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Abstract11

We give an O(k3n log n min(k, log2 n) log2(nC))-time algorithm for computing maximum integer12

flows in planar graphs with integer arc and vertex capacities bounded by C, and k sources and sinks.13

This improves by a factor of max(k2, k log2 n) over the fastest algorithm previously known for this14

problem [Wang, SODA 2019].15

The speedup is obtained by two independent ideas. First we replace an iterative procedure of16

Wang that uses O(k) invocations of an O(k3n log3 n)-time algorithm for maximum flow algorithm17

in a planar graph with k apices [Borradaile et al., FOCS 2012, SICOMP 2017], by an alternative18

procedure that only makes one invocation of the algorithm of Borradaile et al. Second, we show19

two alternatives for computing flows in the k-apex graphs that arise in our modification of Wang’s20

procedure faster than the algorithm of Borradaile et al. In doing so, we introduce and analyze a21

sequential implementation of the parallel highest-distance push-relabel algorithm of Goldberg and22

Tarjan [JACM 1988].23
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1 Introduction27

The maximum flow problem has been extensively studied in many different settings and28

variations. This work concerns two related variants of the maximum flow problem in planar29

graphs. The first variant is the problem of computing a maximum flow in a directed planar30

network with integer arc and vertex capacities, and k sources and sinks. The second variant,31

which is used in algorithms for the first variant, is the problem of computing a maximum32

flow in a directed network that is nearly planar; there is a set of k vertices, called apices,33

whose removal turns the graph planar.34

The problem of maximum flow in a planar graph with vertex capacities has been studied35

in several works since the 1990s [9, 14, 7, 2, 13]. For a more detailed survey of the history of36

this problem and other relevant results see [13] and references therein. Vertex capacities pose37

a challenge in planar graphs because the standard reduction from a flow network with vertex38

capacities to a flow network with only arc capacities does not preserve planarity. The problem39

can be solved by algorithms for maximum flow in sparse graphs (i.e., graphs with n vertices40

and O(n) edges that are not necessarily planar). The fastest such algorithms currently known41

are an O(n2/ log n)-time algorithm [11] for sparse graphs, and an O(n4/3+o(1)C1/3)-time42

algorithm for sparse graphs with integer capacities bounded by C [8]. Until recently, there43

was no planarity exploiting algorithm for the case of more than a single source and a single44
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sink. Significant progress on this problem was recently made by Wang [13]. Wang developed45

an O(k5n log3 n log2(nC))-time algorithm, where k is the number of sources and sinks, and46

C is the largest capacity of a single vertex. This is faster than using the two algorithms for47

general sparse graphs mentioned above when k = Õ(n1/5/ log2 C + (nC)1/15).48

Wang’s algorithm uses multiple calls to an algorithm of Borradaile et al. [2] for computing49

a maximum flow in a k-apex graph with only arc capacities. The algorithm of Borradaile50

et al. [2] is based on an approach originally suggested by Hochstein and Weihe [6] for a51

slightly more restricted problem. In Borradaile et al.’s approach, a maximum flow in a k-apex52

graph with n vertices is computed by simulating the Push-Relabel algorithm of Goldberg and53

Tarjan [4] on a complete graph with k vertices, corresponding to the k apices of the input54

graph. Whenever the Push-Relabel algorithm pushes flow on an arc of the complete graph,55

the push operation is simulated by sending flow between the two corresponding apices in the56

input k-apex graph. This can be done efficiently using an O(n log3 n) time multiple-source57

multiple-sink (MSMS) maximum flow algorithm in planar graphs, which is the main result of58

the paper of Borradaile et al. [2]. Overall, their algorithm for maximum flow in k-apex graphs59

takes O(k3n log3 n) time. Flow in k-apex graphs can also be computed using the algorithms60

for sparse graphs mentioned above. The O(k3n log3 n)-time algorithm of Borradaile et al. is61

faster than these algorithms when k = Õ(n1/3/ log2 C + (nC)1/9).62

1.1 Our results and techniques63

We improve the running time of Wang’s algorithm to O(k3n log n min(k, log2 n) log2(nC)).64

This is faster than Wang’s result by a factor of max(k2, k log2 n), extending the range of65

values of k for which the planarity exploiting algorithm is the fastest known algorithm for66

the problem to k = Õ(n1/3/ log2 C + (nC)1/9). The improvement is achieved by two main67

ideas. At the heart of Wang’s algorithm is an iterative procedure for eliminating excess68

flow from vertices violating the capacity constraints. Each iteration consists of computing a69

circulation with some desired properties. Wang computes this circulation using O(k) calls70

to the algorithm of Borradaile et al. for maximum flow in k-apex graphs. We show how to71

compute this circulation using a constant number of invocations of the algorithm for k-apex72

graphs. This idea alone improves on Wang’s algorithm by a factor of k.73

To further improve the running time, we modify the algorithm of Borradaile et al. for74

maximum flow in k-apex graphs [2]. The algorithm of Borradaile et al. uses the Push-Relabel75

algorithm of Goldberg and Tarjan [4]. We introduce a sequential implementation of the76

parallel highest-distance Push-Relabel algorithm. In this algorithm, which we call batch-77

highest-distance, a single operation, Bulk-Push, pushes flow on multiple arcs simultaneously,78

instead of just on a single arc as in Goldberg and Tarjan’s Push operation. More specifically,79

we simultaneously push flow on all admissible arcs whose tails have maximum height (see80

Section 3). This is reminiscent of parallel and distributed Push-Relabel algorithms [4, 3],81

but our algorithm is sequential, not parallel. We prove that the total number of Bulk-Push82

operations performed by the batch-highest-distance algorithm is O(k2) (this should be83

compared to O(k3) Push operations for the FIFO or highest-distance Push-Relabel algorithms).84

We then show that, in the case of the k-apex graphs that show up in Wang’s algorithm, we85

can implement each Bulk-Push operation using a single invocation of the O(n log3 n)-time86

MSMS maximum flow algorithm for planar graphs [2]. Hence, we can find a maximum flow87

in such k-apex graphs in O(k2n log3 n) time, which is faster by a factor of k than the time88

required by the algorithm of Borradaile et al.89

We also give another way to modify the algorithm of Borradaile et al. for maximum90

flow in k-apex graphs; the second way is better when k = o(log2 n). We observe that the91
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structure of the k-apex graphs that arise in Wang’s algorithm allows us to implement each92

of the O(k3) Push operations of the FIFO Push-Relabel algorithm used by Borradaile et al.93

in just O(n log n) time. This is done using a procedure due to Miller and Naor [10] for the94

case when all sources and sinks lie on a single face.95

Roadmap. In Section 2 we provide preliminary background and notations. Section 3 de-96

scribes the sequential implementation of the parallel highest-distance Push-Relabel algorithm,97

and its use in an algorithm for finding maximum flow in k-apex graphs. In Section 4 we98

describe how to use this Push-Relabel variant to obtain an improved algorithm for computing99

maximum flow in planar graphs with vertex capacities.100

2 Preliminaries101

All the graphs we consider in this paper are directed. For a graph G we use V (G) and E(G)102

to denote the vertex set and arc set of G, respectively. For any vertex v ∈ V (G), let deg(v)103

denote the degree of v in G.104

For a path P we denote by P [u, v] the subpath of P that starts at u and ends at v. We105

denote by P ◦Q the concatenation of two paths P, Q such that the first vertex of Q is the106

last vertex of P .107

A flow network is a directed graph G with a capacity function c : V (G) ∪E(G)→ [0,∞)108

on the vertices and arcs of G, along with two disjoint sets S, T ⊂ V (G) called sources and109

sinks, respectively. We assume without loss of generality that sources and sinks have infinite110

capacities, and that, for any arc e = (u, v) ∈ E(G), the reverse arc (v, u), denoted rev(e) is111

also in E(G), and has capacity c(rev(e)) = 0.112

Let ρ : E(G) → [0,∞). To avoid clutter we write ρ(u, v) instead on ρ((u, v)). For113

each vertex v let ρin(v) =
∑

(u,v)∈E(G) ρ(u, v), and ρout(v) =
∑

(v,u)∈E(G) ρ(v, u). The114

function ρ is called a preflow if it satisfies the following conservation constraint: for all115

v ∈ V (G) \ (S), ρin(v) ≥ ρout(v). The excess of a vertex v with respect to a preflow ρ is116

defined by ex(ρ, v) = ρin(v)−ρout(v). A preflow is feasible on an arc e ∈ E(G) if ρ(e) ≤ c(e).117

It is feasible on a vertex v ∈ V (G) if ρin(v) ≤ c(v). A preflow is said to be feasible if, in118

addition to the conservation constraint, it is feasible on all arcs and vertices. The value of a119

preflow ρ is defined as |ρ| =
∑

s∈S ρout(s)− ρin(s). A preflow f satisfying ex(f, v) = 0 for120

all v ∈ V (G) \ (S ∪ T ), is called a flow. A flow whose value is 0 is called a circulation. A121

maximum flow is a feasible flow whose value is maximum.122

▶ Remark 1. The problem of finding a maximum flow in a flow network with multiple sources123

and sinks can be reduced to the single-source, single-sink case by adding a super source s and124

super sink t, and infinite-capacity arcs (s, si) and (ti, t) for every si ∈ S and ti ∈ T . If the125

original network is planar then this transformation adds two apices to the graph. Throughout126

the paper, whenever we refer to the graph G, we mean the graph G after this transformation,127

i.e., with a single source, the apex s, and a single sink, the apex t.128

The violation of a flow f at a vertex v is defined by vio(f, v) = max{0, f in(v) − c(v)}.129

Thus, if f is a feasible flow then vio(f, v) = 0 for all vertices v. The violation of the flow f is130

defined to be vio(f) = maxv∈V (G) vio(f, v).1131

A preflow ρ is acyclic if there is no cycle C such that ρ(e) > 0 for every arc e ∈ C. A132

preflow saturates an arc e if ρ(e) = c(e).133

1 We define violations only with respect to flows (rather than preflows) because we will only discuss
preflows in the context of flow networks without finite vertex capacities.
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The sum of two preflows ρ and η is defined as follows. For every arc e ∈ E(G), (ρ+η)(e) =134

max{0, ρ(e) + η(e)− ρ(rev(e))− η(rev(e))}. Multiplying the preflow ρ by some constant c to135

get the flow cρ is defined as (cρ)(e) = c · ρ(e) for all e ∈ E(G).136

The residual capacity of an arc e with respect to a preflow ρ, denoted by cρ(e), is137

c(e)− ρ(e) + ρ(rev(e)). The residual graph of a flow network G with respect to a preflow ρ is138

the graph G where the capacity of every arc e ∈ E(G) is set to cρ(e). It is denoted by Gρ. A139

path of G is called augmenting or residual (with respect to a preflow ρ) if it is also a path of140

Gρ.141

Suppose G and H are flow networks such that every arc in G is also an arc in H. If f ′ is a142

(pre)flow in H then the restriction of f ′ to G is the (pre)flow f in G defined by f(e) = f ′(e)143

for all e ∈ E(G).144

3 An algorithm for maximum flow in k-apex graphs145

In this section we introduce a sequential implementation of the parallel highest-distance146

Push-Relabel algorithm of Goldberg and Tarjan [4], and use it in the algorithm of Borradaile147

et al. [2] for maximum flow in k-apex graphs. We first give a high-level description of the148

Push-Relabel algorithm.149

3.1 The Push-Relabel algorithm [4]150

Let H be a flow network (not necessarily planar) with source s and sink t, arc capacities151

c : E(H) → R, and no finite vertex capacities. The Push-Relabel algorithm maintains a152

feasible preflow function, ρ, on the arcs of H. A vertex u is called active if ex(ρ, u) > 0. The153

algorithm starts with a preflow that is zero on all arcs, except for the arcs leaving the source154

s, which are saturated. Thus, all the neighbors of s are initially active. When the algorithm155

terminates, no vertex is active and the preflow function is guaranteed to be a maximum flow.156

The algorithm also maintains a label function h (also known as distance or height function)157

over the vertices of H. The label function h : V (H)→ N is valid if h(s) = |V (H)|, h(t) = 0158

and h(u) ≤ h(v) + 1 for every residual arc (u, v) ∈ E(Hρ).159

The algorithm progresses by performing two basic operations, Push and Relabel. A160

Push operation applies to an arc (u, v) if (u, v) is residual, ex(ρ, u) > 0, and h(u) =161

h(v) + 1. The operation moves excess flow from u to v by increasing the flow on e by162

min{ex(ρ, u), c(e)− ρ(e)}.163

The other basic operation, Relabel(u), assigns u the label h(u) = min{h(v) : (u, v) ∈164

E(Hρ)} + 1 and applies to u only if u is active and h(u) is not greater than the label of165

any neighbor of u in Hρ. In other words, Relabel applies to an active vertex u only if the166

excess flow in u cannot be pushed out of u (because h(u) is not high enough). The algorithm167

performs applicable Push and Relabel operations until no vertex is active.168

To fit our purposes, we think of the algorithm as one that only maintains explicitly169

the excess ex(ρ, v) and residual capacity cρ(e) of each vertex v and arc e of H. The170

preflow ρ is implicit. In this view, a Push(u, v) operation decreases ex(ρ, u) and cρ(u, v) by171

min{ex(ρ, u), cρ(u, v)} and increases ex(ρ, v) and cρ(v, u) by the same amount.172

We reformulate Goldberg and Tarjan’s correctness proof of the generic Push-Relabel173

algorithm to fit this view.174

▶ Lemma 2 ([4]). Any algorithm that performs applicable Push and Relabel operations in175

any order satisfies the following properties and invariants:176
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(1) ex(ρ, ·) and cρ(·) are non-negative.2177

(2) The function h is a valid labeling function.178

(3) For all v ∈ V , the value of h(v) never decreases, and strictly increases when Relabel(v)179

is called.180

(4) h(v) ≤ 2|V (H)| − 1 for all v ∈ V (H).181

(5) Immediately after Push(u, v) is performed, either (u, v) is saturated or u is inactive.182

Proof. Properties (1) and (5) are immediate from the definition of Push and the fact that183

excess and residual capacities only change during Push operations. Property (2) corresponds184

to Lemma 3.1 in [4], Property (3) is proved in Lemma 3.6 in [4], and Property (4) in Lemma185

3.7 in [4]. ◀186

▶ Lemma 3. [4, Lemma 3.3] Properties (1), (2) imply that there is no augmenting path187

from s to t at any point of the algorithm.188

▶ Lemma 4. [4, Lemma 3.8] Properties (3), (4) imply that the number of Relabel operations189

is at most 2|V (H)| − 1 per vertex and at most 2|V (H)|2 overall.190

▶ Lemma 5. [4, Lemmas 3.9, 3.10] Properties (1)-(5) imply that the number of Push191

operations is O(|V (H)|2|E(H)|).192

By Lemma 4 and Lemma 5, the algorithm terminates. Since upon termination no vertex is193

active, the implicit preflow ρ is in fact a feasible flow function. By Lemma 3 ρ is a maximum194

flow from s to t.195

Variants of the Push-Relabel algorithm differ in the order in which applicable Push and196

Relabel operations are applied. Some variants, such as FIFO, highest-distance, maximal-197

excess, etc., guarantee faster termination than the O(|V (H)|2|E(H)|) guarantee given above.198

3.2 A sequential implementation of the parallel highest-distance199

Push-Relabel algorithm200

We present a sequential implementation of the parallel highest-distance Push-Relabel al-201

gorithm, which we call Batch-Highest-Distance. This algorithm attempts to push flow on202

multiple edges simultaneously in an operation called Bulk-Push. In that sense, it resembles203

the parallel version of the highest-distance Push-Relabel algorithm. It is important to note,204

however, that Bulk-Push is a sequential operation and not a parallel/distributed one.205

We define Bulk-Push, a batched version of the Push operation. Bulk-Push(U, W ) operates206

on two sets of vertices, U and W . It is applicable under the following requirements:207

(i) ex(u) > 0 for all u ∈ U .208

(ii) There exists an integer h such that h(u) = h and h(w) = h − 1 for all u ∈ U and209

w ∈W .210

(iii) There is a residual arc (u, w) for some u ∈ U and w ∈W .211

Note that in a regular Push-Relabel algorithm, conditions (i) and (ii) imply that Push(u, w)212

is applicable to any residual arc (u, w) with u ∈ U and w ∈W . Condition (iii) guarantees213

there is at least one such arc. Bulk-Push pushes as much excess flow as possible from vertices214

in U to vertices in W so that after Bulk-Push the following property holds:215

(5*) Immediately after Bulk-Push(U, W ) is called, for all u ∈ U and w ∈W , either (u, w) is216

saturated or u is inactive.217

2 This corresponds to the function ρ being a feasible preflow.
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We replace property (5) with the more general property (5*) in Lemma 2 and Lemma 5.218

With this modification, Lemmas 2, 3, 4 and 5 apply to our sequential implementation. The219

proofs from [4] need no change except replacing Push with Bulk-Push. Hence, our variant220

terminates correctly with a maximum flow from s to t.221

▶ Remark. One may think of Bulk-Push(U, W ) as performing in parallel all Push operations222

on arcs whose tail is in U and whose head is in W . However, not every maximum flow223

with sources U and sinks W can be achieved as the sum of flows pushed by multiple Push224

operations. For example, consider the case where U consists of a single vertex u, with225

ex(u) = 2, W = {w1, w2}, and the residual capacities of (u, w1) and (u, w2) are both 2.226

Bulk-Push(U, W ) may push one unit of excess flow from u on each of (u, w1) and (u, w2), but227

Push(u, wi) would push 2 units of flow on (u, wi), and no flow on the other arc. Therefore, the228

correctness of this variant cannot be argued just by simulating Bulk-Push by multiple Push229

operations. Instead we chose to argue correctness by stating the generalized property (5*).230

We now discuss a concrete policy for choosing which Bulk-Push and Relabel operations231

to perform in the above algorithm. This policy is similar, but not identical, to the highest-232

distance Push-Relabel algorithm [4, 3]. As long as there is an active vertex, the algorithm233

repeatedly executes the following two steps, which together are called a pulse. Let hmax234

be the maximum label of an active vertex. That is, hmax = max{h(v) : ex(ρ, v) > 0}. Let235

Hmax be the set of all the active vertices whose height is hmax. In the first step of the pulse,236

the algorithm invokes Bulk-Push(Hmax, W ) where W is the set of all vertices w ∈ V such237

that h(w) = hmax − 1.3 In the second step of the pulse, the algorithm applies the Relabel238

operation to all remaining active vertices in Hmax in arbitrary order.239

Algorithm 1 Batch-Highest-Distance(G, c)

1: Initialize h(·), cρ(·) and ex(·)
2: while there exists an active vertex do
3: hmax ← max{h(v) : ex(ρ, v) > 0}
4: Hmax ← {v ∈ V (H) : ex(ρ, v) > 0, h(v) = hmax}
5: W ← {w ∈ V (H) : h(w) = hmax − 1}
6: Bulk-Push(Hmax, W )
7: Relabel all active vertices in Hmax in arbitrary order
8: end while

▶ Remark. The crucial difference between this policy and the highest-distance Push-Relabel240

algorithm [4, 3] is that in the highest-distance algorithm a vertex u with height hmax is241

relabeled as soon as no more Push operations can be applied to u. In contrast, our variant242

first pushes flow from all vertices with height hmax and only then relabels all of them.243

We partition the pulses into two types according to whether any vertices are relabeled244

in the relabel step of the pulse. A pulse in which at least one vertex is relabeled is called245

saturating. All other pulses are called non-saturating.4246

3 Formally it may be that Bulk-Push(Hmax, W ) is not applicable because condition (iii) is not satisfied,
e.g., when W = ∅. In such cases Bulk-Push does not push any flow. Condition (iii) is essential for
the termination of the generic generalized algorithm, which may repeat such empty calls to Bulk-Push
indefinitely. However, we prove in Lemma 6 that in our specific policy there are O(|V (H)|2) pulses,
regardless of the flow pushed (or not pushed) by Bulk-Push in each pulse.

4 This is a generalization of the notions of saturating and non-saturating Push operations in [4].
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By Lemma 4, the total number of Relabel operations executed by the batch-highest-247

distance algorithm is O(|V (H)|2). We now prove the same bound on the number of Bulk-Push248

operations.249

▶ Lemma 6. The number of pulses (and hence also the number of calls to Bulk-Push) executed250

by the batch-highest-distance algorithm is O(|V (H)|2).251

Proof. Note that the Relabel step of a saturating pulse consists of at least one call to Relabel252

which strictly increases the height of an active vertex v whose height (before the increase)253

was hmax. Hence, a saturating pulse strictly increases the value of hmax. The fact that254

the height of each vertex never decreases and is bound by 2|V (H)| implies that (i) there255

are O(|V (H)|2) saturating pulses, and (ii) the total increase in hmax over all saturating256

Bulk-Push operations is O(|V (H)|2).257

As for non-saturating pulses, note that since excess flow is always pushed to a vertex with258

lower height, the push step of a pulse does not create excess in any vertex with height greater259

than or equal to hmax, so all vertices with height greater than hmax remain inactive during260

the pulse. By property (5*), for every u ∈ Hmax and w ∈W , either (u, w) is saturated, or u261

is inactive. Since the pulse is non-saturating, it follows that all the vertices in Hmax become262

inactive during the pulse. Hence, the value of hmax strictly decreases during a non-saturating263

pulse. Since hmax ≥ 0, the total decrease in hmax is also O(|V (H)|2), so there are O(|V (H)|2)264

non-saturating pulses. ◀265

Note that we do not claim that implementing the Bulk-Push operation by applying266

applicable Push(u, w) operations for u ∈ U , w ∈ W until no more such operations can be267

applied would result in fewer Push operations than the O(|V (H)|2|E(H)|) bound of Lemma 5268

for the generic Push-Relabel algorithm. However, in Section 4 we will show a situation269

where each call to Bulk-Push can be efficiently implemented using a single invocation of a270

multiple-source multiple-sink algorithm in a planar graph.271

3.3 The algorithm of Borradaile et al. for k-apex graphs [2]272

The algorithm of Borradaile et al. [2, Section 5] uses the framework of Hochstein and Weihe [6].273

Let H be a graph with a set V × of k apices. Denote V0 = V (H) \ V ×. The goal is to274

compute a maximum flow in H from a source s ∈ V (H) to a sink t ∈ V (H). We assume275

that s and t are apices. This is without loss of generality since treating s and t as apices276

leaves the number of apices in O(k). Let K× be a complete graph over V ×. The algorithm277

computes a maximum flow ρ from s to t in H by simulating a maximum flow computation278

from s to t in K× using the Push-Relabel algorithm. Whenever a Push operation is performed279

on an arc (u, v) of K× it is implemented by pushing flow from u to v in the graph Huv,280

induced by V0 ∪ {u, v} on the residual graph of H with respect to the flow computed so far.281

Note that, because no vertex of V0 is an apex of H, Huv is a 2-apex graph with apices u, v.282

Borradaile et al. use this fact to compute a maximum flow from u to v in Huv as follows.283

They split u into multiple copies, each incident to a different vertex w for which (u, w) is284

an arc of Huv. A similar process is then applied to v. Note that the resulting graph is285

planar. A maximum flow from u to v in Huv is equivalent to a maximum flow with sources286

the copies of u and sinks the copies of v in the resulting graph. This flow can be computed287

by the multiple-source multiple-sink maximum flow algorithm (the main result in [2]) in288

O(|V (H)| log3 |V (H)|) time.289

The correctness of implementing the Push-Relabel algorithm on K× in this way was290

proved by Hochstein and Weihe [6] by proving essentially that the algorithm satisfies the291

CVIT 2016
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properties in Lemma 2. Borradaile et al. used the FIFO policy of Push-Relabel, which292

guarantees that the number of Push operations is O(k3), so the overall running time of their293

algorithm is O(k3|V (H)| log3 |V (H)|).294

3.4 An algorithm for maximum flow in k-apex graphs295

We use the algorithm of Borradaile et al. for maximum flow in k-apex graphs from the296

previous section, but use our new batch-highest-distance Push-Relabel algorithm instead of297

the FIFO Push-Relabel algorithm to compute the maximum flow in K×. Note that, in order298

to implement the batch-highest-distance algorithm on K× we only need to maintain the299

excess ex(ρ, v) and labels h(v) of each vertex v ∈ K×, and to be able to implement Bulk-Push300

so that after the execution, property (5*) is fulfilled. We do not define a flow function in301

K× nor do we explicitly maintain residual capacities of arcs of K×. Instead, we maintain a302

preflow ρ in H, and define that an arc (u, v) of K× is residual if and only if there exists a303

residual path from u to v in Hρ that is internally disjoint from the vertices of V ×. Under304

this definition, there is no path of residual arcs in K× starting at s and ending at t if and305

only if there is no such path in H. Since K× has O(k) vertices, by Lemma 6, the algorithm306

performs O(k2) pulses.307

We next describe how a Bulk-Push(U, W ) operation in K× is implemented. Let A = U∪W .308

Let HA be the graph obtained from Hρ by deleting the vertices V × \ A. Bulk-Push(U, W )309

in K× is implemented by pushing a maximum flow in HA with sources the vertices U and310

sinks the vertices W , with the additional restriction that the amount of flow leaving each311

vertex u ∈ U is at most the excess of u. The efficiency of the procedure depends on how312

fast we can compute the maximum flow in HA. We denote the time to execute a single313

Bulk-Push operation in the graph HA by TBP . Note that TBP = Ω(k), as it takes Ω(k) time314

to construct HA from Hρ.315

The proof of correctness is an easy adaptation of the proof of Hochstein and Weihe [6].316

We cannot use their proof without change because Hochstein and Weihe considered only Push317

operations along a single arc of K× rather than the Bulk-Push operations which involves318

more than a single pair of vertices of K×.319

▶ Lemma 7. Maximum flow in k-apex graphs can be computed in O(k2 · TBP ) time.320

Proof. We first show that the properties (1)-(4) in the statement of Lemma 2, and the321

generalized property (5*) from Section 3.2 hold.322

Property (1) holds since Bulk-Push(U, W ) limits the amount of flow pushed from each323

vertex u ∈ U by the excess of u. Properties (3) and (4) hold without change since Relabel is324

not changed.325

To show property (5*) holds, recall that an arc (u, w) of K× is residual if there exists,326

in the residual graph Hρ with respect to the current preflow ρ, a residual path from u to327

w that is internally disjoint from any vertex of V ×. With this definition it is immediate328

that property (5*) holds, since our implementation of Bulk-Push(U, W ) pushes a maximum329

flow in HA from U that is limited by the excess flow in each vertex of U . Hence, after330

Bulk-Push(U, W ) is executed, for every u ∈ U and w ∈ W , either there is no residual path331

from u to w in Hρ that is internally disjoint from V ×, or u is inactive.332

As for property (2), since we did not change Relabel, h remains valid after calls to Relabel.333

It remains to show that h remains a valid labeling after Bulk-Push(U, W ). Consider two334

vertices a, b ∈ V ×. We will show that after Bulk-Push(U, W ), either the arc (a, b) of K× is335

saturated (i.e., is no residual path from a to b in Hρ), or h(a) ≤ h(b) + 1. The flow pushed336
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ba

w

u

c
d

Q

P P ′

Figure 1 Illustration of property (2) in the proof of Lemma 7. A Bulk-Push(U, W ) operation
pushes flow along paths P and P ′ (dashed red paths). If Q (blue solid path) is residual after the
Bulk-Push operation then the dotted black paths were residual before.

(in HA) by the call Bulk-Push(U, W ) can be decomposed into a set P of flow paths, each of337

which starts at a vertex of U and ends at a vertex of W .338

Assume that after performing Bulk-Push(U, W ) there is an augmenting a-to-b path, Q in339

Hρ. If Q does not intersect any path P ∈ P then Q was residual also before Bulk-Push(U, W )340

was called, so h(a) ≤ h(b) + 1 because h was a valid labeling before the call. Otherwise, Q341

intersects some path in P. Let c, d be the first and last vertices of Q that also belong to342

paths in P. Let P, P ′ ∈ P be paths such that c ∈ P and d ∈ P ′. Let w ∈ W be the last343

vertex of P and let u ∈ U be the first vertex of P ′. See Figure 1 for an illustration. Then,344

before Bulk-Push(U, W ) was called, Q[a, c] ◦ P [c, w] was a residual path from a to w, and345

P ′[u, d] ◦Q[d, b] was a residual path from u to b. Since h was a valid labeling before the call,346

we have347

h(u) ≤ h(b) + 1 and h(a) ≤ h(w) + 1.348

Since h(u) = h(w) + 1 it follows that349

h(a) ≤ h(w) + 1 = h(u) ≤ h(b) + 1,350

showing property (2).351

We have shown that properties (1)-(4) and (5*) hold. Hence, by Lemmas 6 and 4, the352

algorithm terminates after performing O(|V ×|2) = O(k2) Bulk-Push and Relabel operations.353

Since each Relabel takes O(k) time, and each Bulk-Push takes Ω(k) time, the total running354

time of the algorithm is O(k2 · TBP ). By Lemma 3, when the algorithm terminates there is355

no residual path from s to t in K×. By our definition of residual arcs of K× this implies that356

there is no residual path from s to t in Hρ, so ρ is a maximum flow from s to t in H. ◀357

4 A faster algorithm for maximum flow with vertex capacities358

In this section, we give a faster algorithm for computing a maximum flow in a directed359

planar graph with integer arc and vertex capacities bounded by C, parameterized by the360

number k of terminal vertices (sources and sinks). The fastest algorithm currently known for361

this problem is by Wang [13]. It runs in O(k5n polylog(nC)) time. We first sketch Wang’s362

algorithm. We only go into details in the parts of the algorithm that will be modified in our363

algorithm in Section 4.2.364
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4.1 Wang’s algorithm365

Wang’s algorithm uses the following two auxiliary graphs. In both these graphs only the366

arcs are capacitated. Let G be a planar network. Let k be the total number of sources and367

sinks in G. Recall from Remark 1 that we turn G into a 2-apex flow network with a single368

super-source s and super-sink t.369

▶ Definition 8 (The graph G◦). For a flow network G, the network G◦ is obtained by the370

following procedure. For each vertex v ∈ V (G), replace v with an undirected cycle Cv with371

d = deg(v) vertices v1, ..., vd.5 Each arc in Cv has capacity c(v)/2. Connect each arc incident372

to v with a different vertex vi, preserving the clockwise order of the arcs so that no new373

crossings are introduced.374

▶ Definition 9 (The graph G×). Let f be a flow in G. Let X be the set of infeasible vertices,375

i.e., vertices x ∈ V (G) such that f in(x) > c(x). The graph G× is defined as follows. Starting376

with G◦, for each vertex x ∈ X, replace the cycle representing x with two vertices xin, xout
377

and an arc (xin, xout) of capacity c(x).378

Every arc of capacity c > 0 going from a vertex u /∈ Cx to a vertex in Cx becomes an arc379

(u, xin) of capacity c. Similarly, every arc of capacity c > 0 going from a vertex of Cx to a380

vertex u /∈ Cx becomes an arc (xout, u) with capacity c.381

Note that even though G − {s, t} is planar, G× − {s, t} is not. {xin : x ∈ X} ∪ {xout :382

x ∈ X} ∪ {s, t} is an apex set in G×. Thus, G× is a (2|X|+ 2)-apex graph.383

Recall that if H and G are two graphs such that every arc of G is also an arc of H,384

then the restriction of a flow f ′ in H to G is a flow f in G such that f(e) = f ′(e) for all385

e ∈ E(G). Thus we can speak of the restriction of a flow f◦ in G◦, to a flow f in G, and of386

the restriction of a flow f× in G× to a flow f in G.387

Let λ∗ be the value of the maximum flow in G. Wang’s algorithm uses binary search to388

find λ∗. Let λ be the current candidate value for λ∗. The algorithm computes a flow f◦ with389

value λ in the graph G◦. Let f be the restriction of f◦ to G. Wang proves that the set X390

of infeasible vertices under f has size at most k − 2, and that the sum of the violations of391

the vertices in X is at most (k − 2)C. As long as vio(f) > 2k, the algorithm improves f .392

This improvement phase, which will be described shortly, is the crux of the algorithm. If393

vio(f) ≤ 2k, then O(k2) iterations of the classical Ford-Fulkerson algorithm suffice to get rid394

of all the remaining violations.395

The improvement phase of the algorithm is based on finding a circulation g that cancels396

the violations on the infeasible vertices and does not create too much violation on other397

vertices. It can then be shown that adding 1/k · g to the flow f decreases vio(f) by a398

multiplicative factor of roughly 1− 1/k. After O(k log(kC)) iterations of the improvement399

step, vio(f) is at most 2k.400

Wang proves that in order to find the circulation g, it suffices to compute a circulation401

g× in G× that satisfies the following properties:402

1. f× + g× is feasible in G×.403

2. The restriction of f× + g× to G has no violations on vertices of X.404

3. The restriction of f× + g× to G has at most (k − 2) · vio(f) violation on any vertex in405

V (G) \X.406

5 By undirected cycle we mean that there are directed arcs in both directions between every pair of
consecutive vertices of the cycle Cv.
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The desired circulation g is the restriction of g× to G. If no such g× exists then g does not407

exist, which implies that λ > λ∗.408

Wang essentially shows that any algorithm for finding g× in O(T ) time, where T = Ω(n),409

yields an algorithm for maximum flow with vertex capacities in O(kT log(kC) log(nC))410

time. The additional terms stem from the O(k log(kC)) iterations of the improvement411

step, and the log(nC) steps of the binary search. Wang shows how to compute g× in412

T = O(k4n log3 n) time, by eliminating the violation at each vertex of X one after the other413

in an auxiliary graph obtained from G×. Thus, the overall running time of his algorithm is414

O(k5n log3 n log(kC) log(nC)).415

4.2 A faster algorithm for computing g×
416

We propose a faster way of computing the circulation g× by eliminating the violations in417

all the vertices of X in a single shot. Doing so correctly requires some care in defining418

the appropriate capacities in the auxiliary graph, since we only know that for each x ∈ X,419

g× should eliminate at least vio(f, x) units of flow from x, but the actual amount of flow420

eliminated from x may have to be larger. This issue does not come up when resolving the421

violations one vertex at a time as was done by Wang.422

Define an auxiliary graph H as follows. Starting with G×
f× , the residual graph of G×

423

with respect to f×,424

For each x ∈ X, set the capacity of the arc (xin, xout) to be 0 and the capacity of425

(xout, xin) to be c(x).426

Add a super source s′ and arcs (s′, xin) with capacity vio(f, x) for every x ∈ X.427

Add a super sink t′ and arcs (xout, t′) with capacity vio(f, x) for every x ∈ X.428

Note that {s, t} ∪
⋃

x∈X{xin, xout} ∪ {s′, t′} is an apex set of size O(k) in H (recall from429

Remark 1 that s and t are the super source and super sink of the original graph G).430

The circulation g× can be found using the following algorithm. Find a maximum flow h′
431

from s′ to t′ in H using Lemma 7. Convert h′ to an acyclic flow h of the same value using the432

algorithm of Sleator and Tarjan [12] (cf. [13, Lemma 2.5]). If h does not saturate every arc433

incident to s′ and t′, return that the desired circulation g does not exist. Otherwise, h can434

be extended to the desired circulation g× by setting g×(xout, xin) = h(xout, xin) + vio(f, x)435

for every x ∈ X and g×(e) = h(e) for all other arcs.436

The following lemma shows that any single Bulk-Push operation in the algorithm of437

Lemma 7 on H can be implemented by a constant number of calls to the O(n log3 n)-time438

multiple-source multiple-sink maximum flow algorithm in planar graphs of Borradaile et439

al. [2]. There are two challenges that need to be overcome. First, the graph H is O(k)-apex440

graph rather than planar. Second, the algorithm of Borradaile et al. computes a maximum441

flow from multiple sources to multiple sinks, not a maximum flow under the restriction that442

each source sends at most some given limit. This is not a problem in the case of a single443

source, or a limit on just the total value of the flow, since then some of the flow pushed can444

be "undone". When each of the multiple sources has a different limit, undoing the flow from445

one source can create residual paths from another source that did not yet reach its limit.446

▶ Lemma 10. Any single Bulk-Push operation in the execution of the algorithm of Lemma 7447

on the graph H defined above can be implemented in O(n log3 n) time.448

Proof. Let V × = {s, t} ∪
⋃

x∈X{xin, xout} ∪ {s′, t′} be the set of apices of H. Recall that449

the algorithm of Lemma 7 invokes the batch-highest-distance Push-Relabel algorithm on450

a complete graph K× over V ×, and maintains a corresponding preflow in H. Consider a451

single Bulk-Push(U, W ) operation from a set of apices U to a set of apices W . Let ρ denote452

CVIT 2016



23:12 A Faster Algorithm for Max Flow in Directed Planar Graphs with Vertex Capacities

the preflow pushed in H up to this Bulk-Push operation. Let A = U ∪W . To correctly453

implement Bulk-Push(U, W ), we find a flow ρ′ with sources U and sinks W in the graph H,454

which satisfies the following properties:455

(i) For every u ∈ U , ex(ρ + ρ′, u) ≥ 0, and456

(ii) For every u ∈ U and w ∈ W , either ex(ρ + ρ′, u) = 0 or there is no residual path in457

Hρ+ρ′ from u to w that is internally disjoint from V ×.458

Condition (i) guarantees that ρ′ does not push more flow from a vertex u ∈ U than the459

current excess of u. Condition (ii) is condition (5*) from Section 3.2.460

Let H ′′ be the graph obtained from Hρ by deleting the vertices V × \A. Note that the461

absence of residual paths that are internally disjoint from V × in H ′′ is equivalent to the462

absence of such paths in H. We will compute ρ′ using a constant number of invocations of463

the O(n log3 n)-time multiple-source multiple-sink maximum flow algorithm in planar graphs464

of Borradaile et al. [2]. Instead of invoking this algorithm on H ′′, which is not planar, we465

shall invoke it on modified versions of H ′′ which are planar.466

Starting with H ′′, we split each vertex w ∈W into deg(w) copies. Each arc e that was467

incident to w before the split is now incident to a distinct copy of w, and is embedded so468

that it does not cross any other arc in the graph. Let H ′ denote the resulting graph, and let469

W ′ denote the set of vertices created as a result of splitting all the vertices of W .470

The set W ′ replaces W as the set of sinks of the flow ρ′ we need to compute. Note that471

U is an apex set in H ′. We then build the flow ρ′ gradually, by computing the following472

steps, each using a single invocation of the multiple-source multiple-sink maximum flow473

algorithm of Borradaile et al. in O(n log3 n) time. In what follows, when we say that the474

flow ρ′ satisfies condition (ii) for a subset U ′ of U we mean that for every u ∈ U ′ and w ∈W ,475

either ex(ρ + ρ′, u) = 0 or there is no residual path in Hρ+ρ′ from u to w that is internally476

disjoint from V ×.477

(1) If s ∈ U , starting with H ′, we split s into deg(s) copies. Each arc e that was incident478

to s before the split is now incident to a distinct copy of s, and is embedded so that it479

does not cross any other arc in the graph. We also delete all other vertices of U . We480

compute in the resulting graph, which is planar, a maximum flow with sources the copies481

of s and the sinks W ′. Let ρ′
s be the flow computed. If |ρ′

s| > ex(ρ, s), we decrease |ρ′
s|482

by pushing |ρ′
s| − ex(ρ, s) units of flow back from W ′ to the copies of s. This can be483

done in O(n) time in reverse topological order w.r.t. ρ′
s (cf. [2, Section 1.4]). We view ρ′

s484

as a flow in H, and set ρ′ = ρ′
s. By construction ρ′ satisfies condition (i), and satisfies485

condition (ii) for the subset {s}.486

(2) If t ∈ U , starting with H ′
ρ′ , we repeat step (1) with t taking the role of s to compute a487

flow ρ′
t. Set ρ′ ← ρ′ + ρ′

t By construction of ρ′
t, ρ′ now satisfies satisfies condition (i),488

and satisfies condition (ii) for the subset U ∩ {s, t}.489

(3) Let U in be the set U ∩ {xin : x ∈ X}. If U in ̸= ∅, starting with H ′
ρ′ , we delete all the490

vertices of U that are not in U in. Note that, since the resulting graph does not contain491

s, t, s′, t′, nor any xout for any x ∈ X, and since arcs incident to xin only cross those492

incident to xout, the resulting graph is planar. For every xin ∈ U in we add a vertex x′
493

and an arc (x′, xin) with capacity ex(ρ, xin). The resulting graph is still planar. We494

compute a maximum flow ρ′
in with sources {x′ : xin ∈ U in} and sinks W ′. We view ρ′

in495

as a flow in H, and set ρ′ ← ρ′ + ρ′
in. By construction of ρ′

in, ρ′ now satisfies condition496

(i), and satisfies condition (ii) for the subset U ∩ ({s, t} ∪ U in).497

(4) We repeat step (3) with out taking the role of in to compute a flow ρ′
out. By construction498

of ρ′
in, ρ′ now satisfies condition (i), and satisfies condition (ii) for U∩({s, t}∪U in∪Uout).499

Since s′ and t′ are the source and sink of the flow computed by the Push-Relabel algorithm,500



J. Enoch, K. Fox, D. Mesica and S. Mozes 23:13

they are never active vertices, so they never belong to U . Hence {s, t} ∪ U in ∪ Uout ⊇ U ,501

and conditions (i) and (ii) are fully satisfied by ρ′. ◀502

Combining Lemma 10 and Lemma 7, we get the following lemma.503

▶ Lemma 11. The algorithm described above finds a circulation g× such that504

1. f× + g× is feasible in G×.505

2. The restriction of f× + g× to G has no violations at vertices of X.506

3. The restriction of f× + g× to G has violation at most (k − 2) · vio(f) at any vertex in507

V (G) \X.508

in O(k2n log3 n) time if such a circulation exists.509

Proof. We first analyze the running time. Computing the graph H can be done in O(n)510

time. Computing the flow h′ in H using the algorithm of Lemma 7 takes O(k2 · TBP ) time.511

By Lemma 10, TBP = O(n log3 n) for the graph H. Transforming h′ to an acyclic flow h512

using the algorithm of Sleator and Tarjan [12] takes O(n log n) time. Finally, computing g×
513

from h takes O(n) time. Hence, the total time to compute g× is O(k2n log3 n).514

In order to prove the correctness of the algorithm, we will first prove that there exists a515

feasible flow h in H that saturates every arc incident to s′ and t′ if and only if there exists a516

circulation g× in G× that satisfies conditions (1) and (2) in the statement of the lemma.517

(⇐) Assume the circulation g× exists in G×. Define a flow h in H as follows. For518

every arc e ∈ E(H) not of the form (xout, xin) set h(e) = g×(e). For every x ∈ X, set519

h(xout, xin) = g×(xout, xin)− vio(f, x), h(s, xin) = vio(f, x) and h(xout, t) = vio(f, x). Since520

the restriction of f× +g× to G has no violations on the vertices of x, g×(xout, xin) ≥ vio(f, x),521

so h(xout, xin) ≥ 0 and h is a well defined flow. By definition, the flow h saturates every arc522

incident to s′ and t′.523

To show that h is feasible in H it is enough to show that h(xout, xin) ≤ c(x) for every524

x ∈ X (on all other arcs h is feasible because g× is feasible in G×
f×). Let x ∈ X. Since f× +g×

525

is feasible in G×, g×(xout, xin) ≤ f×(xin, xout). Since h(xout, xin) = g×(xout, xin)−vio(f, x),526

h(xout, xin) ≤ f×(xin, xout)− vio(f, x) = c(x).527

(⇒) Assume there exist a feasible flow h in H that saturates every arc incident to s′
528

and t′, and let g× be the circulation obtained from h as described above. We show that529

f× + g× is feasible in G×. On all arcs e not of the form (xout, xin), g×(e) = h(e) and the530

capacity of e in G×
f× equals the capacity of e in H. Therefore, since h is a feasible flow in531

H, g× is feasible on e in G×
f× , so f× + g× is feasible on e in G×. We now focus on the532

arcs (xout, xin) for each x ∈ X. Let e = (xout, xin). Observe that 0 ≤ h(e) ≤ c(x). Since533

g×(e) = h(e) + vio(f, x) we have that vio(f, x) ≤ g×(e) ≤ c(x) + vio(f, x) = f×(e). Since534

(f× +g×)(xin, xout) = f×(xin, xout)−g×(xout, xin), we have 0 ≤ (f× +g×)(xin, xout) ≤ c(x),535

so f× + g× is feasible in G×.536

To finish proving the (⇒) direction, we show that the restriction of f× + g× to G has537

no violations on the vertices of X. By definition of G× and of residual graph, the only arcs538

in G×
f× that can carry flow out of xin are the reverses of the arcs that carry flow into x in539

f , and the only arcs that can carry flow into xout are the reverses of the arcs that carry540

flow out of x in f . We will show that (f + g)in(x) ≤ c(x) by considering separately the541

contribution of the flow on arcs of G that in G× are incident to xout, and arcs of G that in542

G× are incident to xin.543

The only arc of f× that carries flow into xout is (xin, xout). Thus, there is no arc e of G544

such that f×(e) carries flow into xout. Since g× only carries flow into xout along the reverses545

of arcs that carry flow out of xout in f× and since for every such arc e′, g×(e′) ≤ f×(rev(e′)),546

there is also no arc e of G such that (f× + g×)(e) carries flow into xout.547
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The total flow that f× carries into xin is c(x) + vio(f, x). Let z denote the total amount548

of flow that g× carries into xin. Since the only arc incident to xin that carries flow in g×
549

and does not belong to G is (xout, xin), the total amount of flow that g× carries into xin on550

arcs that belong to G is z − g×(xout, xin). On the other hand, g× carries z units of flow out551

of xin, and all of this flow is pushed along the reverses of arcs that carry flow into xin in f×
552

(and also belong to G). Hence, the total amount of flow that f× + g× carries into xin on553

arcs that belong to G is c(x) + vio(f, x) + (z − g×(xout, xin))− z. Therefore,554

(f + g)in(x) = c(x) + vio(f, x)− g×(xout, xin))555

= c(x) + vio(f, x)− (h(xout, xin) + vio(f, x))556

= c(x)− h(xout, xin)557

≤ c(x).558

We have thus shown that the algorithm computes a flow g× satisfying conditions (1) and559

(2) in the statement of the lemma. To see that condition (3) is also satisfied, note that the value560

of the flow h is
∑

x∈X vio(f, x) ≤ (k − 2) · vio(f). Since h is acyclic, hin(v) ≤ (k − 2) · vio(f)561

for all v ∈ H. Since for all v ∈ V (G) \X, f in(v) ≤ c(v), and hin(v) = (g×)in(v), it follows562

that the violation of f× + g× at v is at most (k − 2) · vio(f).563

◀564

Using the O(k2n log3 n)-time algorithm of Lemma 11 in the improvement phase of Wang’s565

algorithm instead of using Wang’s O(k4n log3 n)-time procedure for this phase results in a566

running time of O(k3n polylog(nC)) for finding a maximum flow in G.567

4.3 The case k = o(log2 n)568

As previously mentioned, we can use an alternative algorithm to the one of Lemma 11 for569

the case of k = o(log2 n). This algorithm computes the circulation g× in O(k3n log n) time.570

We use the same auxiliary graph H as defined above and again compute a maximum flow h′
571

from s′ to t′ in H. Let V × = {s, t} ∪
⋃

x∈X{xin, xout} ∪ {s′, t′} ∪ S ∪ T be the set of apices572

of H along with the original sources S and sinks T of G, and let K× be the complete graph573

on V ×. As in the strategy of Borradaile et al. [2], we simulate a maximum flow computation574

from s′ to t′ in K× using the FIFO Push-Relabel algorithm. Each Push(u, v) operation can be575

performed in only O(n log n) time. In short, we push along the arc (u, v) directly if u or v is576

one of s, t, s′, or t′. If u ∈ {xin
1 , xout

1 } and v ∈ {xin
2 , xout

2 } for two distinct vertices x1, x2 ∈ X,577

then we can directly push from u to v in a planar subgraph of H using the single-source578

single-sink maximum flow algorithm in planar graphs of Borradaile and Klein [1]. Finally, if579

u, v ∈ {xin, xout} for some x ∈ X, we can split both u and v into several copies that all lie580

on a common face. We can then use a divide-and-conquer procedure of Miller and Naor [10]581

to perform the Push in O(n log n) time. See Appendix A for details. By using the better of582

the two procedures for computing g×, we get our main theorem.583

▶ Theorem 12. A maximum flow in an n-vertex planar flow network G with integer arc and584

vertex capacities bounded by C can be computed in O(k3n log n min(k, log2 n) log(kC) log(nC))585

time.586
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(b)

xin xout

(c)

xin

xout1

xout2

xout3

xout4
Cx

(a)

Figure 2 Illustration of the auxiliary graphs used in the algorithm of Lemma 10. Only a portion
of the graphs around some vertex x ∈ X is shown. (a) the graph G◦. (b) the graph H. Note that
the only crossings are between arcs incident to xin and arcs incident to xout. (c) the graph H ′ in
the case that xout belongs to W . xout is split into multiple copies, eliminating all arc crossings.

Appendices587

A Alternative algorithm for k = o(log2 n)588

We now provide an alternative algorithm to the one given in the previous section that is589

faster for small k = o(log2 n). Specifically, we describe an algorithm for computing the590

circulation g× that runs in O(k3n log n) time instead of the O(k2n log3 n) time required by591

the algorithm of Lemma 11. The final running time for computing a maximum flow with592

integer arc and vertex capacities is therefore O(k4n log n log(kC) log(nC)).593

We use the same auxiliary graph H as defined above and again compute a maximum594

flow h′ from s′ to t′ in H. Let V × = {s, t} ∪
⋃

x∈X{xin, xout} ∪ {s′, t′} ∪ S ∪ T be the595

set of apices of H along with the original sources S and sinks T of G, and let K× be the596

complete graph on V ×. Instead of using the batch-highest-distance Push-Relabel algorithm597

as in Lemma 7, we more directly follow the strategy of Borradaile et al. [2] by simulating a598

maximum flow computation from s to t in K× using the FIFO Push-Relabel algorithm. We599

do not wish to directly use the multiple-source multiple-sink flow algorithm of Borradaile et600

al. [2], because then each of the O(k3) Push operations would take O(n log3 n) time. But as601

above, we may take advantage of the structure of H to perform each Push operation more602

quickly.603

▶ Lemma 13. Any single (individual arc) Push operation in the graph H defined above can604

be implemented in O(n log n) time.605

Proof. Consider a single Push(u, v) operation where u, v ∈ V ×. Let ρ denote the preflow606

pushed in H by the FIFO Push-Relabel algorithm up to this Push operation. We find a flow ρ′
607

with source u and sink v in the graph H such that either ex(ρ + ρ′, u) = 0 or ex(ρ + ρ′, u) > 0608

and there is no residual path in Hρ+ρ′ from u to v that is internally disjoint from V ×.609

Let H ′ be the graph obtained from Hρ by deleting the vertices V × \ {u, v}. Instead610

of invoking the O(n log3 n)-time multiple-source multiple-sink maximum flow algorithm of611

Borradaile et al. [2], we will compute ρ′ as follows. As before, we must consider a few different612

cases.613

If u = s or v = s, then v ∈ S or u ∈ S, respectively. We push up to ex(ρ, u) units of flow614

directly along the arc (u, v) in constant time, either saturating the arc or reducing the615

excess flow in u to 0. We may similarly push directly along the arc (u, v) in constant616
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time if one of u or v is one of t, s′, or t′ instead.617

If u ∈ {xin
1 , xout

1 } and v ∈ {xin
2 , xout

2 } for two distinct vertices x1, x2 ∈ X, then the graph618

H ′ is planar. We add a vertex u′ and an arc (u′, u) with capacity ex(ρ, u) and compute the619

maximum flow ρ′ with source u′ and sink v using the single-source single-sink maximum620

flow algorithm in planar graphs of Borradaile and Klein [1].621

If neither of the above cases apply, then u, v ∈ {xin, xout} for some x ∈ X. If arc (u, v)622

has positive residual capacity, we push up to ex(ρ, u) units of flow directly along it in623

constant time. Similar to Step 1 in the proof of Lemma 10, starting with H ′, we split u624

into deg(u) copies so that each arc that was incident to u is now incident to a distinct625

copy of u. Similarly, we split v into deg(v) copies so each arc that was incident to v is626

now incident to a distinct copy of v. The resulting graph is planar, and all copies of u627

and v lie on a common face. As mentioned by Borradaile et al. [2, p. 1280], we can then628

plug the linear time shortest paths in planar graphs algorithm of Henzinger et al. [5] into629

a divide-and-conquer procedure of Miller and Naor [10] to compute a maximum flow ρ′
u630

with sources the copies of u and sinks the copies of v in O(n log n) time. Again, if the631

value of this flow is greater than the excess of u, we push the appropriate amount of flow632

back to the copies of u in O(n) time. Finally, we view ρ′
u as a flow in H to set ρ′ = ρ′

u.633

◀634

As a consequence of the previous lemma, we immediately get a variation of Lemma 11 with635

a running time of O(k3n log n). We use our O(k3n log n) time algorithm in the improvement636

phase of Wang’s algorithm whenever k = o(log2 n).637
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