By using Lemma 6.1, Rin can be obtained
in O(nin + hin log hin) time, followed by the computation of Rout (for each
ray γin ∈ Rin) in O(nout + hout log hout) time. Since |Rin| is bounded by
O(hin), the worst-case running time for finding a feasible final configuration
that is tangent to a polygonal obstacle inside C and another outside C is
O(nin + hin log hin + hinnout + hinhout log hout).

28

Subcase 2. The algorithm previously described for obstacle line segments
in Case II Subcase 2 can also be used herein for polygonal obstacles. The
computation of the visibility polygon from a vertex (of a polygonal obstacle
outside C) among h polygonal obstacles takes O(n+h log h) time [21]. Thus,
the worst-case running time for finding a feasible intermediate configuration
that is tangent to two polygonal obstacles outside C is O(noutn+nouth log h).

Circular sector intersection queries. The prior solution approach (de-
scribed for obstacle line segments) for solving the circular sector intersection
query problem remains valid for the case of polygonal obstacles. Hence,
we obtain similar results as detailed in Theorems 4.3 and 4.6. As a result,
a circular sector intersection query can be answered in O(log n) time with
O(n log n) preprocessing space and time.

Given that O(hinhout+h2out) queries are to be processed in the worst case,
a feasible articulated probe trajectory can be determined in time O(nin +
hin log hin+hinnout+hinhout log hout+noutn+nouth log h+(hinhout+h

2
out) log ns)

using O(ns log ns + n) space, where ns is the number of vertices within dis-
tance 2r from point t.

Given that hin, hout ≤ h, ns ≤ n, and h ≤ n, the final result can be stated
as the following theorem.

Theorem 6.2. An extremal feasible probe trajectory amidst h simple polygo-
nal obstacles with n vertices can be determined in O(n2 +h2 log n) time using
O(n log n) space.

7. δ-clearance probe trajectory amidst polygonal obstacles

As with dilated line segment obstacles, a dilated simple polygonal obstacle
is a convex region whose boundary consists of line segments and circular
arcs. Since a vertex of a simple polygon, after dilation, gives rise to at most
two vertices and a circular arc, the number of vertices or (line-segment and
circular-arc) edges remains in the order of O(n).

The solution approach previously described for dilated obstacle line seg-
ments can also be applied to the case of dilated polygonal obstacles. We
can partition the dilated polygonal obstacles into those inside and outside C
using the same pseudo-partitioning procedure as in Section 6, and proceed
with the geometric operations for finding feasible trajectories as in Section 5.

29

In the process, we can also exploit the algorithm with respect to the number
of polygonal obstacles (see Lemma 6.1). Given the similarity in analysis, we
omit the details herein. The resulting space and time complexities of the
subroutines involved are summarized below.

• Case I. Feasible unarticulated probe trajectory: O(n+ h log h) time.

• Case II. Feasible articulated probe trajectory:

– Subcase 1: O(nin + hin log hin) + O(hinnout + hinhout log hout) +
O(hinns + hinhs log hs) +O(hinhout log hs) time.

– Subcase 2: O(n2) +O(nin + hin log hin) +O(h2out log hin) time.

– Circular arc intersection queries: O(ns2
α(ns)) space, O(nsα(ns) log ns)

preprocessing time, O(log ns) query time.

– Circular sector emptiness queries: O(nsα(ns) log ns) preprocessing
space/time, O(log ns) query time.

Recall that, in the worst case, the number of queries to be processed is
bounded by O(hinhout + h2out). Hence, after some simplification, the final
result can be stated as the following theorem.

Theorem 7.1. A δ-clearance probe trajectory amidst h simple polygonal ob-
stacles with n vertices can be determined in O(n2+h2 log n) time using O(n2)
space.

8. Conclusion

We have presented efficient geometric-combinatorial algorithms for sev-
eral variants of a novel trajectory planning problem involving a simple artic-
ulated probe. Specifically, we can determine a feasible probe trajectory, with
or without a given clearance, among line segment obstacles in O(n2 log n)
time. In addition, the algorithms have been extended to the case of polygo-
nal obstacles, where we can find a feasible solution in O(n2 + h2 log n) time.
In any case, our main algorithm has essentially reduced to special cases of
the circular sector intersection problem, for which we have provided near-
linear time solutions. Notice that, while the proposed algorithm for finding
a feasible probe trajectory of a given clearance from obstacles has the same
time complexity as when no clearance is required, the space usage increases
from O(n log n) to O(n2).

30

A number of open problems remain: (1) Our main algorithm works by
enumerating over a set of possible “extremal” solutions. Can it be sped
up, possibly by skipping some of these solutions? (2) We believe that it is
possible to reduce the working space of the visibility complex toO(n) by using
topological sweep. That being so, can the space usage of the special circular
sector intersection queries be reduced to O(n) as well? We conjecture that
our result would then be optimal. (3) Can we find an efficient general data
structure for circular arc ray shooting queries among (disjoint or intersecting)
line segments or circular arcs?

References

[1] O. Daescu, K. Fox, K. Y. Teo, Trajectory planning for an articulated
probe, in: 30th Annual Canadian Conference on Computational Geom-
etry, 2018, pp. 296–303.

[2] O. Daescu, K. Fox, K. Y. Teo, Computing trajectory with clearance for
an articulated probe, in: 28th Annual Fall Workshop on Computational
Geometry, 2018.

[3] R. Connelly, E. D. Demaine, Geometry and topology of polygonal link-
ages, Handbook of Discrete and Computational Geometry (2017) 233–
256.

[4] J. Hopcroft, D. Joseph, S. Whitesides, Movement problems for 2-
dimensional linkages, SIAM Journal on Computing 13 (3) (1984) 610–
629.

[5] S. M. LaValle, Planning algorithms, Cambridge University Press, 2006.

[6] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard,
L. E. Kavraki, S. Thrun, Principles of robot motion: theory, algorithms,
and implementation, MIT Press, 2005.

[7] F. Avnaim, J. Boissonnat, Practical exact motion planning of a class of
robots with three degrees of freedom, in: Proceedings of the Canadian
Conference on Computational Geometry, 1989, p. 19.

[8] K. Kedem, M. Sharir, An automatic motion planning system for a con-
vex polygonal mobile robot in 2-dimensional polygonal space, in: Au-
tonomous robot vehicles, Springer, 1990, pp. 349–362.

31

[9] D. Halperin, Robust geometric computing in motion, The International
Journal of Robotics Research 21 (3) (2002) 219–232.

[10] L. Kavraki, P. Svestka, J. Latombe, M. Overmars, Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,
IEEE Transactions on Robotics and Automation 12 (4) (1996) 566–580.

[11] S. M. LaValle, J. J. Kuffner Jr, Randomized kinodynamic planning, The
International Journal of Robotics Research 20 (5) (2001) 378–400.

[12] R. A. Brooks, T. Lozano-Perez, A subdivision algorithm in configuration
space for findpath with rotation, IEEE Transactions on Systems, Man,
and Cybernetics SMC-15 (2) (1985) 224–233.

[13] B. R. Donald, Motion planning with six degrees of freedom, Tech. rep.,
MIT Artificial Intelligence Lab (1984).

[14] D. Zhu, J. Latombe, Constraint reformulation in a hierarchical path
planner, in: Proceedings of the IEEE International Conference on
Robotics and Automation, IEEE, 1990, pp. 1918–1923.

[15] J. Barraquand, L. Kavraki, J. C. Latombe, R. Motwani, T. Y. Li,
P. Raghavan, A random sampling scheme for path planning, The In-
ternational Journal of Robotics Research 16 (6) (1997) 759–774.

[16] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, D. Vallejo, OBPRM:
An obstacle-based PRM for 3D workspaces, in: Proceedings of the Third
Workshop on the Algorithmic Foundations of Robotics, 1998, pp. 155–
168.

[17] D. Hsu, J. Latombe, R. Motwani, Path planning in expansive configu-
ration spaces, International Journal of Computational Geometry & Ap-
plications 9 (4 & 5) (1999) 495–512.

[18] J. H. Yakey, S. M. LaValle, L. E. Kavraki, Randomized path planning for
linkages with closed kinematic chains, IEEE Transactions on Robotics
and Automation 17 (6) (2001) 951–958.

[19] N. Simaan, R. M. Yasin, L. Wang, Medical technologies and challenges of
robot-assisted minimally invasive intervention and diagnostics, Annual
Review of Control, Robotics, and Autonomous Systems 1 (2018) 465–
490.

32

[20] E. Arkin, J. Mitchell, An optimal visibility algorithm for a simple poly-
gon with star-shaped holes, Tech. rep., Cornell University Operations
Research and Industrial Engineering (1987).

[21] P. J. Heffernan, J. S. Mitchell, An optimal algorithm for computing
visibility in the plane, SIAM Journal on Computing 24 (1) (1995) 184–
201.

[22] S. Suri, J. O’Rourke, Worst-case optimal algorithms for constructing
visibility polygons with holes, in: Proceedings of the Second Annual
Symposium on Computational Geometry, ACM, 1986, pp. 14–23.

[23] M. Sharir, P. K. Agarwal, Davenport-Schinzel sequences and their geo-
metric applications, Cambridge University Press, 1995.

[24] J. Hershberger, Finding the upper envelope of n line segments in O(n
log n) time, Information Processing Letters 33 (4) (1989) 169–174.

[25] N. M. Benbernou, M. Ishaque, D. L. Souvaine, Data structures for re-
stricted triangular range searching, in: 20th Annual Canadian Confer-
ence on Computational Geometry, 2008, pp. 15–18.

[26] O. Daescu, N. Mi, C. Shin, A. Wolff, Farthest-point queries with geo-
metric and combinatorial constraints, Computational Geometry 33 (3)
(2006) 174–185.

[27] G. S. Brodal, R. Jacob, Dynamic planar convex hull, in: Proceedings of
the 43rd Annual IEEE Symposium on Foundations of Computer Science,
2002, pp. 617–626.

[28] J. Hershberger, S. Suri, Off-line maintenance of planar configurations,
Journal of Algorithms 21 (3) (1996) 453–475.

[29] J. Matoušek, Range searching with efficient hierarchical cuttings, Dis-
crete & Computational Geometry 10 (2) (1993) 157–182.

[30] M. Pocchiola, G. Vegter, The visibility complex, International Journal
of Computational Geometry & Applications 6 (3) (1996) 279–308.

33

