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Abstract. We investigate procurement in a setting in which the buyer is bound by sourc-
ing rules. Sourcing rules may limit the minimum and maximum amounts of business that
can be awarded to a single supplier or dictate the minimum number of suppliers who
are awarded business, thus necessitating split awards. The buyer announces the splits
before the auction, and suppliers bid accordingly. We consider two auction formats: the
sealed-bid first-price auction, and a version of the open-bid descending-price auction. We
characterize the suppliers’ symmetric equilibrium bidding strategy for both formats and
find that the two formats yield the same expected buyer’s cost. We characterize the cost of
multisourcing, showing among other things that it is always costly for the buyer to split
its award among more suppliers if the suppliers’ costs are regularly distributed, but that
doing so can actually reduce the buyer’s expected auction payment if the suppliers’ costs
are not regularly distributed. The results from controlled laboratory experiments, involv-
ing human subjects, indicate that expected cost equivalence fails when costs are regularly
distributed because suppliers bid more aggressively in the sealed-bid auction. However,
for split-award auctions with nonregularly distributed costs, the sealed-bid prices are
actually higher than predicted by theory. We explain these mismatches between observa-
tions and theory through a behavioral model based on bidders’ aversion to anticipated
regret. The experimental results indicate that the theory does a good job of predicting
the relationship between the buyer’s average cost and the award splits, as well as the cost
of multisourcing. Importantly, the experiments confirm that when suppliers’ costs come
from a nonregular distribution, it may be to the buyer’s advantage to diversify the supply
base more than is strictly necessitated by sourcing rules.
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1. Introduction
Getting a low cost of input is often thought of as the
primary goal of a procurement auction. However, in
reality, the quest for low input costs must be tempered
by other, both short- and long-range considerations
of the firm. Rather than setting its procurement man-
agers loose to minimize purchase costs, many firms
establish guidelines for procurement managers that
ensure that such short- and long-run considerations
are addressed. These “sourcing rules” establish things
like the maximum order size that can be allocated to
any one supplier (for resilience to supply disruptions)
and the minimum number of suppliers who must be
awarded business (to foster the long-run health of the
suppliers and ensure viable sourcing options in the
future). But multisourcing also increases the total pur-
chase cost, as well as administrative costs associated
withmanagingmultiple suppliers. Therefore, sourcing
rules often also specify aminimum amount of business

that can be awarded to any active supplier. Hohner
et al. (2003) and Bichler et al. (2006) discuss these and
other sourcing rules used in practice for the procure-
ment of materials at Mars, Incorporated.

One straightforward and transparent approach that
buyers often use in practice, called a split-award auc-
tion, is to announce, prior to the procurement auc-
tion, that the best bidder will be allocated the highest
share x% of the contract, the second-best bidder will be
allocated the second-highest share y% of the contract,
and so on. (Of course, the allocation that the buyer
announces must be consistent with the firm’s sourcing
rules.) Such split-award auctions show up in various
settings, ranging from advertising services to packag-
ing.1 For example, a buyer one of the authors interacted
with used them for buying printed labels for canned
food. The buyer decided that three printing suppliers
would be awarded volume over a three-year horizon.
The suppliers understood that each year there would
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be six to 12 label changes (reflecting a holiday season,
sporting event sponsorship, etc.), and when a change
happened, they would have to compete for volume in a
three-way split-award auction. Changeover costs (e.g.,
spending time fine-tuning a new label’s color fidelity
for branding) made suppliers highly motivated to win
as much volume as possible. To ensure that each sup-
plier covered its changeover costs and made profit, the
buyer used a minimum split of around 20%, choosing
the first and second splits to try to generate as much
pricing competition as possible; it was common for the
buyer to use splits such as 50–25–25 or 50–30–20. More-
over, announcing the splits prior to the procurement
auction made it relatively easy for the labels buyer to
explain the format to the printing suppliers—the lower
you bid, the higher volume you stand to win.
Such split-award auctions are the focus of our paper.

They are different from standard winner-take-all auc-
tions in terms of both the bidding strategies of the
suppliers and the auction design perspective of the
buyer—the two issues that we examine in this paper.

We consider two auction design decisions that buy-
ers make for split-award auctions: the bidding for-
mat (sealed-bid versus open-bid) and the allocation
rules. Sealed-bid and open-bid are the canonical for-
mats used in a variety of industries (Beall et al. 2003;
Jap 2003, 2007). The sealed-bid format we analyze is
a generalization of the sealed-bid winner-take-all auc-
tion; each supplier participating in the auction bids
a single price per unit, and the lowest bid receives
the largest share, the second-lowest bid receives the
second-largest share, etc. Thus, it represents the one-
shot (each supplier simultaneously submits their best
and final bid without knowing what the other suppli-
ers have bid) auction format that is the classical way of
awarding contracts. The open-bid format that we ana-
lyze for a split-award setting is a generalization of the
simple open-descending format for the winner-take-all
auction (see Chen et al. 2015). The open-bid auction
represents the dynamic format in which suppliers can
respond to competing bidders by staying in the auction
at successively lower bid prices.

For procurement managers that organize split-
award auctions, getting the splits right is critical to balanc-
ing the strategic need for splitting the award and keeping the
costs under control. Given sourcing rules about the min-
imum number of suppliers and maximum percentage
share awarded to the lowest bidders, the procurement
manager still has latitude in determining the number of
winning suppliers and the share percentage awarded
to each. It is not obvious up front how a procurement
manager can decide on the most cost-efficient split
among the many different possible splits. For instance,
would it be most cost efficient to award the maxi-
mal allowed percentages to the lowest bids despite
the fact that doing so lessens competition between

low-cost bidders? Or would it be better to increase
competition among low-cost bidders by widening the
gaps between the percentages awarded to them, even
though doing so means shifting some allocation per-
centages to higher-cost bidders?

The theoretical contribution of this paper is to char-
acterize the buyer’s expected cost, from the bidding
equilibrium, for both auction formats, and then ana-
lyze the problem that procurement managers face in
choosing the allocation that minimizes the expected
procurement cost while satisfying the sourcing rules.
We define a greedy allocation as one that satisfies the
sourcing rules and for which a positive quantity cannot
be transferred from the allocation of a higher-bidding
supplier to the allocation of a lower-bidding sup-
plier without violating the sourcing rules. Intuitively,
in a greedy allocation, the buyer allocates the maxi-
mum possible business sequentially, starting from the
lowest-bidding supplier and moving toward higher-
bidding suppliers, such that the sourcing rules are
satisfied. A managerially insightful and theoretically
novel result that we derive in this paper is that, as
along as the underlying cost distribution of suppli-
ers is well behaved (i.e., regular), it is most cost effi-
cient for the buyer to award splits greedily.2 Many
well-known distributions are regular—e.g., uniform,
normal, and exponential distributions (Bagnoli and
Bergstrom 2005).

However, other common cost distributions that
would arise naturally in practice, such as multimodal
distributions, need not be regular.3 As an easy exam-
ple, one can think of a two-type cost distribution. This
arises in practice when suppliers, qualitatively speak-
ing, have costs that are either on the low end or on
the high end. An automotive firm for which one of the
authors helped source parts buys screwmachine parts.
These complex parts, milled out of bar stock, can be
produced on single-spindle machines or a multispin-
dle machine where parallel operations can be carried
out on multiple parts as the spindles rotate to each
machining station. If the supplier has a multispindle
machine available that is well suited to the part being
sourced, then its per-unit cost would tend to be lower
compared to the case where the supplier would intend
to use a single-spindle machine. The buyer might not
know a priori which type of machine any one supplier
intends to use to produce the part (the use of single or
multispindle machine might depend on spare capac-
ity available on those machines), but her prior would
be that the distribution of supplier costs has weight
built up around higher- and lower-cost types, and this
would be reflected in the cost distribution function hav-
ing two “modes.” Surprisingly, for nonregular distribu-
tions, we show that sometimes the optimal allocation
is not greedy—for instance, the buyer might want to
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allocate its business to more than the minimum num-
ber of suppliers required by the sourcing rules. In other
words, sometimes the buyer can minimize its payment
costs by splitting its contract among more suppliers.
This differs from the otherwise obvious-sounding intu-
ition that splitting the award achieves diversification
but comes at the cost of higher payment.
We would like to use our theoretical insights to im-

prove procurement auction design; to this end, we
test several of our theoretical predictions using a con-
trolled laboratory experiment with human subjects
incentivized with money. The purpose of this test
is twofold: first, we wish to identify any systematic
behavioral deviations that exist in this setting; second,
we aim to extend the theoretical model to account for
systematic behavior we observe. We find that bidding
behavior in open-bid auctions is quite close to theo-
retical predictions. For sealed-bid auctions, previous
experimental work has repeatedly shown systematic
behavioral deviations with regularly distributed costs
(see Kagel and Roth 1995), with explanations such
as regret—particularly loser’s regret—organizing the
data (Engelbrecht-Wiggans and Katok 2008). However,
in our context, when we consider nonregular distribu-
tions and split awards, we have reason to expect that
winner’s regret can become more salient, which might
balance out loser’s regret and thus lead to less aggres-
sive bidding. We find that in sealed-bid split-award
auctions, participants bid more aggressively than they
should under the risk-neutral Nash equilibrium for
regular cost distributions, but by contrast, when the
cost distribution is nonregular, the participants in
the sealed-bid split-award auctions bid more conser-
vatively than the theoretical predictions of the risk-
neutral Nash equilibrium. We develop a new model
based on aversion to anticipated regret in the split-
award setting that successfully organizes our data.

Consistent with our base model, when the cost dis-
tribution is well behaved, the buyer’s average cost
monotonically increases as the allocation becomes less
weighted toward lower-cost bids. We also find, consis-
tent with the theory, that the buyer’s average cost could
be lower with nongreedy split as compared to greedy
split when the cost distribution is not well behaved.
Thus, our experimental results validate the manageri-
ally significant insights derived from the model—i.e.,
greedy allocations are more cost efficient for the buyer
when underlying cost distribution is regular; however,
a nongreedy split could be optimal for nonregular
cost distribution. We also find that the model does a
good job of predicting the cost of multisourcing for
the buyer. Because sourcing rules have to balance the
costs and benefits of multisourcing, having an analyt-
ical model that is able to accurately predict the cost of
multisourcing can help buyers design effective sourc-
ing rules.

1.1. Literature Review
Existing literature has investigated the use of multi-
sourcing in auctions to reduce the total procurement
cost for the buyer due to many factors. Klotz and
Chatterjee (1995) have analyzed split awardswhen bid-
ders face entry cost and are risk averse. Unlike them,
we analyze arbitrary allocation rules, not just a two-
way split, and we show that nongreedy splits can be
optimal even without appealing to entry costs and
risk aversion. Dasgupta and Spulber (1990) investigate
split awards when suppliers face convex production
cost. However, in our setting, suppliers face constant
marginal production costs; our buyer uses split awards
to satisfy sourcing rules, subject to which she chooses
the cost-minimizing allocation, andwe show that more
evenly spread splits can be used as a tool to reduce pur-
chase costs in our setting, without appealing to convex-
ity in supplier production costs. Thus, we contribute to
the extant split-award literature by showing that more
evenly spread splits can reduce the buyer’s sourcing
costs, without invoking entry costs, risk aversion, or
cost convexity.

Tunca and Wu (2009) focus on bounding the opti-
mality loss imparted by using a two-stage procurement
process versus a single-stage optimal mechanism (that
takes into account supplier production cost convex-
ity). We, on the other hand, focus on a single-stage
auction event where the award splits are chosen by
the buyer subject to sourcing rules, and characterize
the effect of multisourcing on the buyer’s expected
cost. Chaturvedi and Martínez-de-Albéniz (2011) and
Chaturvedi et al. (2014) find the optimal mechanism
that multisources to address concerns of supply risk
and supply base maintenance, respectively. Here, we
abstract away from specific factors (like risk or supply
base maintenance) for multisourcing by taking them
into account through the buyer’s sourcing rules. Sub-
ject to these sourcing rules, we then analyze the opti-
mal allocation splits for sealed-bid and open-bid auc-
tion formats.

Also related to our work is the literature that has
investigated the bidding equilibrium in split-award
auctions when the splits are exogenously specified.
Anton and Yao (1992) show that auctioning a two-
way split (which is decided after auction) among just
two bidders can result in coordinated bids when the
two participating suppliers can submit multiple bids.
Unlike their paper, we consider n bidders facing splits
announced up front as part of the auction format, and
we then go on to show how the buyer can determine
these splits given the allocation rules it faces.

Our paper also relates to Bichler et al. (2014), but
unlike them, we analyze an arbitrary split, not just two-
way splits. Moreover, as explained above, we study
the buyer’s problem in terms of how to design allo-
cation rules given sourcing constraints and test the
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model that helps estimate the cost of multisourcing,
whereas Bichler et al. (2014) focuses on comparing bid-
ding behavior and the resulting performance under
two auction formats. Finally, from their experimental
study, Bichler et al. (2014) conjecture risk aversion as
a major driver for overly aggressive bidding. By con-
trast, we find that bidders might also overbid (above
the Nash-equilibrium predictions) when costs are not
regularly distributed, which is inconsistent with the
risk-aversion explanation.
Testing auction theory using controlled laboratory

experiments has a long tradition (see Kagel and Roth
1995 for an overview of early work and Kagel and
Levin 2015 for an overview of more recent work in eco-
nomics). Much of the earlywork focused on testing rev-
enue equivalence among the four basic forward auc-
tion formats (the sealed-bid first-price, Dutch, English,
and the sealed-bid second-price). The findings are that
the bidding in the sealed-bid first-price auction is more
aggressive than the risk-neutral Nash equilibrium, and
the bidding in the Dutch auction is not independent of
the speed of the Dutch clock (see Katok and Kwasnica
2008). Thus, generally revenue equivalence (in our case
cost equivalence) fails in the laboratory. Elmaghraby
et al. (2012) report a similar finding in open-bid reverse
auctions with rank feedback, and Haruvy and Katok
(2013) observe the same thing in buyer-determined
reverse auctions. To the best of our knowledge, all pre-
vious experimental studies of auctions used a regular
cost distribution (usually Uniform). Our paper is the
first to consider a nonregular cost distribution and to
investigate the effect of multisourcing with more than
two splits in the laboratory, while comparing sealed-
and open-bid formats in that setting.

2. Model
We model a buyer that faces a unit (normalized) one-
time demand for a standardized homogeneous and
divisible product. It can buy this quantity from the
n ≥ 2 qualified suppliers in its supply base. To dis-
cover the best available price for the required prod-
uct, the buyer invites the suppliers to competitively
bid for its business. As is common in the literature
(e.g., Chen 2007), for each supplier i, the cost to pro-
duce q units is given by q · ci , where ci is the sup-
plier’s privately known (known only to the supplier)
per-unit cost, which remains constant for producing
the quantity q. This captures situations where vari-
able costs are the dominant cost drivers. This arises
in a variety of settings—e.g., plastic injection mold-
ing (where buyers typically purchase the tooling, so
machine time, resin, and electricity are the primary
cost drivers at the supplier), or labor-intensive work
like simple assembly. With this setup, we will show
that greater split awards can actually help the buyer

reduce costs, without appealing to notions of cost con-
vexity that clearly favor the use of split awards (e.g.,
Dasgupta and Spulber 1990). We let c � (c1 , c2 , . . . , cn)
denote the vector of the suppliers’ per-unit cost of pro-
duction. We assume that the costs are identically, inde-
pendently, and continuously distributed in the interval
[
¯
c , c̄], according to cumulative distribution F (with den-
sity f and F̄ � 1− F). Finally, we assume that F is com-
mon knowledge, the suppliers are risk-neutral profit
maximizers, and that the buyer is risk neutral and
seeks to minimize its expected cost subject to sourcing
rules.

The buyer faces sourcing rules that address multiple
operational concerns in procurement, such as supply
risk, maintaining the supply base, or controlling the
administrative cost of purchasing from multiple sup-
pliers. These sourcing rules can be formally character-
ized as follows:

1. No one supplier can win more than fraction 0 ≤
A ≤ 1 of the business, to avoid too much dependence
on any one supplier.

2. There must be a minimum number of suppliers,
M ≤ n, that are awarded business. Recognizing that
suppliers who do not win any business may disengage
from the supply base, buyers wishing tomaintain com-
petition for future bidding events may require that at
least a handful of suppliers win business in any given
bidding event, to keep the suppliers from abandoning
the supply base in search of greener pastures.

3. Any supplier awarded business should win at
least 0 < B ≤ A of the business, to avoid administrative
inefficiencies of working with very small contracts.

To leverage supplier bid competition and also ensure
that its sourcing rules are followed, the buyer orga-
nizes a split-award auction. As is common in practice,
to keep the auction procedure transparent and straight-
forward the buyer announces, before the auction, the
percentage of its business that it would allocate to the
suppliers as a function of the rank of their bid. We
let Q1 denote the highest fraction of the total busi-
ness that the buyer would award to the lowest bid,
Q2 denotes the second-highest fraction of business that
would be awarded to the second-lowest bid, and so on
up to Qn . We denote by Q � (Q1 ,Q2 , . . . ,Qn), the vec-
tor of these allocations such that Qi ≥ Q j for any i < j
and ∑n

i�1 Qi � 1. Thus, if the buyer announces that it
will award 70% of its business to the lowest bidder and
30% to the second-lowest, then Q1 � 0.7, Q2 � 0.3, and
Q3 � · · · � Qn � 0.
The buyer decides to announce the vector of alloca-

tions Q that minimizes its expected purchase cost such
that Q is consistent with the sourcing rules that the
buyer faces. We let Cbuyer(Q) denote the expected pur-
chase cost of the buyer if it announces the vector of
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allocations Q.4 Overall, the buyer’s problem of decid-
ing the optimal Q, given the sourcing rules, can be
characterized as follows:

min
Q

Cbuyer(Q) (1a)

s.t. Qi ≥ Q j , ∀ i < j,
n∑

i�1
Qi � 1,

Qi ∈ {0, [B,A]}, ∀ i ,
n∑

i�1
zi ≥M, where zi � 1Qi>0 , ∀ i. (1b)

Objective function (1a) characterizes the buyer’s
objective, whereas constraints (1b) characterize the
sourcing constraints that Q must satisfy. The sourcing
constraints (1b) are consistent—i.e., give a nonempty
set of feasible Qs if the following assumptions are
satisfied:

n ·A ≥ 1,
B ·max(M, d1/Ae) ≤ 1.

(2)

Note that d1/Ae gives the nearest integer greater
than 1/A. The first condition ensures that the constraint
on the maximum fraction of business A that can be
given to a supplier does not restrain the buyer from sat-
isfying its unit demand. The second condition ensures
that the constraint on the minimum amount of busi-
ness given to a supplier (that gets a nonzero allocation)
does not result in the buyer having to procure more
than its demand. As an example, values of A � 40%
and B � 35% would imply that three suppliers would
each get at least 35% of the buyer’s business, which is
not consistent. In this paper, we assume that the condi-
tions (2) are always satisfied.
We will analyze sealed- and open-bid auctions. In

Section 3, we investigate the bidding equilibrium in
both auction formats for a given vector of allocationsQ.
We assume that the buyer must transact for her full
quantity, so her reservation price is set to the upper
bound of the cost distribution, c̄. For both auction
formats, Section 4 characterizes the buyer’s problem
of deciding the optimal splits, Q, that minimizes the
buyer’s expected cost, Cbuyer, subject to sourcing con-
straints (1b).

3. Analysis of Sealed and Open
Split-Award Auctions

In this section, we analyze the suppliers’ bidding equi-
librium in both the sealed- and open-bid auction for-
mats for a given allocation structure Q, and formulate
the corresponding expected cost for the buyer. We first
analyze the sealed-bid auction and then the open-bid
auction.

3.1. Sealed-Bid Auction
The sealed-bid auction is implemented in the following
way. The buyer announces the allocation vector, Q �

Q1 , . . . ,Qn , where Qi represents the allocation to the
ith-ranked bid. If two or more suppliers bid the same,
then each of the tied suppliers is awarded the aver-
age of the allocations associated with the tied ranks.
The buyer also announces that the price paid per unit
of allocation would be the bid quoted by the supplier.
Each supplier then submits its bid to the buyer. After
collecting all of the bids, the buyer makes the alloca-
tions and payments. The expected payoff function for
supplier i when it bids bi can be expressed as

Πi(bi , ci ,Q)� (bi − ci)H(bi ,b−i ,Q),

where bi − ci is the profit margin, H(bi ,b−i ,Q) repre-
sents the expected allocation to supplier i, and b−i rep-
resents the vector of bids submitted by all of the other
suppliers. To find the equilibrium bidding strategy, we
adapt the canonical, winner-take-all sealed-bid auction
equilibrium analysis (e.g., Krishna (2010)). Assume
that the bidding strategy of all suppliers, except for
supplier i, is b j � β(c j ,Q) defined on the domain [

¯
c , c̄].

For now, we assume that β(c ,Q) is a continuously
differentiable and increasing function of c (we later
verify that these assumptions are indeed true in equi-
librium). The assumption on continuous cost distribu-
tion together with the assumptions on β(·, ·) implies
that H(bi ,b−i ,Q) can be expressed as H(β−1(bi ,Q),Q),
where β−1(β(c ,Q),Q)� c.

Define

H(x ,Q) ≡
Q1F̄(x)n−1 +Q2

(n−1
1

)
F̄(x)n−2F(x)+ · · ·

+Qn−1
(n−1

n−2

)
F̄(x)Fn−2(x)+QnFn−1(x)

. (3)

Substituting x � β−1(bi ,Q) in Equation (3) gives the
expected allocation of supplier i. Hence, supplier i’s
expected payoff can be characterized as

Πi(bi , ci ,Q)� (bi − ci)H(β−1(bi ,Q),Q). (4)

Thus, one can differentiate Equation (4) with respect
to bi to characterize the best response of supplier i
given that all other suppliers use a symmetric bidding
strategy, β. Then, by assuming that supplier i’s best
response is also β, one can characterize the symmet-
ric equilibrium strategy β. If the strategy β satisfies
all of the assumptions (i.e., it is continuously differen-
tiable, increasing, and the best response of supplier i
given all other suppliers’ best response is β), then it
does indeed formulate the symmetric bidding equi-
librium strategy. The following proposition (all results
are formally proved in the appendix) characterizes the
equilibrium.
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Proposition 1. For any allocation Q1 ≥Q2 ≥ · · · ≥Qn , the
symmetric equilibrium bid function in a sealed first price
auction is given by

β(c ,Q)� c̄ · H(c̄ ,Q)
H(c ,Q) −

1
H(c ,Q)

∫ c̄

x�c
x dH(x ,Q). (5)

Note that for awinner-take-all auction, the allocation
vector would be Q1 � 1 and Q2 � · · · � Qn � 0; accord-
ingly, the equilibrium bid function (5) gives β(c) �
(1/F̄(c)n−1) ∫ c̄

x�c x(n − 1)F̄(x)n−2 f (x) dx, which is indeed
the equilibrium bid function for a sealed-bid winner-
take-all auction—i.e., each supplier, conditional on it
being the lowest-cost supplier, bids the expected cost
of the lowest-cost supplier among the other n − 1 sup-
pliers (see Krishna 2010).
Using the equilibrium bids, we can characterize the

buyer’s expected cost in the sealed-bid auction. Even
though the equilibrium bid function of the suppli-
ers appears complicated, it turns out that the buyer’s
expected cost can be simplified to a rather clean expres-
sion. The following proposition does exactly that. We
define µm ≡ Ec[Cm: n], the expected mth order statis-
tic from n draws. For notational convenience, for any
m > n, we take µm � c̄.

Proposition 2. The buyer’s expected cost in the sealed-bid
auction is

Cbuyer(Q)� µ2Q1 + (2µ3 − µ2)Q2 + · · ·
+ (mµm+1 − (m − 1)µm)Qm + · · ·
+ ((n − 1)µn − (n − 2)µn−1)Qn−1

+ (nc̄ − (n − 1)µn)Qn . (6)

Thus, the buyer’s problem for deciding the optimal
Q for the sealed-bid split-award auction can be char-
acterized as: minQ Cbuyer(Q) such that Q satisfies the
constraints (1b). In Section 4, we find the optimal allo-
cation vector Q for the sealed-bid auction by solving
this problem.
But before that, we first rearrange the terms of the

buyer’s expected cost in Equation (6) as follows:

Cbuyer(Q)� nQn c̄ + (n − 1)(Qn−1 −Qn)µn + · · ·
+ m(Qm −Qm+1)µm+1 + · · ·+ (Q1 −Q2)µ2.

(7)

Equation (7) implies that if the buyer gave Qn
amount of business to each of the n bidders at price c̄
and then gave Qn−1 −Qn amount of business to n − 1
bidders at a price equal to the cost of the highest bidder,
and so on, then the buyer’s expected cost would match
Equation (6). Below, we describe how this outcome can
be implemented through an open descending-price-
clock auction.

3.2. Open Descending Auction
For any allocation structure Q, we implement the open
auction as a descending-price-clock auction. In this
auction format, the price clock starts at price c̄. At the
start of the price clock, the buyer allocates Qn amount
of business to each of the n suppliers, and for this quan-
tity pays them a per-unit price of c̄. The price clock
then begins to move down. The suppliers can drop out
of the auction at any time. Dropping out of the auc-
tion does not give any additional allocation or payment
to the supplier who drops out, beyond what it has
already received. However, a supplier that drops out
does result in each of the suppliers who remain in the
auction getting allocated some nonnegative quantity
for a per-unit payment equal to the price at which the
supplier dropped out of the auction. Specifically, the
first supplier to drop out results in each of the remain-
ing n−1 suppliers getting an allocation of Qn−1−Qn at
a per-unit payment equal to the price at which that first
supplier dropped out. More generally, the dropping
out of the (n−m+1)th supplier (for 2≤m ≤ n) results in
the remaining m − 1 suppliers getting allocated Qm−1 −
Qm amount of business at the auction price at which
the (n − m + 1)th supplier dropped out. The auction
stops when the second-to-last (the (n − 1)th) supplier
drops out of the auction. Note that the overall alloca-
tion awarded to the (n −m + 1)th supplier to drop out
is Qm , and the last remaining supplier gets an overall
allocation of Q1.
In such an auction, for any allocation Q such that

Q1 ≥Q2 ≥ · · · ≥Qn , a supplier i finds it optimal to drop
out when the price clock reaches its marginal cost ci . If
supplier i drops out any sooner (at b > ci) then it only
loses the opportunity to get an allocation at a profitable
price had some other supplier dropped out between b
and ci . If supplier i drops out later (at b < ci), then it
only increases the likelihood of getting an allocation at
a loss-making price that happens if some other sup-
plier drops out at a price between ci and b. Thus, in an
open descending auction, the equilibrium strategy for
all suppliers (except the lowest-cost, since the auction
stops when the second-to-last supplier drops out) is to
drop out when the price clock reaches their respective
per-unit cost.5

Since bidders find it optimal to drop out at their
true costs, it is easy to see that the above auction
results in the same expected cost as the sealed-bid for-
mat from the previous section. This follows naturally
given the well-known revenue equivalence theorem;
indeed,Wambach (2002) formally extends the notion of
revenue equivalence (in a forward auction context) to
split-award auctions that award the largest share to the
bidder with the highest bid, the second-largest share
to the bidder with the second-highest bid, and so on.
For us, the implication of cost equivalence is that the
buyer’s problem of deciding the optimal splits Q for
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the open-descending split-award auction also remains
the same as for the sealed-bid auction.

4. Optimal Splits
In this section, we solve for the buyer’s problem of de-
ciding the optimal splits, Q, for both the sealed-bid and
open descending auction formats. Namely, we embed
the buyer’s expected cost, Cbuyer(Q), as characterized
by Equation (6), into the objective (1a). The decision
variables Q1 , . . . ,Qn are real numbers not less than 0,
and Cbuyer(Q) in Equation (6) is linear in Q1 , . . . ,Qn ;
hence, the math program (1) formulates a constrained
fractional knapsack problem and thus would give cor-
ner solutions. However, it is not obvious whether the
solution is also greedy (as defined in the introduction).
As an example, for parameter values B � 10%, M � 3,
and A � 50%, a greedy allocation would imply allocat-
ing 50%, 40%, and 10% of the business to the lowest-,
second-lowest-, and third-lowest-bidding suppliers,
respectively, and giving a zero allocation to all of the
remaining suppliers. In the following lemma we show
that allocating greedily is similar to solving an opti-
mization problem.

Lemma 1. Maximizing ∑n
i�1 Q2

i such that the sourcing
constraints (1b) are satisfied would give a unique solution—
namely, the greedy allocation.

Note that ∑n
i�1 Q2

i is the same as the Herfindahl–
Hirschman index (HHI) used to describe market con-
centration. Thus, allocating greedily is the same as
maximizing the HHI of the allocations such that sourc-
ing constraints (1b) are satisfied.
Indeed, a greedy allocation is always (i.e., for all

sourcing constraints) optimal if and only if the coef-
ficients of the objective function given in (6) are in-
creasing—i.e., the coefficient of Q1 is less than that
of Q2, and so on. The following lemma characterizes
the necessary and sufficient conditions for the greedy
allocation to be optimal.

Lemma 2. Allocating greedily to the lowest-bidding sup-
plier is always (i.e., for all sourcing constraints) optimal.
Allocating greedily to all of the other suppliers is always (i.e.,
for all sourcing constraints) optimal if and only if

mµm+1 − (m − 1)µm ≥ (m − 1)µm − (m − 2)µm−1 ,

∀2 < m < n , (8a)
and nc̄ − (n − 1)µn ≥ (n − 1)µn − (n − 2)µn−1. (8b)

Lemma 2 implies that the buyer would never find
it optimal, as an example, to go from an 80–20 split
to a 70–30 split, provided that the sourcing constraints
are met in both cases. Similarly, the buyer would never
benefit from splitting a sole award into more splits,
provided that sole sourcing does not violate the sourc-
ing constraints. However, what about splitting the

award fraction among more suppliers who do not bid
the lowest, when the sourcing constraints require the
buyer to procure from at least two suppliers? In the
presence of such sourcing constraints, the optimality
of the greedy allocation would depend on whether the
conditions (8) hold or not.

Let us build some intuition into why conditions (8)
might not hold (we will use an example that we will
return to later in the experiments). Suppose the buyer
has four bidders and is comparing Q1 � 1/3, Q2 � 1/3,
Q3 � 1/3, Q4 � 0 split versus Q1 � 1/3, Q2 � 1/3, Q3 �

1/6, Q4 � 1/6 split. Compared to the former greedy
allocation, the latter nongreedy allocation has advan-
tages: it encourages competition among the lowest-cost
suppliers. However, it has disadvantages in that it sac-
rifices competition among the higher-cost suppliers—
now, even the worst-cost supplier receives some allo-
cation. Interestingly, it turns out that the advantage of
nongreedy can outweigh the disadvantage. To see how
this might happen, consider the following bi-modal
probability density function of suppliers’ cost (in the
top part of Figure 1, we show the probability density
function (p.d.f.) characterized below):

f (x)�



500x if 0 ≤ x ≤ 0.01,
5− 24.95(x − 0.01) if 0.01 ≤ x ≤ 0.21,
0.01 if 0.21 ≤ x ≤ 0.97,
0.01+ 1035.78(x − 0.97) if 0.97 ≤ x ≤ 1,
0 otherwise.

(9)
The distribution characterized in Equation (9) repre-

sents a continuous version of the familiar two-type dis-
tribution described in the introduction: “low-cost” sup-
pliers and “high-cost” suppliers, where the buyer does

Figure 1. (Color online) (Top) The p.d.f. f (x) Characterized
by Equation (9); (Bottom) the Equilibrium Bid for Greedy
and Nongreedy Allocations When Cost Are Distributed
According to Equation (9)
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not know each supplier’s type. Below, we explain why,
for such a multimodal distribution, allocating greedily
might not be optimal.
For the distribution characterized by Equation (9)

and n � 4 suppliers and sourcing constraint A � 1/3,
the optimal allocation according to math program (1)
would be nongreedy—i.e., Q1 �Q2 � 1/3 and Q3 �Q4 �

1/6. On the other hand, the greedy allocation would be
Q1 �Q2 �Q3 � 1/3 and Q4 � 0. The intuition is that with
the nongreedy allocation, competition at the low end of
the cost distribution is more fierce, and this is not offset
by less competition at the high end of the cost distri-
bution. The bottom part of Figure 1 depicts the equi-
librium bids for both optimal and greedy splits when
the cost distribution is bimodal (according to Equa-
tion (9)). One can see that for the nongreedy alloca-
tion, the low-cost bidders bid significantly lower than
they would under the greedy allocation. The reason
is that under the greedy allocation the low-cost bid-
ders simply want to avoid coming in last, but they have
no incentive to be the first- or second-best bidder like
they would with the nongreedy allocation. The result-
ing difference in the buyer’s expected cost between the
greedy allocation and the optimal allocation would be
3.81%. Moreover, we see that in presence of sourcing
constraints, it might be optimal for the buyer to source
from four suppliers instead of the minimum required
three suppliers—i.e., the buyer can reduce its expected
purchasing cost by diversifying more. Indeed, other
distributions can be thought of for which a nongreedy
allocation is optimal. In Online Appendix A, we pro-
vide another such example in which the buyer can
reduce its expected cost by splitting its business among
four suppliers, even though the sourcing constraints
require awarding business to just two suppliers (e.g.,
when A � 55%, B � 0, and M � 0).

The above discussion provided insight on why non-
greedy can outperform greedy. The greedy alloca-
tion reduces competition among lower-cost bidders,
encouraging lower-cost bidders to inflate their bids.
Intuitively, this is particularly problematic for the buyer
in cases where there is a sizable cost gap between
lower- and higher-cost bidders (as can happen with
a multimodal distribution), which is why nongreedy
allocations can be optimal in such cases. What matters
is how competition heats up among lower-cost bidders
when moving to a nongreedy allocation, and whether
or not this offsets allocating more units to higher-cost
bidders. The importance of Lemma 2 is underscored
by this discussion, precisely because it helps us under-
stand the conditions for when greedy will still be opti-
mal. What matters is that the gaps between the order
statistics of the underlying cost distribution are well
behaved. It turns out that a familiar condition is all
we need to guarantee that the gaps between the order
statistics are well behaved; thus, allocating greedily is

optimal. In particular, all we need is that the underly-
ing distribution is regular. The next theorem formalizes
this result.

Theorem 1. Shifting a positive amount from a low bidder’s
allocation to a high bidder’s allocation (i.e., shifting an ε > 0
from Qi to Q j for any i < j), with everything else being the
same, decreases the Herfindahl–Hirschman index (HHI) of
the allocations, and for any regular distribution (a continu-
ous distribution for which c + F(c)/ f (c) is increasing) will
increase the buyer’s expected cost.

Distributions that have a log-concave density sat-
isfy the regularity condition, including uniform, expo-
nential, normal, and power-function distributions (see
Bagnoli and Bergstrom 2005).

By definition, an allocation is greedy if a positive
quantity cannot be transferred from Q j to Qi for any
j > i without violating the sourcing constraints (1b).
The next corollary follows from Theorem 1.

Corollary 1. For any regular cost distribution, the buyer
finds it optimal to announce a greedy allocation—i.e., max-
imize the Herfindahl–Hirschman index (HHI) of the alloca-
tions such that the sourcing constraints (1b) are satisfied.

In Figure 2, we evaluate the buyer’s expected cost
with four participating suppliers when it allocates
1/3 of its business to the two lowest-cost suppliers
and progressively changes the allocation to the third-
lowest- and the fourth-lowest-cost suppliers from 1/3
to 1/6 and 0 to 1/6, respectively. Thus, we evaluate
the buyer’s expected cost as it diversifies more (and
hence decreases the HHI of allocations). Consistent
with Theorem 1, we find that the buyer’s expected

Figure 2. (Color online) Expected Buyer Cost as
Allocation Is Transferred from Lower-Cost Supplier
to Higher-Cost Supplier
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cost increases as it diversifies more when the underly-
ing costs are uniformly distributed. However, we see
that the buyer’s expected cost decreases as it diversi-
fies more when the underlying costs follow a nonreg-
ular distribution (characterized by Equation (9)). Thus,
we see that a buyer might decrease its expected pur-
chasing cost by diversifying more than what is strictly
required by its sourcing rules when the underlying cost
distribution is not regularly distributed.
Moreover, note that Theorem 1 only provides a suffi-

cient condition for optimality of the greedy allocation.
Thus, cost distributions that do not satisfy the regu-
larity condition of Theorem 1 can still result in opti-
mality of the greedy allocation. As an example, con-
sider an arc-sine cost distribution that has a density
function defined as f (c) � 1/π

√
c(1− c) and cumula-

tive distribution function (c.d.f.) F(c) � (2/π) sin−1(
√

c)
in the interval [0, 1]. It can be easily established that
this distribution does not satisfy the regularity con-
dition. However, for n � 3 suppliers, this distribution
does satisfy conditions (8), thus resulting in the greedy
allocation being optimal.6

The results of Theorem 1 and Lemma 1 also allow
us to investigate the sensitivity of the buyer’s expected
cost as the sourcing rules (parameters A, B, and M
defined in Section 2) are relaxed. For regular cost dis-
tributions, we find that the buyer’s expected cost is
convex decreasing in A and is convex increasing in B
and M. We provide a more formal statement of this
result and the related proof in Online Appendix B.
Intuitively, this result implies that marginal increases
in diversification at low levels of diversification will
cost the buyer less as compared to marginal increases
in diversification at higher levels of diversification. The
online companion provides exact expressions for the
rate of change in the buyer’s expected cost (C∗buyer) as
the sourcing rules (A, B, and M) are changed (in Equa-
tions (A3)–(A5) of Online Appendix B). Thus, a buyer
could compute how much additional diversification
would cost as it changes the sourcing rules.

5. Research Hypotheses, Experimental
Design, and Results

This section reports on laboratory experiments de-
signed to test theoretical predictions developed about
split-award auctions in the preceding sections. For this,
we conduct split-award auctions in a controlled labo-
ratory environment and compare the results obtained
in these experiments to those predicted by the theory.
We begin by formulating specific research hypothe-
ses. Then, we describe the experiment we designed to
test these hypotheses. Lastly, we report experimental
results.

5.1. Research Hypotheses
Our model makes predictions about bidding behavior
and the buyer’s resulting cost under split awards, with
sealed-bid and open-bid auction formats, and regular
and nonregular underlying cost distributions. It also
makes predictions about how the optimality of greedy
allocation is affected by the distribution of bidders’
costs. Therefore, we designed our study to test all of
these predictions.

The first set of hypotheses test the predictions in
Propositions 1 and 2, regarding the bidding behavior
in the sealed-bid auction with split awards, the average
cost of the buyer that results from this behavior, and the
resulting auction efficiency. The hypothesis pertains to
settingswith regular and nonregular cost distributions;
however, our tests of the hypothesis focus on the for-
mer (uniform distribution).

Hypothesis 1A (H1A). Bidding behavior will follow, on
average, equilibrium predictions of Proposition 1. The aver-
age cost to the buyer will not be significantly different from
the buyer’s cost prediction that follows from Proposition 2;
all auctions will be 100% efficient.

The first part of the hypothesis, regarding bidding
behavior and the cost of the buyer, is a strong test of
Proposition 1 because it requires the bidding behavior
tomatch, on average, the risk-neutral Nash equilibrium
(RNNE) (see Online Appendix C for the sealed-bid
first-price bidding equilibrium function for uniformly
distributed costs). The second part of the hypothe-
sis tests the efficiency of allocation. Efficiency can be
measured in different ways, but the one most com-
monly used is allocational efficiency, the proportion of
efficient allocations. To measure allocational efficiency,
we code an allocation as efficient whenever no bid-
der with lower cost is allocated a market share that is
smaller than the market share allocated to any bidder
with a higher cost. It is possible for the bidding behav-
ior to be different from Proposition 1, rejecting the first
part of H1A, while the auction still remains efficient.

Equilibrium predictions about bidding behavior and
resulting buyer costs are based on the assumption that
bidders are fully rational and risk-neutral, and more
importantly, are not affected by any behavioral biases.
These assumptions have been tested and rejected in the
prior literature for first-price sealed-bid auctions under
single sourcing but not for auctions with split awards.
The survey of Kagel and Roth (1995) summarizes ex-
perimental economics literature that reports overly
aggressive bidding in sealed-bid first-price (single-
source) auctions, as well as bidding that closely follows
the dominant strategy in open-bid (single-source) auc-
tions. The alternative hypothesis below is based on our
knowledge from this prior experimental work that bid-
ding in sealed-bid first-price auctions tends to be more
aggressive than the RNNE prediction.
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Hypothesis 1B (H1B). Bidding will be, on average, more
aggressive than the equilibrium predictions of Proposition 1.
The average cost to the buyer will be lower than the buyer’s
cost prediction that follows from Proposition 2.

The second hypothesis tests the buyer cost equiva-
lence between the sealed- and open-bid formats. We
again state two versions of the hypothesis, the first
based on our model in Section 3.2, and an alternative
hypothesis based on our knowledge from prior exper-
imental work that reports overly aggressive bidding in
sealed-bid auctions.

Hypothesis 2A (H2A). Average buyer’s cost will not be
significantly different under the open-bid and sealed-bid
formats.

Hypothesis 2B (H2B). Average buyer’s cost will be signif-
icantly higher under the open-bid format than under the
sealed-bid format.

We are the first to conduct laboratory tests of
sealed-bid auctions with nonregular cost distributions,
and because deviations from RNNE bidding may be
affected by the cost distribution, we formulate the next
hypothesis to specifically test whether the cost distri-
bution affects bidding behavior and the buyer’s cost.

Hypothesis 3 (H3). Any systematic deviations from
RNNE (specifically, overly aggressive bidding) will be
observed in regular and nonregular distributions.

Next, we test the prediction of Theorem 1. This
is a qualitative test rather than a test about point
predictions. According to Theorem 1, shifting some
positive amount from the allocation of a low bid-
der to the allocation of a high bidder, with every-
thing else remaining unchanged, would decrease the
Herfindahl–Hirschman index (HHI) of allocation, and
for any regular cost distribution should increase the
buyer’s average cost.

Hypothesis 4 (H4) (Optimality of Greedy Allocation). For
regular cost distributions, the average cost to the buyer will
always decrease as the allocation becomes more greedy. For a
nonregular cost distribution, a more greedy allocation may
increase the cost to the buyer.

A useful feature of our model is that it predicts the
cost of multisourcing. For example, we can compute
the predicted cost of multisourcing in our study by
comparing the predicted cost of the buyer for any given
set of parameters. More specifically, the cost of multi-
sourcing is the cost that the buyer incurs by spreading
its award more. We formulate our final hypothesis to
test the cost of multisourcing predicted by the theory.

Hypothesis 5 (H5) (The Cost of Multisourcing). Pairwise
differences in average buyer cost will not be different from
those predicted by the model (Proposition 2).

Proposition 2 characterizes the buyer’s expected cost
as a function of splits. Therefore, H5 provides an indi-
rect test of how well our model predicts the buyer’s
cost of multisourcing.

5.2. Experimental Design, Implementation,
and Protocol

Our study includes 12 experimental treatments—all
between-subjects. In all treatments, n � 4 suppliers
compete for a contract to provide units of a commodity
to a computerized buyer seeking 100 units in total (in
a few treatments, the number of units is 102 to make
all splits integer). Suppliers’ costs are privately known.
In nine of the treatments, we use a regular cost distri-
bution; costs are distributed according to the uniform
distribution from 0 to 100, ci ∼U(0, 100). In three treat-
ments, we use a nonregular cost distribution with the
p.d.f. described by Equation (9), scaled to the inter-
val [0, 100].
We present our design in Figure 3.7 For the regular-

distribution treatments, we conducted treatments with
eight different split awards that vary in their market
concentration (Herfindahl–Hirschman) index, going
from 100% to 27.8%. We use these eight treatments to
test H1A and H1B, and this design is presented in Fig-
ure 3(a). We have one open-bid treatment that uses the
40–35–25–0 split award, and comparing this treatment
with the analogous sealed-bid treatment provides a
test of H2A and H2B. This design is shown in Fig-
ure 3(b). The test ofH3 is a 3×2design presented in Fig-
ure 3(c) that manipulates the cost distribution (regular
and nonregular) and three levels of market concentra-
tion (HHI � 100%, 33.3%, and 27.8%). And finally, the
test of H4 is a 2× 2 design in Figure 3(d), in which we
manipulate the cost distribution (regular versus non-
regular) and allocation (greedy versus nongreedy).

In total, 560 participants were included in our
study. We randomly assigned participants to treat-
ments. Each human subject participated in one treat-
ment only. We conducted all sessions at a public uni-
versity in the United States, in a computer laboratory
dedicated to research. Our participants were students,
mostly master-level, primarily business and engineer-
ing majors. We recruited them through SONA, an
online recruitment system, offering the earning of cash
as the only incentive to participate.

On arrival at the laboratory, the participants were
seated at computer terminals in isolated cubicles.
We handed out written instructions (see Online Ap-
pendix D for samples) to participants. After they read
the instructions, we then read the instructions aloud
before starting the auctions, to ensure common knowl-
edge about the game’s rules. Each session included
8–12 participants who competed in a series of 40 auc-
tions. For each auction, we randomly rematched par-
ticipants in each session, into two-three groups of four
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Figure 3. Experimental Design to Test Hypotheses 1–4
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bidders each. Typically, at least 24 participants were in
the laboratory at the same time, and participants did
not know the session size. In sealed-bid format treat-
ments, each participant placed a single per-unit bid.
After all of the bids were received, market shares were
allocated according to the splits in the treatment.
In the open-bid format treatment (which included

the 40–35–25 split), the per-unit price started at 100
and automatically decreased. Bidders could drop out
of the auction by clicking a button on their screens.
After the first bidder dropped out of the auction, each
of the remaining three bidders were allocated 25 units
at the price at which the first bidder dropped out.
After the second bidder dropped out of the auction,
the remaining two bidders were allocated an addi-
tional 10 units at the price at which the second bid-
der dropped out. And finally, after the third bidder
dropped out of the auction, the remaining bidder was
allocated the additional five units at the price at which
the third bidder dropped out.

We programmed the experimental interface using
the z-Tree system (Fischbacher 2007). At the end of each
session, we computed cash earnings for each partici-
pant by multiplying the total earnings from all rounds
by a predetermined exchange rate and adding it to a $5
participation fee. Participants were paid their earnings
in private and in cash at the end of the session. Average
earnings, including the show-up fee, were $25.

Table 1. Comparison of Average Buyer Cost and the RNNE Benchmarks Under the Sealed-Bid Format for
Regular-Distribution Treatments

Splits 100–0–0–0 80–15–5–0 50–50–0–0 50–35–15–0 50–25–25–0 40–35–25–0 34–34–34–0 34–34–17–17

Optimal 40.73 51.38 61.82 67.62 70.67 75.27 80.85 87.68
Observed 32.89 42.79 50.87 56.45 60.48 62.83 74.46 82.26

5.3. Results
5.3.1. Buyer Cost, Efficiency, and Individual Bidding
Behavior with Regular Cost Distribution (Hypothe-
sis 1A and 1B). In Table 1, we display data from all
sealed-bid regular-distribution treatments, comparing
average buyer costs to their theoretical benchmarks.
Average buyer cost is below the RNNE benchmark for
all regular-distribution treatments, and the differences
are statistically significant (p < 0.05 using a two-sided
t-test). Here and in the rest of the results section, we
use session average (the amount averaged over all auc-
tions and all periods, for a given session) as the unit of
analysis because sessions are independent, and report
two-sided p-values from a t-test.8
Hypotheses 1A and 1B depend on the extent of the

individual bidding behavior matching the equilibrium
prediction. Figure 4 shows the scatter plots of bids for
each split. We find that in regular-distribution treat-
ments, most bids are between the cost and the equilib-
rium bid—i.e., bidders bid overaggressively.9
Table 2 reports allocational efficiency, which is al-

ways significantly below 100%.
Based on our regular-distribution sealed-bid treat-

ments data, we can reject all aspects of H1A. The data
are consistent with H1B. We conclude that bidding be-
havior in auctionswith split awards is qualitatively sim-
ilar to what has been observed in sealed-bid auctions
without split awards,when cost distribution is uniform.
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Figure 4. Bids as a Function of Cost for Sealed-Bid Treatments with Regular Distribution
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Note. RNNE is marked by a solid line, and the 45◦ line is marked by a dashed line.

Table 2. Proportion of Efficient Allocations in the Sealed-Bid Treatments

Splits 100–0–0–0 80–15–5–0 50–50–0–0 50–35–15–0 50–25–25–0 40–35–25–0 34–34–34–0 34–34–17–17

Allocation efficiency 0.865∗∗ 0.615∗∗ 0.890∗∗ 0.503∗∗ 0.729∗∗ 0.438∗∗ 0.696∗∗ 0.516∗∗
Standard error 0.012 0.033 0.011 0.029 0.020 0.030 0.016 0.044

Note. Testing Ho that the proportion� 100%.
∗∗p < 0.01.
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Table 3. Comparison of Average Buyer Cost for
the 40–35–25–0 Split Under the Sealed- and
Open-Bid Formats, and the RNNE Benchmark

Sealed bid Open bid

Optimal 75.27 75.27
Human 62.83 76.52

5.3.2. Buyer Cost Equivalence (Hypotheses 2A
and 2B). We test buyer cost equivalence by comparing
data from the sealed- and open-bid treatments with
40–35–25–0 split. Table 3 summarizes the test of buyer
cost equivalence in those two treatments.
Under the sealed-bid format, the average buyer’s cost

for the 40–35–25 split is significantly below the RNNE,
but for the same split, the average buyer’s cost is only
weakly different from the RNNE prediction when the
open-bid format is used (p � 0.0887), and directionally,
the average buyer’s cost is slightly above predicted,
rather than below. So the average buyer’s cost is signif-
icantly lower under the sealed-bid format than under
the open-bid format (p < 0.001), contrary to H2A and
consistent with H2B. Comparing the two treatments in
Figure 5, we find that overall bidding is much closer
to the RNNE equilibrium under the open-bid format
than under the sealed-bid format.

5.3.3. The Effect of Cost Distribution on Bidding Be-
havior and Buyer’s Cost (Hypothesis 3). We test H3
with a 3 × 2 design that compares behavior in treat-
ments with three different splits (100–0–0–0, 34–34–
34–0, and 34–34–17–17) with regular and nonregular

Figure 5. Bids as a Function of Cost for Treatments with 40–35–25 Split
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Table 4. Comparison of Average Buyer Cost and the
RNNE Benchmarks Under the Sealed-Bid Format for
Nonregular-Distribution Treatments

Splits 100–0–0–0 34–34–34–0 34–34–17–17

Optimal 27.76 92.86 88.75
Human 15.05 93.95 91.31

cost distributions. Table 4 displays the average buyer
costs, optimal and observed, in the treatments with
nonregular cost distribution. Corresponding regular-
distribution treatments are presented in Table 1. The
observed buyer’s cost in the 100–0–0–0 nonregular-
distribution treatment is significantly below optimal,
as it is in the 100–0–0–0 regular-distribution treatment.
However, this is not the case for the 34–34–34–0 treat-
ment, for which the observed buyer cost is not signifi-
cantly different than optimal (p � 0.213), or the 34–34–
17–17 treatment, for which the observed buyer’s cost
is actually above optimal (p � 0.018). We conclude that
we can reject H3.

Figure 6 shows scatter plots of bids for nonregular-
distribution treatments. We find that while in the 100–
0–0–0 treatment there is a good deal of bidding activ-
ity below the bidding equilibrium, there is very little
bidding activity in this area in the other two treatments
(namely, 34–34–34–0 and 34–34–17–17).

5.3.4. Optimality of Greedy Allocation (Hypothesis 4).
In this subsection, we test H4 with a 2× 2 design that
varies the cost distribution (regular and nonregular)
and allocation (greedy and nongreedy). The greedy
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Figure 6. Bids as a Function of Cost for Treatments with Nonregular Cost Distribution
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Figure 7. Average Buyer’s Cost over the 40 Rounds of the Experiment
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allocation is 34–34–34–0 and the nongreedy allocation
is 34–34–17–17. Given the parameters in our experi-
ment, the buyer’s cost should be lower with the greedy
allocation when the distribution is regular and with
nongreedy allocation when it is nonregular. In the
regular-distribution treatments, going from 34–34–34–
0 to 34–34–17–17 significantly increases average buyer’s
cost from 74.46 to 82.26 (p � 0.003). In the nonregular-
distribution treatments, going from 34–34–34–0 to 34–
34–17–17 significantly decreases average buyer’s cost
from 93.95 to 91.31 (p � 0.031). We find support for H4.

Figure 7 plots the buyer’s average cost for the two
allocations for the regular distribution and for the
nonregular distribution. Bidders in all four treatments
learn to bid higher as they gain experience, but differ-
ences in average buyer’s cost continue to be significant
at the end of the session (p-values < 0.05).

5.3.5. The Effect of Multisourcing on the Buyer’s Cost
(Hypothesis 5). To directly test H5 (the extent to which
the model is able to accurately predict the effect of
multisourcing on the buyer’s cost), we summarize
pairwise differences in average buyer cost, and their

standard errors, for regular and nonregular-distribu-
tion treatments, in Table 5. For comparison, we also
include in square brackets pairwise differences pre-
dicted by the model. Average pairwise differences
are generally smaller than predicted, although most
differences are not statistically significant. For the
two nonregular-distribution treatments, the difference
in average buyer’s cost is 2.64, which is marginally
smaller than the predicted difference of 3.98 (p �0.048).
So, although we can reject H5, we note that the model
is fairly accurate overall in predicting the effect of mul-
tisourcing on the buyer’s cost.

6. Discussion: Regret-Based Explanation
In the previous section, we observed that bidding is
systematically below the risk-neutral Nash equilibrium
(see Equation (5)) in all uniform distribution treat-
ments and in the winner-take-all treatment for the
nonregular distribution. However, we also observed
that bidding was quite close to (slightly above) the
risk-neutral equilibrium prediction in the multisourc-
ing treatments for the nonregular distribution. In this
section, we propose a simple behavioral model, based
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Table 5. Pairwise Differences in Average Buyer Cost and Their Standard Errors

Regular Nonregular

Treatment 80–15–5 50–50–0 50–35–15 50–25–25 40–35–25 34–34–34 34–34–17–17 34–34–17–17 34–34–34

100–0–0 9.90 17.98 23.66∗ 27.72 29.93∗ 41.56 49.37 76.26∗ 78.90∗
(1.322) (3.495) (1.301) (2.607) (1.357) (1.700) (1.213) (1.817) (1.901)
[10.65] [21.09] [26.89] [29.93] [34.54] [42.04] [49.04] [60.82] [64.57]

80–15–5 8.08∗ 13.77 17.83 20.04∗ 31.67 39.47
(3.504) (1.316) (2.620) (1.381) (1.719) (1.239)
[19.29] [16.24] [19.29] [23.89] [31.39] [38.40]

50–50–0 5.69 9.75 11.96 23.58 31.39
(3.496) (4.198) (3.517) (3.663) (3.464)
[5.80] [8.84] [13.44] [20.95] [27.95]

50–35–15 4.06 6.27 17.90 25.70∗
(0.938) (1.360) (1.703) (1.216)
[3.05] [7.65] [15.15] [22.15]

50–25–25 2.21 13.84 21.64
(2.638) (2.830) (2.566)
[4.60] [11.35] [18.35]

40–35–25 11.63 19.43∗
(2.024) (1.276)
[7.50] [14.51]

34–34–34 7.80 2.64
(1.636) (0.949)
[7.00] [3.748]

Note. Standard errors are in parentheses, and predicted differences (from Tables 1 and 4) are in square brackets.
∗p < 0.05.

on aversion to anticipated regret (see Engelbrecht-
Wiggans and Katok 2007 and 2008), that qualitatively
organizes our data.

In this model, the expected utility of a supplier may
be affected by two kinds of regret. If a supplier does
not win some allocation Ql that would have been prof-
itable, he experiences loser’s regret. If a supplier wins
allocation Qw that he would have preferred to win at
a higher price, he experiences winner’s regret. Hence,
the expected utility of a supplier with a marginal cost
of ci who submits a bid bi , when every other supplier
follows a bidding strategy βregret(c ,Q), is given by

Πi(bi , ci ,Q)� (bi − ci)H(β−1
regret(bi ,Q),Q)

−Rl(bi , ci , β
−1
regret( · ),Q)

−RW (bi , ci , β
−1
regret( · ),Q). (10)

Here, Rl( · ) and Rw( · ) denote the expected loser’s
regret and expected winner’s regret, respectively.
Loser’s and winner’s regret can be characterized in
manyways for themultisourcing case. For instance, the
supplier could experience loser’s and winner’s regret
on every allocation Qm (for m � 1, . . . , n). If supplier i
fails to profitably win an allocation Qm , then loser’s
regret would reduce its utility by Qm · L · (βregret(cm ,Q)
− ci), where βregret(cm ,Q) is the bid of the supplier who
wins Qm , and where parameter L is the weight on
loser’s regret. The anticipated loser’s regret could be
the maximum of the expected loser’s regret on each

allocation. On the other hand, if a supplier i wins Qm ,
then winner’s regret would reduce the supplier’s util-
ity by Qm ·W · (βregret(cm+1 ,Q) − bi), where βregret(cm+1)
is the bid of the supplier who wins Qm+1, and where
parameter W is the weight on winner’s regret. The
anticipated winner’s regret could be the maximum of
expected winner’s regret on each allocation. In Online
Appendix F, we fully write down the expected loser’s
regret, Rl( · ), and the expected winner’s regret, Rw( · ),
for such a model.

One can also capture loser’s regret and winner’s
regret through a simplified version of the above model
wherein a supplier experiences loser’s and winner’s
regret only on specific allocations (rather than on every
possible allocation). Our goal is to develop a parsimo-
nious behavioral model that can organize our data, so
we assume that the supplier experiences loser’s regret
only on some allocation Ql and winner’s regret only
on some allocation Qw . Denoting by fm the density
function of the mth smallest order statistic out of n − 1
draws, we characterize this simple model of regret as

Πi(bi , ci ,Q)� (bi − ci)H(β−1
regret(bi ,Q),Q)

−L ·
∫ β−1

regret(bi ,Q)

x�β−1
regret(ci ,Q)

Ql · (βregret(x ,Q)− ci) fl(x)dx

−W ·
∫ β−1

regret(c̄ ,Q)

y�β−1
regret(bi ,Q)

Qw · (βregret(y ,Q)− bi) fw(y)dy. (11)
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Table 6. Average Observed and Predicted Buyer Cost Under the Risk-Neutral and Regret-Averse Models

Uniform distribution Nonregular

Split 100–0–0 80–15–5 50–50–0 50–35–15 50–25–25 40–35–25 34–34–34 34–34–17 100–0–0 34–34–34 34–34–17–17
Risk-neutral 40.73 51.38 61.82 67.62 70.67 75.27 80.85 87.68 27.76 92.86 88.74
Observed 32.89 42.79 50.87 56.45 60.48 62.83 74.46 82.26 15.05 93.95 91.31
Regret 32.41 41.38 52.85 58.59 65.75 69.60 73.23 73.90 15.07 94.70 90.93

Note. For the uniform distribution, the regret parameters are L � 0.97 and W � 0, and for the nonregular distribution, the regret parameters
are L � 0.76 and W � 8.62.

Here, Ql is the allocation for which Ql −Ql+1 is max-
imum (for l � 1, . . . , n − 1). In case of multiple Ql’s
satisfying this condition, we take the Ql with maxi-
mum l. Intuitively, Ql is our focal quantity for loser’s
regret because winning an allocation smaller than Ql
causes the bidder to miss out on a significant amount
of quantity. We denote by Qw the allocation for which
Qw −Qw+1 is minimum (for w � 1, . . . , n−1). In the case
of multiple Qw’s satisfying this condition, we take the
Qw with minimum w. Intuitively, Qw is our focal quan-
tity for winner’s regret because bidding higher and
winning the next smaller allocation Qw+1 would min-
imally impact quantity but increase the profit margin
per item. This is a useful model because it is parsimo-
nious, tractable, and captures the qualitative features
in our data.
Differentiating Equation (11) with regard to bi and

setting it to zero and substituting bi � βregret(ci ,Q) (to
obtain a symmetric bidding strategy) gives the follow-
ing first-order condition:

∂βregret(c ,Q)
∂c

�

(
−(βregret(c ,Q) − c) · dH(c ,Q)

dc

+Ql · L(βregret(c ,Q) − c) fl(c)
)

· (H(c ,Q)+Qw ·W · F̄(c))−1. (12)

Solving the above differential equation with the
boundary condition of βregret(c̄ ,Q)� c̄ gives the equilib-
rium bidding function when bidders anticipate regret.
In Table 6, we compare the observed average cost

of the buyer with the buyer’s expected cost predicted
by the risk-neutral model and by the regret model with
the regret parameters that we fitted to our data. We
fit regret parameters separately for the uniform treat-
ments (within sample) and nonregular-distribution
treatments (also within sample), and use the same
parameters (L and W) for deriving equilibrium bids for
all splits corresponding to a distribution.
Regret parameters that fit our data best are L � 0.97

and W �0 for the uniform distribution and L�0.76 and
W � 8.62 for the nonregular distribution. So, consistent
with previouswork of Engelbrecht-Wiggans andKatok
(2008), loser’s regret is driving overly aggressive bid-
ding with the uniform cost distribution. With the non-
regular distribution, loser’s regret is not affected much,

butwinner’s regret becomes very large. This is intuitive
because in the two multisourcing treatments, low-cost
bidders (in fact, bidders with cost below about 97) are
almost certain to win market share of 34, so the antic-
ipated regret of being paid less for the same market
share is quite salient.

Finally, the regret-basedmodel also explains the lack
of expected cost equivalence between the open-bid and
sealed-bid in the 40–35–25 treatment, because in the
clock auction implementation of the open-bid mecha-
nism, bidders have a dominant strategy to drop out at
their cost. If they follow this strategy, they experience
neither type of regret.

7. Conclusion
To incorporate sourcing rules into a simple-to-com-
municate and easy-to-understand auction, the buyer
announces upfront the percentage of business that it
would allocate to each supplier, depending on the rank
of this supplier’s bid. We study, analytically and exper-
imentally, two types of these split-award auctions: the
sealed-bid first-price auction, and a version of the open
descending-price auction.

Many potential splits could satisfy the sourcing
rules, and it is not obvious which would be the most
cost-efficient split that should be announced before the
auction. For instance: Should the buyer award themax-
imal allowed percentages to the lowest bids? Or would
it be better to increase competition among low-cost
bidders by widening the gaps between the percent-
ages awarded to them, even though doing so means
shifting some allocation percentages to higher-cost bid-
ders? A managerially insightful result we find is that
if the underlying cost distribution of the suppliers is
well behaved (i.e., it is regular), then the most cost-
efficient split (among all splits that satisfy the sourcing
rules) would allocate greedily from the lowest to the
highest bidder. However, when the underlying cost dis-
tribution is nonregular (e.g., bimodal), the most cost-
efficient split might not allocate greedily—i.e., it might
allocate more business to a higher bidder than themin-
imum amount required by the sourcing rules. These
insights derived from the model are validated by our
experimental results. Although the small but signifi-
cant cost savings from nongreedy splitting (for non-
regular distribution) might indicate robustness of the
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greedy allocation, the interesting aspect of nongreedy
splitting is that it aligns the buyer’s cost reduction and
diversification goals when the cost distribution is non-
regular. Moreover, the experimental results show that
our model does a good job of predicting the cost of
multisourcing for the buyer. Knowing the costs and
benefits of multisourcing is important for buyers look-
ing to design effective sourcing rules.
Besides announcing splits ex ante, the buyer could

use a more complex mechanism where it could an-
nounce only the sourcing rules up front and then
announce the splits and payments ex post, based on
the bids, such that they minimize the buyer’s expected
cost. Applying Myerson (1981), one can conclude that
for regular distributions, the ex post allocations and
the buyer’s expected cost would remain the same in
such a mechanism as compared to the simpler auc-
tion formats that we have discussed in this paper. For
the nonregular distribution, we find that such an auc-
tion mechanism might give different allocations (and
would result in lower expected cost for the buyer) as
compared to announcing splits up front. However, we
find that our main insight on the buyer awarding non-
greedily for nonregular distributions still holds true for
such amechanism. For instance, for the nonregular dis-
tribution given in Equation (9), and for the allocation
constraint that no supplier gets more than 1/3 of the
buyer’s business, one can show that the optimal mech-
anism would allocate 1/3, 1/3, 1/6, 1/6 (i.e., allocate
nongreedily) if the two lowest bids are below 0.21 and
the other two bids are above 0.21.

Even with up-front announcement of splits, one
could investigate other auction formats besides the
two that we investigate. For instance, an open reverse
English auction can be implemented without a clock—
bidders simply bid the auction price down using bid
decrements of their choosing. Theoretically, such an
implementation may admit a collusive equilibrium
(such as Fugger et al. 2016), in which case, both theo-
retical and empirical properties of such a mechanism
may be a promising direction for future research.

Finally, our main theoretical result is that a buyer
can reduce its purchase cost by awarding business
nongreedily to ex ante symmetric suppliers when the
underlying cost distribution is notwell behaved. In fact,
if bidders are ex ante asymmetric, we can show (Online
Appendix G) that allocating nongreedily can be opti-
mal even if the underlying cost distributions are well
behaved (i.e., regular). This underscores our paper’s
insight that nongreedy allocations can be optimal for
a buyer, and presents an additional direction that may
be promising for further experimental studies.
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Appendix. Proofs
Proof of Proposition 1. This proof is shown in the following
four steps: (1) We assume that all suppliers, except supplier i,
follow an increasing and continuously differentiable bidding
strategy β, and then characterize supplier i’s first-order con-
dition to find its surplus-maximizing bid bi . (2)We then solve
the first-order condition assuming that supplier i also uses
bidding strategy bi � β(ci), which gives us a closed-form solu-
tion to β. (3) We then verify that β is increasing and continu-
ously differentiable. (4) Finally, we verify that if all suppliers
except i follow β, then β also maximizes supplier i’s surplus.

Step 1. To find the optimal bid bi of supplier i, given that
all other suppliers are biddingwith an increasing and contin-
uously differentiable bidding strategy β, we first differentiate
Equation (4) with respect to bi :
∂Π(bi , ci , ·)

∂bi
�H(β−1(bi , ·), ·)+ (bi − ci)

∂H(β−1(bi , ·), ·)
∂bi

. (A.1)

Since ∂Π(bi , ci , ·)/∂bi > 0 at bi � ci for any ¯
c ≤ ci < c̄, we know

that the bid that maximizes supplier i’s surplus will also be
a solution to the first-order condition ∂Π(bi , ci , ·)/∂bi � 0.

Step 2. We now characterize β by substituting bi � β(ci) in
the first-order condition (A.1).

H(ci , ·) � −(β(ci , ·) − ci)(∂H(ci , ·)/∂ci) · 1/(∂β(ci , ·)/∂ci). We
can therefore characterize the bidding function through
the following differential equation: (∂β(ci , ·)/∂ci) · H(ci , ·) +
(β(ci , ·) − ci)(∂H(ci , ·)/∂ci)� 0, which can be rewritten as

∂(H(ci , ·) · β(ci , ·))
∂ci

� ci
∂H(ci , ·)
∂ci

. (A.2)

At ci � c̄, it is an equilibrium strategy for supplier i to bid c̄—
i.e., β(c̄ , ·) � c̄. Thus, integrating Equation (A.2) in the limits
ci to c̄ gives us the solution

β(ci , ·)� c̄ · H(c̄ , ·)
H(ci , ·)

− 1
H(ci , ·)

∫ c̄

x�ci

x · ∂H(x , ·)
∂x

· dx. (A.3)

Step 3. We had assumed that β(c , ·) is continuously differ-
entiable and increasing in c. Indeed, β(c , ·) as characterized
by Equation (A.3) is continuously differentiable. Next, we
show that β(c , ·) in Equation (A.3) is also increasing. Differ-
entiating β(c , ·)with respect to c in Equation (A.3), we get

∂β(c , ·)
∂c

�−
β(c , ·)
H(c , ·) ·

∂H(c , ·)
∂c

+
c

H(c , ·) ·
∂H(c , ·)
∂c

�−
β(c , ·) − c

H(c , ·) ·
∂H(c , ·)
∂c

.

To determine the sign of ∂β(c , ·)/∂c, we need to determine the
sign of ∂H(c , ·)/∂c. For this, we use the expression of H(x , ·)
from Equation (3). Thus,

∂H(c ,Q)
∂c

�−
(
n − 1

1

)
F̄(c)n−2 f (c) · (Q1 −Q2)

− 2
(
n − 1

2

)
F̄(c)n−3F(c) f (c) · (Q2 −Q3)

− 3
(
n − 1

3

)
F̄(c)n−4F(c)2 f (c) · (Q3 −Q4) − · · ·

− (m − 1)
(

n − 1
m − 1

)
F̄(c)n−m F(c)m−2 f (c)

· (Qm−1 −Qm) − · · ·

− (n − 1)
(
n − 1
n − 1

)
F(c)n−2 · (Qn−1 −Qn).
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For Q1 ≥Q2 ≥ · · · ≥Qn , we get ∂H(c , ·)/∂c ≤ 0; therefore, β(c , ·)
is increasing in c.

Step 4. Finally, we show that β(c , ·) forms a symmetric
equilibrium—i.e., if all other n − 1 suppliers bid with strat-
egy β, then β would also maximize supplier i’s surplus.
Suppose that supplier i with marginal cost c chooses to bid
b � β(z , ·)—i.e., it emulates a supplier with marginal cost z.
Then its payoff, from Equation (4), is Π(b , c , ·) � (β(z , ·) − c) ·
H(z , ·). Substituting the value β(z , ·), we get the supplier’s
payoff if it emulates a supplier of cost z as Π(b , c , ·) �
c̄H(c̄ , ·) − ∫ c̄

x�z x(∂H(x , ·)/∂x) · dx − cH(z , ·) � (z − c)H(z , ·) +
∫ c̄

x�z H(x , ·) dx. If, instead, the supplier with cost c does bid
β(c , ·), then its payoff is Π(β(c , ·), c , ·) � ∫ c̄

x�c H(x , ·) dx. Since
H(c , ·) decreases in c, for any z , c, we get Π(β(c , ·), c , ·) −
Π(β(z , ·), c , ·) � (c − z)H(z , ·)+ ∫ z

x�c H(x , ·) dx ≥ 0. Therefore, β
is indeed a symmetric equilibrium bidding strategy. �

Proof of Proposition 2. Using Equation (3), buyer’s expected
cost can be characterized as Cbuyer � n · ∫ c̄

x�0 β(x ,Q) ·
H(x ,Q) f (x) dx. Substituting the value of β from Equation (5),
we get Cbuyer � nc̄Qn − n ∫ c̄

x�0 ∫ c̄
y�x y dH(y ,Q) f (x) dx. Integrat-

ingbyparts,wegetCbuyer � n ∫ c̄
x�0(xH(x ,Q)+∫ c̄

y�x H(y ,Q) dy) ·
f (x) dx. Now, n ∫ c̄

x�0 xH(x ,Q) f (x) dx � Q1µ1 + Q2µ2 + · · · +
Qnµn . We next resolve n ∫ c̄

x�0 ∫ c̄
y�x H(y ,Q) dy f (x) dx term

by term. For this, take any mth term between 1 and
n − 1 of H(y ,Q)—i.e., take Qm

( n−1
m−1

)
F̄n−m(y)Fm−1(y). We then

characterize

n ·
(

n − 1
m − 1

) ∫ c̄

x�0

∫ c̄

y�x
F̄n−m(y)Fm−1(y) dy f (x) dx

� m ·
(

n
m

) ∫ c̄

x�0

∫ c̄

y�x
F̄n−m(y)Fm−1(y) dy f (x) dx

� m ·
(

n
m

)
c̄
∫

x�0
F̄n−m(x)Fm(x) dx

(integrating by parts). Pearson (1902) showed that µm+1 −
µm �

( n
m

)
∫ c̄

x�0 F̄n−m(x)Fm(x) dx for any m � 1, . . . , n−1. For m �

n, we get c̄ − µn � ∫ c̄
x�0 Fn(x) dx. Thus, we have that

n
∫ c̄

x�0

∫ c̄

y�x
H(y ,Q) dy f (x) dx

� Q1(µ2 − µ1)+ 2Q2(µ3 − µ2)+ · · ·+ m(µm+1 − µm)Qm + · · ·
+ (n − 1)Qn−1(µn − µn−1)+ nQn(c̄ − µn).

Finally, adding this term back, we get

Cbuyer � µ2Q1 + (2µ3 − µ2)Q2 + · · ·+ (mµm+1 − (m − 1)µm)Qm

+ · · ·+ ((n − 1)µn − (n − 2)µn−1)Qn−1

+ (nc̄ − (n − 1)µn)Qn . �

Proof of Lemma 1. Wefirst show thatmaximizing∑
Q2

i such
that sourcing constraints (1b) are satisfied would give a
unique solution. We show this result by contradiction. Con-
sider any two sets of allocations Q and Q′ that maximize∑

Q2
i and satisfy the sourcing constraints (1b). Since one of

the constraint is∑Qi �
∑

Q′i �1, one can always find some 1≤
l < m ≤ n such that Ql >Q′l and Q′m >Qm (or the reverse (i.e.,
Ql <Q′l and Q′m < Qm)). Assuming the former—i.e., Ql >Q′l
and Q′m > Qm—implies that an 0 < ε < min(Ql − Q′l ,Q

′
m −

Qm) can be found such that Ql > Q′l + ε and Q′m − ε > Qm .
Moreover, Q′l + ε and Q′m − ε would also satisfy the sourcing

constraints. Now, (Q′l + ε)2 + (Q′m − ε)2 � Q′2l + Q′2m + 2ε(ε +
Q′l − Q′m) > Q′2l + Q′2m . Thus, Q′ cannot be an optimal solu-
tion. Following the same steps, one can show that for Ql <Q′l
and Q′m <Qm , Q cannot be optimal. Hence, maximizing∑

Q2
i

such that constraints of Equation (1b) are satisfiedwould give
a unique solution. Next, we show that this unique solution,
denoted by Q, is also greedy. We show this result also by
contradiction—i.e., if Q is not greedy, then an allocation Q′
can be found that satisfies the constraints of Equation (1b)
and ∑

Q′2i ≥
∑

Q2
i . By definition of greedy allocation, if Q

is not greedy, then for some ε > 0 and some 1 ≤ l < m ≤ n,
the allocation vector Q′ would satisfy sourcing constraints
if Q′l � Ql + ε, Q′m � Qm − ε, and Q′j � Q j for all j � 1, . . . , n
excluding j � l and excluding j � m. Now, ∑

Q′2i �
∑

Q2
i +

2ε(ε+Ql −Qm) >
∑

Q2
i . �

Proof of Lemma 2. Since the decision variables Q1 , . . . ,Qn
are real numbers not less than zero, and Cbuyer in Equation (6)
is linear in Q1 , . . . ,Qn , hence, the math program (1) formu-
lates a constrained fractional knapsack problem. Therefore,
the optimal allocations are always greedy (for all sourcing
constraints) if and only if the coefficients of Qis in Equa-
tion (6) are increasing in i. This implies that the optimal
allocation is always greedy to all but the lowest-bidding
supplier if and only if mµm+1 − (m − 1)µm ≥ (m − 1)µm −
(m − 2)µm−1 is true for all m > 2 and if nc̄ − (n − 1)µn ≥
(n − 1)µn − (n − 2)µn−1. For the lowest-bidding supplier, it
can be shown that µ2 ≤ mµm+1 − (m − 1)µm for all m ≥ 2
since µ2 − µm+1 ≤ 0 ≤ (m − 1)(µm+1 − µm) for all m ≥ 2. Also,
µ2 ≤ nc̄ − (n − 1)µn since µ2 − c̄ ≤ 0 ≤ (n − 1)(c̄ − µn) for any
n > 1 suppliers participating in the auction. Hence, allocating
greedily to the lowest-bidding supplier is always optimal. �

Proof of Theorem 1. Rearranging the terms of Equation (6)
gives Cbuyer(Q) �

∑n
j�1(µ jQ j +

∑n
i� j(µi+1 − µi)Qi). For a given

vector of costs c� c1 , . . . , cn , we define

q(x , c) ≡
{

Qi if Ci:n ≤ x ≤ Ci+1:n for all i � 1, . . . , n − 1,
Qn if Cn:n ≤ x ≤ c̄ ,

where C j:n represents the jth-lowest cost from the sam-
ple c. One can then express Cbuyer(Q)� Ɛc(

∑n
j�1(C j:nQ j +

∫ c̄
x�C j:n

q(x ,c)dx))�Ɛc(
∑n

i�1(ci q(ci ,c)+∫ c̄
x�ci

q(x ,c)dx)). Integrat-
ing by parts gives Ɛc(∫ c̄

x�ci
q(x ,c)dx)� Ɛc(q(ci ,c)F(ci)/ f (ci)).

Thus, Cbuyer(Q)�Ɛc(
∑n

i�1(ci +F(ci)/ f (ci))q(ci ,c)). Thus, for a
regular distribution (i.e., c+F(c)/ f (c) increasing in c), shifting
an ε>0 from Qi to Q j for any i< j, with everything else being
the same,would increase Cbuyer(Q). Finally, shifting ε>0 from
Qi to Q j for any i< j, with everything else being the same,
would increase the Herfindahl– Hirschman index. �

Endnotes
1Multiunit forward auctions for wireless spectrum have used set-
asides and spectrum caps (Cramton et al. 2011), which help entrants
win spectrum while limiting the amount of spectrum that incum-
bents can control in a geographic area. Although similar in spirit
to sourcing rules in industrial procurement, politics can play an
important role in how such set-asides and caps are deployed by
governments.
2Specifically, a regular distribution is defined as a continuous dis-
tribution for which c + F(c)/ f (c) is increasing in c over the entire
domain (for all c).
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3We get nonmonotonicity of c + F(c)/ f (c) (hence, nonregularity)
when the probability density f contains one or more portions that
has a “U-shape.”
4 In Section 3, we explicitly characterize Cbuyer(Q) for the sealed-bid
and open-bid auctions.
5Note that this descending-price-clock auction is similar in spirit
to the clinching auction mechanism used for the auctioning of mul-
tiple units in an ascending-price-clock auction (as discussed in
Ausubel 2004).
6For n � 3, an arc-sine distribution gives µ1 � 0.196, µ2 � 0.5, µ3 �

0.804. Thus, the coefficients of Q3, Q2 in Equation (6) are 3 − 2µ3 �

1.3921 and 2µ3 − µ2 � 1.1079, respectively.
7Sample sizes: all treatments included 4 sessions of 12 participants
(48 participants), with the following exceptions. Sealed-Bid 40–35–
25–0 and 80–15–5–0 treatments each included 4 sessions of 12 (60 par-
ticipants), the 50–35–15–0 split treatment included 4 sessions of 8
(32 participants), and the 50–50–0–0 split treatment included 3 ses-
sions of 8 (24 participants).
8We used the data from periods 1–40 in the analysis we report.
We also repeated the same analysis for periods 21–40 only, to check
whether learning causes any difference in our conclusions, and we
found that none of the significance levels were affected.
9To further highlight overaggressive bidding, we performed a Tobit
regression with bids as dependent variable and with splits and cost
as independent variables. In Online Appendix E, we present results
of this Tobit regression.
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