
1

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Code Coverage Testing & Tool Support

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2

Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

3

Our FocusOur FocusOur FocusOur Focus

� We focus on testing programs
– subsystems or complete systems
– written in a formal language
– a large collection of techniques and tools

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

4

Testing for Correctness?Testing for Correctness?Testing for Correctness?Testing for Correctness?

� Identify the input domainof P
– Input domain of a program P is the set of all valid inputs that P can expect
– The sizeof an input domain is the number of elements in it
– An input domain could be finite or infinite
– Finite input domains might still be very large!

� Execute P against each elementof the input domain

� For each execution of P, check ifP generates the correct output as per its
specification S
– This form of testing is also known asexhaustive testing

as we execute P on all elements of the input domain.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

5

Testing for Correctness? Testing for Correctness? Testing for Correctness? Testing for Correctness? Sorry!Sorry!Sorry!Sorry!

� For most programs exhaustive testingis not feasible
– It will take several light yearsto execute a program

on all inputs on the most powerful computers of today!

� What is the alternative?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

6

Confidence in Your ProgramConfidence in Your ProgramConfidence in Your ProgramConfidence in Your Program

� Confidence is a measure of one’s beliefin the correctness of the program.

� It is not measured in binary terms: a correct or an incorrect program.

� Instead, it is measured as the probabilityof correct operation of a
program when used in various scenarios.

� It can be measured, for example, by test completeness
– The extent to which a program has been tested and errors found have been

removed.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

7

How and why does testing improve our

confidence in program correctness ?

8

Example: Increase in ConfidenceExample: Increase in ConfidenceExample: Increase in ConfidenceExample: Increase in Confidence

� We consider a non-programming example to illustrate what is meant by
“ increase in confidence.”

� Example: A rectangular field has been prepared with respect to certain
specifications.
– One item in the specifications is

“There should be no stones remaining in the field.”

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

9

Rectangular FieldRectangular FieldRectangular FieldRectangular Field

� Search for stones inside a rectangular field

x

y

(0,0) (L,0)

(0,W)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

10

Testing the Rectangular FieldTesting the Rectangular FieldTesting the Rectangular FieldTesting the Rectangular Field

� The field has been prepared and our task is to test it to make sure that it
has no stones.

� How should we organize our search?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

11

Partitioning the FieldPartitioning the FieldPartitioning the FieldPartitioning the Field

� We divide the entire field into smaller search rectangles.

� The length and breadth of each search rectangle is one half that of the
smalleststone.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

12

Partitioning into Search RectanglesPartitioning into Search RectanglesPartitioning into Search RectanglesPartitioning into Search Rectangles

Stone

1
2

3

4

5

6
7

8

y

width

1 2 3 4 5 6 7

x length

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

13

Input DomainInput DomainInput DomainInput Domain

� Input domainis the set of all possible inputs to the search process.

� In our example this is the set of all points in the field.
Thus, the input domain is infinite!

� To reduce the size of the input domain we partition the field into
finite size rectangles.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

14

Rectangle SizeRectangle SizeRectangle SizeRectangle Size

� The length and breadth of each search rectangle is one half that of the
smallest stone.

� This ensures that each stone covers at least one rectangle.

� Is this always true?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

15

ConstraintsConstraintsConstraintsConstraints

� Testing must be completed in less than H hours

� Any stone found during testing is removed

� Upon completion of testing the probability of finding a stone must be less
than P

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

16

Number of Search RectanglesNumber of Search RectanglesNumber of Search RectanglesNumber of Search Rectangles

� Let
L: length of the field
W: width of the field
α: length of the smalleststone
β: width of the smalleststone

� Size of each rectangle: (α/2) * (β/2)

� Number of rectangles: N = (L/α)*(W/β)*4

� Assume that L/α and W/β are integers.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

17

Time to TestTime to TestTime to TestTime to Test

� Let t be the time to look inside one rectangle.
Assume that no rectangle is examined more than once.

� Let o be the overhead in moving from one rectangle to another.

� Total time to searchT =N * t + (N − 1)* o

� Testing with N rectangles is feasible only if T < H

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

18

Partitioning the Input DomainPartitioning the Input DomainPartitioning the Input DomainPartitioning the Input Domain

� This set consists of all rectangles (N).

� Number of partitions of the input domain is finite (N).

� However, if T > H then the number of partitions is too large and
scanning each rectangle once is infeasible.

� What should we do in such a situation?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

19

Option 1: Do a Limited SearchOption 1: Do a Limited SearchOption 1: Do a Limited SearchOption 1: Do a Limited Search

� Of the N rectangles we examine onlyn wheren is such that
(t * n + o* (n − 1)) < H.

� This limited search will satisfy the timeconstraint.

� Will it satisfy the probability constraint?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

20

Distribution of StonesDistribution of StonesDistribution of StonesDistribution of Stones

� To satisfy the probability constraint we must scan enough rectanglesso
that the probability of finding a stone, after testing, is less than P.

� Let us assume that

– there are si stones remaining after i test cycles.

– There are Ni rectangles remaining after i test cycles.

– Stones are distributeduniformlyover the field

– An estimate of the probability of finding a stone in a randomly selected
remaining search rectangle is pi = si / Ni

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

21

Probability ConstraintProbability ConstraintProbability ConstraintProbability Constraint

� We will stop looking into rectangles if pi ≤ P

� Can we really apply this test method in practice?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

22

Why NotWhy NotWhy NotWhy Not

� Number of stones in the field is not known in advance.

� Hence we cannot computethe probability of finding a stone after a
certain number of rectangles have been examined.

� The best we can do is to scanas many rectangles as we can and remove
the stones found.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

23

CoverageCoverageCoverageCoverage

� After a rectangle has been scanned for a stone, we say that the rectangle
has been covered.

� Suppose that n rectangles have been scanned from a total of N. Then we
say that the coverage is n / N.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

24

Coverage and ConfidenceCoverage and ConfidenceCoverage and ConfidenceCoverage and Confidence

� What happens when coverage increases?
– As coverage increases so does our confidence in a “stone-free” field

� In this particular example, when the coverage reaches 100%, all stones
have been found and removed.

� Can you think of a situation when this might not be true?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

25

Option 2: Reduce Number of PartitionsOption 2: Reduce Number of PartitionsOption 2: Reduce Number of PartitionsOption 2: Reduce Number of Partitions

� If the number of rectangles to scan is too large,
we can increase the size of a rectangle.
– This reduces the number of rectangles.

� Increasing the size of a rectangle also implies that
there might be more than one stone within a rectangle.
– Is it good for a tester?
– It also implies

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

26

Rectangle SizeRectangle SizeRectangle SizeRectangle Size

� As a stone may now be smaller than a rectangle, detecting a stone inside
a rectangle (by examining only one point) is not guaranteed.

� Despite this fact our confidence in a “stone-free” field
still increases with coverage.

� However, when the coverage reaches 100%
we cannot guaranteea “stone-free” field.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

27

Coverage versus ConfidenceCoverage versus ConfidenceCoverage versus ConfidenceCoverage versus Confidence

1(=100%)

1

Coverage

C
on

fi
de

n c
e

0

Does not imply that the field
is “stone-free”.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

28

Rectangle SizeRectangle SizeRectangle SizeRectangle Size

small large

t, p p = Probability of detecting a stone inside a
rectangle, given that the stone is there

t = time to complete the testing

Rectangle size

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

29

AnalogyAnalogyAnalogyAnalogy

� Field Program
� Stone Error
� Scan a rectangle Test program on one input
� Remove stone Remove error
� Partition Subset of input domain
� Size of stone Size of an error
� Rectangle size Size of a partition (wrt “Program”)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

30

Confidence and ProbabilityConfidence and ProbabilityConfidence and ProbabilityConfidence and Probability

� Increase in coverage increases our confidencein a “stone-free” field.

� It might not increase the probabilitythat the field is “stone-free.”

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

31

Review QuestionsReview QuestionsReview QuestionsReview Questions

� What is the effect of reducing the partition size on probability
of finding errors?

� How does coverage affect our confidence in program correctness?

� Does 100% coverage imply that a program is fault-free?

� Indicate whether the following statements are true or false

– The objective of software testing is to prove the correctnessof the program
being tested

– The reliability of a program will always increaseas your confidence of the
program being correct increases

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

32

What is coverage

and

what role does it play in testing?

33

Coverage PrincipleCoverage PrincipleCoverage PrincipleCoverage Principle

� The basic idea of coverage testing is that testing is complete
when a well-defined set of tests is complete.
– Example

� Pilots use pre-flight check lists
� Shoppers use grocery lists

to assure the correct completion of their tasks

– In the same way testers can count the completed elements of a test plan
� Example

�Requirements
�Functionalities
�Blocks, Decisions (control-flow based)
�C-uses, P-uses and All-Uses (dataflow-based)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

34

The Role of Coverage in TestingThe Role of Coverage in TestingThe Role of Coverage in TestingThe Role of Coverage in Testing

� It provides a way of monitoring and measuringthe progress of testing
against explicit quantitative completion criteria

– Gives a clear measure of the completion of the testing task

– Example, for requirements testing
�How many of the requirements have been tested?
�How many tests have run per requirement?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

35

Topics Topics Topics Topics

�Code Coverage testing and code inspection
�Code Coverage testing and functional testing
�Controlflow-based testing
�Dataflow-based testing

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

36

What is Code Coverage TestingWhat is Code Coverage TestingWhat is Code Coverage TestingWhat is Code Coverage Testing

• It is “White Box Testing”

• Takes into account the structure of the softwarebeing tested

• Measures how thoroughly the code has been tested with respect to certain

metrics

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

37

Code Coverage Testing versus Code InspectionCode Coverage Testing versus Code InspectionCode Coverage Testing versus Code InspectionCode Coverage Testing versus Code Inspection

• Code inspection is a technique whereby the source code is inspected for
possible errors

• Code coverage testing is a dynamicmethod, whereas code inspection is
a static method

• Code coverage testing is a form of code inspection
– Code that is executed successfully is disregarded for visual inspection
– Code that is not executed is inspected
– One is not likely to replace testing by code inspection

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

38

Code Coverage Testing versus Functional TestingCode Coverage Testing versus Functional TestingCode Coverage Testing versus Functional TestingCode Coverage Testing versus Functional Testing

� When test inputs are generated using program specifications,
we say that we are doing functional testing
– Functional testing tests how well a program meets the

functionality requirements

� These two types of testing are complementary
– Basic functionalities should always be tested
– The set of tests generated from functional testing provides

a good basis for code coverage testing

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

39

History of Code Coverage TestingHistory of Code Coverage TestingHistory of Code Coverage TestingHistory of Code Coverage Testing

• Using profiling tools to assess the amount of code coverage during testing
(1960’s)

• Using tcov to give statement coverage data for C and Fortran programs
(1970’s)

• Two groups of test criteria
– Controlflow-based testing (block & decision)
– Dataflow-based testing (c-use, p-use and all-uses)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

40

Basic BlockBasic BlockBasic BlockBasic Block

• A basic block is a sequence of consecutive statements or expressions,
containing no branches except at the end, such that if one element of the
sequence is executed all are.

A program, its control flowgraph, basic blocks, and decision

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

41

DecisionDecisionDecisionDecision

• A decision is a boolean predicate with two possible values, true and false

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

42

CCCC----use & Puse & Puse & Puse & P----useuseuseuse

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

43

Importance of Code Coverage TestingImportance of Code Coverage TestingImportance of Code Coverage TestingImportance of Code Coverage Testing

• In general, a piece of code must be executed before a fault in it can be
exposed

• Helps early fault detection
– Are system testers finding faults that should have been found and fixed by

developers?
– Relative cost of fixing a software fault

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

44

State of PracticeState of PracticeState of PracticeState of Practice

• A published study (ICSE’92)
– Coverage above 60-70% in system testing is very difficult

• Don Knuth’s system testing of TeX (23,000 LOC)
– 85% block and 72% decision coverage (1992)

• Brian Kernigan’s testing of AWK
– 70% block and 59% decision coverage (1991)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

45

• How much code is currently tested?
What is missing?
– Which statements were exercised?
– Which paths were traversed?
– Which def-use associations were exercised?
– Which functions got invoked from where?

• Need help in creating tests?
– Which statement should I try to cover next?

Efficient Coverage Testing Efficient Coverage Testing Efficient Coverage Testing Efficient Coverage Testing (1)

Analyzing the controlflow graph of the program to find the
dominant blocks, decisions, and def-use pairs.

For example, when a test covers highly dominant blocks it
will cover many other blocks.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

46

Efficient Coverage Testing Efficient Coverage Testing Efficient Coverage Testing Efficient Coverage Testing (2)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

47

Efficient Coverage Testing Efficient Coverage Testing Efficient Coverage Testing Efficient Coverage Testing (3)
�Use prioritization and visualizationto provide hot spots that give the most value in coverage.
�Each color represents a different weight determined by a control flow analysis using the

concept of superblocks and dominators.

Covering this red block
guarantees the execution of
at least 8 additional blocks.

Code in white has already been
covered by a test case and covering
it again will not add new coverage

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

48

Efficient Coverage Testing Efficient Coverage Testing Efficient Coverage Testing Efficient Coverage Testing (4)

Covering either true or
false branch guarantees
the execution of at least
another 8 branches.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

49

Dominator & Super Block Dominator & Super Block Dominator & Super Block Dominator & Super Block (1)
• A super block consists of one or more basic blocksthat if one block in the

super block is executed all are

– If any statementin a super block is executed, then all statementsin it must be
executed, provided the execution terminates on that input

– A super block needs not be contiguous

• Block u dominates block v if every path from entry to end, via v, contains u
– u dominates v if covering v implies the coverage of u
– Test execution cannot reach v without going through u

• Given a program, identify a subset of super blocks whose coverage implies
that of all super blocks and, in turn, that of all basic blocks

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

50

Dominator & Super Block Dominator & Super Block Dominator & Super Block Dominator & Super Block (2)

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

51

Dominator & Super Block Dominator & Super Block Dominator & Super Block Dominator & Super Block (3)

• Quiz: Does node 4 or node 12
predominate node 13? Why?

• Quiz: Does node 9 postdominate node
8? Why?

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

52

Dominator & Super Block Dominator & Super Block Dominator & Super Block Dominator & Super Block (4)

• A strongly connected componentof a
basic block dominator graph has the
property that every node in the
component dominates all
other nodes in that component

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

53

Dominator & Super Block Dominator & Super Block Dominator & Super Block Dominator & Super Block (5)

• Obtained by removing the composite
edgesin the right Figure on the
previous slide

• An edge e from a node u to a node v
is said to be a composite edge if v is
also reachable from u without going
through e

• Only need to create test cases that cover
basic blocks 4, 7, 9, and 10 –one from
each leaf nodein the super block
dominator graph

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

54

Dominator & Super Block Dominator & Super Block Dominator & Super Block Dominator & Super Block (6)
• At most four test cases need to be developed to cover all 14 basic blocks

• An alternative order is 10, 7, 4, and 9

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

55

Dominator & Super Block Dominator & Super Block Dominator & Super Block Dominator & Super Block (7)

• Experimental results

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

56

Weight ReWeight ReWeight ReWeight Re----Computation Computation Computation Computation (1)
� The weight of a given node is the number of nodes that have not been

covered but will be if that node is covered

� Why is it important to take a “conservative” approach?
– Will node 6 be covered by covering node 18?

• To arrive at node 18 requires the
execution also go through nodes 1, 2, 4,
7, 12 and 13

• Node 18 is dominated bynodes 1, 2, 4,
7,12 and 13

• These nodes will be covered (if they
haven’t been) by a test execution if that
execution covers node 18

• Assuming none of the nodes is covered
so far, we say that node 18 has a weight
of 7because covering it will increase the
coverage by at least 7 additional nodes.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

57

Weight ReWeight ReWeight ReWeight Re----Computation Computation Computation Computation (2)

• Arriving at node 6 requires the execution only goes through nodes 1, and 2

•Assuming none of the nodes is covered so far, we say that node 6 has a weight of 3

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

58

Weight ReWeight ReWeight ReWeight Re----Computation Computation Computation Computation (3)

• The execution of certain tests may change the weights of nodes that
are not covered by these tests.

• After a test is executed to cover node 18, the weight (in terms of
increasing the coverage) of node 6 is reduced from 3 to 1.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

59

The The The The χχχχSuds Tool SuiteSuds Tool SuiteSuds Tool SuiteSuds Tool Suite

� Telcordia Technologies (formerly Bellcore or Bell Communications
Research)

– χSuds (Software understanding and diagnosis systems): a set of
software testing, analysis, and understanding tools for C and C++
programs

� χATAC
� χSlice
� χRegress
� χVue
� χProf

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

60

χχχχSuds Home PageSuds Home PageSuds Home PageSuds Home Page

http://xsuds.argreenhouse.com

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

61

χχχχATAC Demo: Coverage Testing of C CodeATAC Demo: Coverage Testing of C CodeATAC Demo: Coverage Testing of C CodeATAC Demo: Coverage Testing of C Code

Compile code with χATAC Initial display χSuds User’s Manual
Source display after

executing wordcount.1

Source display after
executing wordcount.2

100 % block coverage after
executing wordcount.5

Source display after
executing wordcount.6

100 % block & decision
coverage after executing

wordcount.9

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

62

Coverage Testing Tools for Java CodeCoverage Testing Tools for Java CodeCoverage Testing Tools for Java CodeCoverage Testing Tools for Java Code

� eXVantage (eXtreme Visual-aid novel testing and generation)
– A tool suite for code coverage prioritization, test generation, test execution,

debugging, and performance profiling of Java, C, and C++ programs
– Based on the JBT(Java Bytecode Testing) tool suite developed at UTD since

2002

� Clover

� Cobertura

� etc.

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

63

The End

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

72

eXVantage Home PageeXVantage Home PageeXVantage Home PageeXVantage Home Page

W. Eric Wong and J. Jenny Li, “An Integrated Solution for Testing and Analyzing Java
Applications in an Industrial Setting,” in Proceedings of The 12th IEEE Asia-Pacific
Software Engineering Conference(APSEC), pp. 576-583, Taipei, Taiwan, December 2005

Code Coverage Testing & Tool Support (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

