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Abstract

In this paper we present techniques to �nd subsets of
nodes of a 
owgraph that satisfy the following property:
A test set that exercises all nodes in a subset exercises
all nodes in the 
owgraph. Analogous techniques to �nd
subsets of edges are also proposed. These techniques
may be used to signi�cantly reduce the cost of coverage
testing of programs. A notion of a super block consisting
of one or more basic blocks is developed. If any basic
block in a super block is exercised by an input then all
basic blocks in that super block must be exercised by
the same input. Dominator relationships among super
blocks are used to identify a subset of the super blocks
whose coverage implies that of all super blocks and, in
turn, that of all basic blocks. Experiments with eight
systems in the range of 1-75K lines of code show that,
on the average, test cases targeted to cover just 29% of
the basic blocks and 32% of the branches ensure 100%
block and branch coverage, respectively.

1 Introduction

Common sense dictates that a program be tested on
enough inputs that exercise each of its statements at
least once, as a statement must be exercised before a
fault in it may be exposed [5, 14]. In other words, a
program should be executed on enough inputs during
testing so each node in its 
owgraph gets visited. A
tester, therefore, is faced with the task of creating test
cases targeted to \cover" all nodes in the 
owgraph of
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the program being tested. In this paper, we present
a technique to �nd a small subset of these nodes with
the property that if the subset is covered, the remaining
nodes are automatically covered. Thus the tester only
needs to develop test cases targeted to cover the nodes
in the subset rather than the entire set.

The problem that all nodes in a 
owgraph be covered
is referred to as the block coverage problem as nodes in
a 
owgraph represent basic blocks in a program1. A
more stringent problem than the block coverage prob-
lem is the branch coverage problem which requires all
control transfers|or branches|among basic blocks to
be exercised. In other words, it requires that the pro-
gram should be executed on enough inputs so all edges
in its 
owgraph get visited at least once. The techniques
presented in this paper apply equally well to the branch
coverage problem. They may be used to identify a small
subset of edges such that if the subset is covered then
other edges are automatically covered.

Besides saving the user time, these techniques may
also be used to reduce the space and time overhead
imposed by the coverage testing tools by reducing the
number of probes that need to be placed in a program.
Many optimal program pro�ling techniques are avail-
able in the literature [4, 7, 11, 15, 17] that may also
be used to reduce this overhead (see Section 8, Related
Work). Unfortunately none of these techniques help re-
duce the number of test cases the user must develop
to achieve the desired coverage. These techniques help
us �nd a small subset of nodes/edges in a 
owgraph
with the property that if we know how many times the
nodes/edges in the subset are visited, then we may infer
how many times the remaining nodes/edges are visited.
If all nodes/edges in the subset are visited, however,
we may not conclude that the remaining nodes/edges
are visited too. The subsets of nodes/edges determined
by the techniques presented in this paper, on the other
hand, enable the latter inference to be made.

Pre- and postdominator relationships among 
ow-

1It is same as the statement coverage problem as covering all

basic blocks implies covering all statements, and vice versa.
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e1;
while (e2) {

switch (e3) {
case 1: e4;

case 2: e5;

default:

e9;

}

e13;

e14;

}

}

do e10; while (e11);

if (e8) {

while (e6) e7;

e12;

continue;

break;

Figure 1: An example C program
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Figure 2: Control 
owgraph

graph nodes are used to partition the set of nodes into
\super blocks" with the property that if any node in
a super block is covered then all nodes in that super
block are covered. Super blocks are di�erent from basic
blocks in that a super block may contain several basic
blocks. A dominator relationship among super blocks
is de�ned and used to identify a subset of the super
blocks such that covering the subset implies covering
all super blocks and, in turn, covering all basic blocks.
Analogous techniques are developed to partition the set
of edges and determine a subset of the partitions such
that covering the latter implies covering the former.

Experiments using these techniques on eight systems
varying in size from a 1,000 to 75,000 lines of C code
indicate that these techniques are quite promising (see
Section 7, Experimental Results). It was found that, on
the average, test cases targeted to cover just 29% of the
basic blocks and 32% of the branches chosen by these
techniques ensure 100% block and branch coverage, re-
spectively. Moreover, these techniques also provide an
ordering among the targeted basic blocks so covering
the �rst one third of the targeted blocks, on the aver-
age, implies covering more than two thirds of all blocks.

In the next section, we brie
y review the terminology
used in the this paper. In Section 3, we discuss tech-
niques to identify a subset of the basic blocks whose
coverage implies that of all basic blocks. Then, in Sec-
tion 4, we describe how to �nd the order in which the
basic blocks identi�ed should be covered. Section 5 dis-
cusses how these techniques may be used to reduce the
time and space overhead involved in computing the cov-
erage attained by a given test set. In Section 6, we
present how the analogous techniques may be used to
expedite branch coverage. Section 7 includes the results
of our preliminary experiments and Section 8 compares
our work with the related work in the literature.

2 Background

A control 
owgraph, or simply, a 
owgraph, of a pro-
gram is a four-tuple (N , E, entry, exit) where N is
the set of nodes that correspond to basic blocks in the
program, E is the set of directed edges between nodes,
and entry and exit are two distinguished nodes in N .
Every node in N is reachable from the entry node and
the exit node is reachable from every node by following
edges in E. Figure 2 shows the 
owgraph of an example
C program, shown in Figure 1, where e1; e2; : : : ; e14 are
blocks whose contents are not relevant for our purposes.

A node, u, predominates a node, v, denoted as

u
pre

�! v, if every path from the entry node to v con-
tains u2. A node, w, postdominates a node, v, denoted

as w
post

�! v, if every path from v to the exit node con-
tains w. For example, in Figure 2, nodes 1, 2, and 3 pre-
dominate node 8 and nodes 2 and 14 postdominate it.
Pre- and postdominator relationships can be expressed
in the form of pre- and postdominator trees, respec-

tively. u
pre

�! v i� there is s path from u to v in the

predominator tree. Similarly, w
post

�! v i� there is path
from w to v in the postdominator tree. Figures 3 and 4
show the pre- and postdominator trees of the 
owgraph
in Figure 2.

Many algorithms have been developed to �nd pre-
dominator relationships among nodes of a 
owgraph
[3, 9, 12, 16]. As the postdominator relationship is the
same as the predominator relationship in the reverse

owgraph, the same algorithms may also be used to �nd
postdominator relationships. The predominator tree of
a 
owgraph may be built in O(N + E) time, where N
and E denote the number of nodes and edges in the

2The predominator relationship is also referred to as the dom-

inator relationship at other places in the literature. In this paper,

we refer to it as the predominator relationship to clearly distin-

guish it from the postdominator relationship. We use the term

dominator relationship here to mean either pre- or postdominator

relationships.
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owgraph, respectively [9]. The same applies for the
postdominator tree.

3 Expediting Block Coverage

3.1 Pre- and Postdominators

A node, u, in a 
owgraph is said to be covered by a test
case, t, denoted as covered(u, t), if the control reaches
the corresponding basic block at least once when the

program is executed on t. If u
pre

�! v and v is covered by
t then u must also be covered by t, as every execution
path from the entry node to v contains u. In other
words:

if u
pre

�! v then covered(v; t) =) covered(u; t) (1)

Equivalently, whenever a node in a 
owgraph is covered
then all its ancestors in the predominator tree are also
covered. Thus, if all leaves in the predominator tree
are covered then all other nodes in the 
owgraph are
automatically covered. A tester, therefore, only needs
to develop test cases meant to exercise the leaves of the
predominator tree.

The same arguments hold if we substitute the post-
dominator relationship wherever the predominator re-
lationship was used in the previous paragraph, provided
the program execution terminates normally on all test
cases supplied. Thus we also have the following, pro-
vided the termination condition holds:

if u
post

�! v then covered(v; t) =) covered(u; t) (2)

The condition that the execution normally terminate
on all test cases supplied does not cause any adverse
problems for our purposes here. The goal of testing is
to detect faults in a program. If the tester supplies a
test case on which the execution does not terminate, or
terminates abnormally, it is indicative of a fault in the
program. The fault should then be �xed so the corrected

program terminates normally on the same test case3.
Therefore, in the remainder of this paper we assume
that the program execution terminates normally on all
test cases supplied by the tester.

A coverage testing tool may build both the pre- and
postdominator trees of the program under test, compare
the number of leaves in the two trees, and have the
tester cover the smaller of the two sets. For example,
for the 
owgraph in Figure 2, the predominator tree in
Figure 3 has six leaves whereas the postdominator tree
in Figure 4 has seven leaves. Thus, in this case, a tester
only needs to develop test cases targeted to cover the
six leaves in the predominator tree.

3.2 Super Block Dominators

We say that a node, u, dominates a node, v, denoted as
u �! v, if every path from entry to exit, via v, contains
u. Clearly, u dominates v i� u pre- or postdominates
v, for if this were not true, we would have a path from
the entry to the exit node via v bypassing u altogether.
In other words:

u �! v i� (u
pre

�! v or u
post

�! v) (3)

Thus, the dominator relationship among 
owgraph
nodes is the union of pre- and postdominator relation-
ships. It may be represented graphically by merging the
pre- and postdominator trees of the 
owgraph. We call
the union of the pre- and postdominator trees as the
basic block dominator graph of the corresponding 
ow-
graph. Figure 5 shows the basic block dominator graph
of the 
owgraph in Figure 2, obtained by merging the
pre- and postdominator trees of Figures 3 and 4, re-
spectively. A node, u, dominates another node, v, in
a 
owgraph i� there is a path from u to v in its basic
block dominator graph. As the name suggests, a basic

3Changes to a program may require that its 
owgraph as well

as the pre- and postdominator trees be rebuilt.
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Figure 7: Super block dominator graph with the initial
weights associated with the leaves.
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Figure 8: Highlighted blocks show the covered blocks
after the initially heaviest leaf is covered. New weights
of the remaining leaves are also shown.

block dominator graph may not necessarily be a tree.
Moreover, it may not be acyclic either.

A strongly connected component of a basic block
dominator graph has the property that every node in
the component dominates all other nodes in that compo-
nent. For example, nodes f1, 2, 14g form a strongly con-
nected component of the basic block dominator graph
in Figure 5. Strongly connected components of a graph
may be found in O(N +E) time where N and E denote
the number of nodes and edges in the graph, respec-
tively [2].

Assertions (1), (2), and (3), in turn, imply:

if u �! v then covered(v; t) =) covered(u; t) (4)

This, coupled with the fact that each node in a strongly
connected component dominates all other nodes in that
component, implies that whenever any node in a com-
ponent is covered by a test case then all other nodes
in that component must be covered by the same test
case. We refer to the strongly connected components of

a basic block dominator graph as super blocks, as they
are made up of one or more basic blocks. Any one basic
block in a super block may be designated as the repre-
sentative of that super block.

Unlike basic blocks super blocks need not be contigu-
ous. They may have multiple entry and multiple exit
points. If a program instruction inside a basic block is
executed, all other instructions in that basic block must
be executed before the control leaves that basic block.
On the other hand, if a program instruction in a super
block is executed, all instructions in that super block
must be executed before the exit node is reached.

Just as with basic blocks, we also de�ne dominator
relationships among super blocks. A super block, U ,
dominates another super block, V , denoted as U �! V ,
if every path from the entry to the exit node via V in
the 
owgraph also contains U . Thus we also have:

if U �! V then covered(V; t) =) covered(U; t) (5)

Recall that if a path contains any basic block in a su-
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per block then it contains all basic blocks in that super
block.

Dominator relationships among super blocks may be
represented graphically in the form of a super block dom-

inator graph. It is obtained by merging the nodes in the
strongly connected components of the corresponding ba-
sic block dominator graph and removing the composite
edges from the resulting graph4. An edge, e, from a
node, u, to a node, v, is said to be a composite edge if
v is also reachable from u without going through e. In
case there are multiple edges from one node to another,
all but one of them are considered composite edges. In
other words, a composite edge represents a composition
of one or more other edges.

Figure 6 shows the graph obtained by merging the
strongly connected components of the graph in Figure 5.
It has several composite edges, e.g., the edges from node
A to nodes C, D, and H are all composite edges. One
of the two edges from node A to node B is also a com-
posite edge. Figure 7 shows the super block dominator
graph of the basic block dominator graph in Figure 5,
obtained by removing the composite edges in the graph
in Figure 6. Note that unlike a basic block domina-
tor graph a super block dominator graph is an acyclic
graph. But unlike pre- and postdominator trees it need
not be a tree. It can be shown that each basic block
dominator graph has a unique super block dominator
graph.

Assertion (5) implies that covering all the leaves in
the super block dominator graph implies covering all
other super blocks as well. A tester, therefore, only
needs to develop test cases aimed at covering one basic
block from each leaf in the super block dominator graph.
For example, for the 
owgraph in Figure 2, one only
needs to create test cases that cover basic blocks 4, 7, 9,
and 10|one each from the leaf nodes in its super block
dominator graph in Figure 7.

4Equivalently, the super block dominator graph of a 
owgraph

may be obtained by �nding the condensed graph of its basic block

dominator graph and obtaining the minimum equivalent graph of

the condensed graph [13].
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Figure 10: The order in which the targeted basic blocks
are covered and the corresponding cumulative coverages
achieved.

3.3 Selective Coverage

Sometimes a tester may need to cover a set of speci�c
basic blocks rather than the set of all basic blocks. In
this case a new dominator graph may be obtained by
projecting the program's super block dominator graph
over the given basic blocks. The tester then only needs
to develop test cases that cover the leaves of the pro-
jected dominator graph.

For example, suppose we need to develop test cases
that cover nodes 3, 6, 10, 11, and 13 in the 
owgraph
in Figure 2. Figure 9 shows the super block dominator
graph obtained by projecting that in Figure 7 over the
above �ve blocks. As the projected graph has only two
leaves, we only need to develop test cases that cover the
corresponding two basic blocks|6 and 10, or alterna-
tively, 6 and 11.

4 Deciding the Right Order

Oftentimes, due to the lack of time and other resources,
testers are content with attaining some desired fraction
of 100% coverage, e.g., 70% or 80%. In such situations,
how does one �nd the smallest subset of the leaves of
the super block dominator graph whose coverage implies
the desired overall coverage?

The above problem, in general, is an NP-complete
problem [6]. But we can use the greedy approach to get
good approximate answers. We can associate weights
with the leaves of the super block dominator graph.
Weight of a leaf is de�ned to be the total number of
basic blocks in the leaf and all its uncovered ancestors
in the super block dominator graph. Initially, all super
blocks are marked as uncovered. Figure 7 also shows
the initial weights associated with the leaves of the su-
per block dominator graph.

We select the leaf with the largest weight to be cov-
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Probe(U)

Mark representatives of the children of U in the super block dominator graph as visited;
Visit_predecessors(r);
Visit_successors(r);

If both the entry and the exit nodes of the flowgraph are marked as visited
Then return true;
Else return false;

}

Visit_predecessors(n)
{

For each immediate predecessor, p,

If p is not marked as visited Then

Mark p as visited;
Visit_predecessors(p);

}

{

}

Mark a representative basic block, r, of U as visited;
Mark all nodes in the flowgraph as unvisited;

{

of node n in the flowgraph Do

Visit_successors(n)
{

For each immediate successor, s,

If s is not marked as visited Then

Mark s as visited;
Visit_successors(s);

}

{

}

of node n in the flowgraph Do

If U has fewer than two children in the super block dominator graph
Then return true;

/* check if there exists a path via U that bypasses all super blocks dominated by U */

Figure 11: An algorithm to check if a super block should be probed

ered �rst as covering it implies maximum number of
basic blocks to be covered. If there are more than one
heaviest leaves any one of them may be selected. Then
the selected leaf and all its ancestors are marked as
covered. Next, the weights of the remaining uncovered
leaves are recomputed and the heaviest leaf among these
is selected to be covered. This process continues until
the desired coverage level has been achieved. Figure 8
shows the super block dominator graph with covered
blocks highlighted after the initially heaviest leaf is cov-
ered. It also shows the new weights of the remaining
leaves.

The graph in Figure 10 shows, along its horizontal
axis, the order in which the desired basic blocks of the

owgraph in Figure 2 should be covered5. Along the
vertical axis, it shows the cumulative overall coverage
after each of these blocks is covered. Note that cov-
ering just two (14%) of the basic blocks, viz., 10 and
7, gives us more than 85% coverage and covering two
more (29%) ensures that all fourteen basic blocks are
covered. This means at most four test cases need to be
developed to cover all basic blocks. In practice, how-
ever, even fewer test cases may be needed as a test case
developed to cover a leaf may cover other blocks besides
the leaf and its ancestors. In particular, techniques de-

5Alternatively, the order|10, 7, 4, 9|may be used. Multiple

orderings are possible whenever at any step in the process more

than one leaves have the largest weight.

scribed in [8] may be used to further reduce the number
of test cases needed to cover the basic blocks identi-
�ed (see Section 8). For example, for the 
owgraph in
Figure 2, it may be possible to create a single test case
that covers all basic blocks. Thus, the curve in Figure 10
gives us a lower bound on the cumulative coverage levels
achieved by following the above technique.

5 Selecting the Right Probes

In order to determine which basic blocks are covered by
a test set, coverage tools insert probes at various pro-
gram locations, usually one per basic block (see, how-
ever, Section 8) [10]. Probes obviously increase the size
of the program's object code as well as its execution
time. If we reduce the number of probes inserted in
a program we also reduce its object code size and the
runtime overhead.

In Section 3.2, we saw that a basic block in a super
block is covered i� all basic blocks in that super block
are covered. Thus, it is su�cient to place one probe per
super block instead of placing one probe per basic block.
It is, however, not necessary to probe all super blocks.
A super block, U , need not be probed if it satis�es the
following condition: A test case that covers U must also
cover one of its children in the super block dominator

6
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graph, i.e.:

covered (U; t) =) 9V 3 U �! V; covered(V; t) (6)

We need not probe U above because its coverage may be
inferred from that of V . Super blocks that do not satisfy
the above condition, however, must be probed. As a
leaf in a super block dominator graph has no children,
it may never satisfy the above condition. Thus it must
be probed. An internal node, on the other hand, may
or may not satisfy the above condition. For example,
super block B in Figure 7 satis�es the above condition
as it is impossible to cover it without also covering one
of its two children|super blocks C and H. Thus super
block B need not be probed. Super block E, on the
other hand, must be probed as it is possible to cover
it without covering any of its children|we may have a
test case that covers basic blocks 5 and 6 but not 76.

6Note that although it is desirable to develop test cases that

cover one or more leaves in the super block dominator graph, the

tester may supply test cases that do not cover any. They should,

nevertheless, be able to �nd the true overall coverage irrespective

of whether or not the test cases cover any leaves in the dominator

graph.

The 
owgraph in Figure 2 shows that that this is indeed
possible.

As in the case of a leaf node, an internal node that
has just one child node may never satisfy Condition (6).
If it did then every time it is covered its unique child
node would be covered as well. This would imply that
the child node dominates the parent node. As a parent
node always dominates a child node, it would mean both
the parent and the child node are in the same super
block|a contradiction. Thus all nodes that have just
one child node must be probed.

Most nodes with two or more children do satisfy Con-
dition (6) and thus they need not be probed. There may,
however, be exceptions. Fortunately, they are relatively
few in number (see Section 7) and we can identify them.
Figure 11 includes a simple algorithm to check if a node
in a super block dominator graph should be probed. It
takes O(N+E) time where N and E denote the number
of nodes and edges in the graph.

The super block dominator graph in Figure 7 does
not have any nodes with two or more children that need
to be probed. It does, however, have two internal nodes

7
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195
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31%
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197
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1740
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7525

11796

32%

29%

31%

28%

30%

31%

36%

45%

edge-partition
leaves

edge probes
required

Table 1: Experimental results

with one child node each that must be probed|super
blocks A and E. Thus, in this example, we only need
to probe six basic blocks|1, 4, 5, 7, 9, and 10|one
each from the four leaves and the two internal nodes
mentioned above.

Whenever a probe is reached during the program
execution, all basic blocks in the corresponding super
block and all its ancestors in the super block dominator
graph are marked as covered. The coverage achieved
at any given time, then, may be computed by counting
the number of basic blocks marked as covered at that
time. Consider, again, our example 
owgraph in Fig-
ure 2. Suppose the very �rst test case developed causes
the path <1, 2, 14> to be executed7 . This causes the
probe at basic block 1 to be marked as covered, which,
in turn, causes basic blocks 2 and 14 to be marked as
covered as they belong to the same super block as basic
block 1. Thus coverage at this time may be correctly
computed as 3/14, or 21%. Next, suppose another test
case causes the execution path <1, 2, 3, 8, 10, 11, 12,
13, 2, 14> to be executed. As the probe at basic block
1 was already marked covered by the previous test case,
this test case causes the probe at basic block 10 to be
marked as covered. This, in turn, causes �ve new basic
blocks to be marked as covered|3, 8, 11, 12, and 13|
raising the count of covered basic blocks to 9. Therefore,
the coverage at this time is again computed correctly as
9/14, or 64%.

6 Expediting Branch Coverage

The techniques described so far may also be used to
expedite branch coverage|we only need to �nd pre-
and postdominator relationships among edges instead
of nodes. Figures 12 and 13 show the edge pre- and
postdominator trees, respectively, of the 
owgraph in

7Note that this test case does not exercise any leaves in the

super block dominator graph. A tester should be able to �nd out

the correct coverage achieved at any time regardless of whether

or not any leaves have been covered.

Figure 2. Figure 14 shows the edge dominator graph
obtained by merging the two trees. As in the case of
a basic block dominator graph, we may also �nd the
strongly connected components of an edge dominator
graph. We refer to these components as edge partitions.
An edge in an edge partition is covered by a test case i�
all edges in that partition are covered by that test case.
Figure 15 shows the edge partition dominator graph ob-
tained by merging the strongly connected components
of the edge dominator graph in Figure 14 and removing
the composite edges from the resulting graph. In this
example, the edge partition dominator graph is a tree
but, in general, it may be a directed acyclic graph. Note
that a tester only needs to develop test cases targeted
to cover �ve edges, one each from the �ve leaves in Fig-
ure 15. The remaining fourteen edges are automatically
covered by the same test cases.

As in the case of block coverage, space and time over-
head of measuring branch coverage may also be reduced
by placing one probe per leaf and certain internal nodes
where covering the corresponding edge partition does
not imply covering at least one of its children.

7 Experimental Results

To evaluate the e�ectiveness of the techniques proposed
here, we incorporated them into a prototype tool, Spy-
der [1], that provides dynamic program slicing facilities
for C programs. We used it to �nd the number of leaves
and internal nodes in the super block dominator graph
and the edge partition dominator graph that need to be
probed for eight diverse systems and library packages
whose source codes were locally available. These sys-
tems varied in size from about 1,000 to 75,000 lines of
C code. Table 1 lists the results. Note that the num-
ber of leaves in a super block dominator graph, on the
average, is about 29% of the number of basic blocks.
This means, in order to achieve 100% block coverage,
testers testing these systems only need to develop test
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cases targeted to cover, on the average, 29% of the ba-
sic blocks. In case an automatic test case generator is
used, it only needs to generate test cases to cover 29%
of the basic blocks. Also note that the number of probes
required is, on the average, 35% of the number of basic
blocks. Thus, only 6% internal nodes need to be probed
in addition to the leaf nodes.

Similarly, the number of leaves in an edge partition
dominator graph, on the average, is about 32% of the
number of edges. This means, in order to achieve 100%
branch coverage, testers testing these systems only need
to develop test cases targeted to cover, on the average,
32% of the branches. Also, the number of edge probes
required is, on the average, 33% of the number of edges.
Thus only 1% additional branches, besides the leaves in
the edge partition dominator graph, need to be proved.

Figure 16 shows the analogue of Figure 10 for the sort

program. Note that the �rst one third of the 30% tar-
geted blocks provide more than 75% coverage. Recall
that the curve in this graph gives us a lower bound on
the cumulative coverages achievable. The actual curve,
represented by the dotted curve, depends on the par-
ticular test cases developed but it always lies above the
solid curve. Thus the actual savings in the number of
test cases that need to be developed are always higher
than that implied by the solid curve.

As coverage testing is generally performed during the
unit testing phase, the numbers presented above are
computed assuming that each program unit is tested in
isolation. In other words, they are computed based on
intraprocedural control 
ow analysis. But oftentimes,
multiple units are tested together even during unit test-
ing. In these situations, we may further increase the
savings by performing interprocedural analysis, as cov-
ering a block in one unit may imply covering several
blocks in other units as well.

8 Related Work

We are not aware of any reference in the literature that
addresses the problem discussed here although several
references are available on the related problem of opti-
mal program pro�ling [4, 7, 11, 15, 17]. Program pro-
�ling involves determining the frequency counts of 
ow-
graph nodes and edges when it is executed on a given
test set. Clearly, if we have the frequency counts of all
nodes and edges we know which of them are covered
and which not.

Optimal pro�ling techniques are aimed at �nding
small subsets of nodes/edges in a 
owgraph such that if
the frequency counts of the nodes/edges in the subset
are known, the frequency counts of other nodes/edges
may be inferred from them. Note, however, that cover-
ing the nodes/edges in a subset identi�ed by these tech-
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Figure 16: Coverage rate for sort

niques does not imply covering all other nodes/edges.
It simply means we can �nd out whether or not other
nodes/edges are covered if know the frequency counts
of those in the subset. Thus we may not use these tech-
niques to reduce the time spent developing test cases.

Also note that with optimal pro�ling techniques, sim-
ply knowing whether or not nodes/edges in the sub-
set are covered is not su�cient to infer whether or not
others are covered|we must capture how many times
the nodes/edges in the subset are executed. With the
techniques presented in this paper, on the other hand,
simply knowing whether or not the nodes/edges in the
subset are covered is enough to �nd out whether or not
others are covered. Therefore, with our techniques, a
probe may be removed after the �rst time it is reached.
It need not be executed every time the control reaches
the corresponding program location.

We know of only one other reference, [8], that also
addresses the selective coverage problem discussed in
Section 3.3 although in the context of automatic test
case generation. It uses a generalization of the post-
dominator relationship between nodes to that between
sets of nodes to guide the generation of test cases that
cover a given set of nodes. A sequence V1; V2; : : : ; Vn
of sets of nodes is determined such that Vi+1 postdom-
inates Vi, 1 � i � n � 1, and each Vi contains at least
one node from the relevant set of nodes to be covered.
First a test case that covers one or more relevant nodes
in V1 is generated. Then, if possible, it is extended so it
also covers one or more relevant nodes in V2; and so on.
The process is continued until all relevant nodes have
been covered.

The above approach is complimentary to the ap-
proach taken in this paper. The latter may be used
�rst to �nd a subset of the relevant nodes such that
covering the subset would imply covering all the rele-
vant nodes. Then, the above approach may be used to
�nd as few test cases as possible to cover this subset.
For instance, in the case of the example in Section 3.3,
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instead of applying the above approach to the relevant
set of �ve nodes, f3, 6, 10, 11, 13g, we only need to
apply it over a relevant set of two nodes, f6, 10g.

9 Summary

In this paper we have presented some techniques that
may help expedite both block and branch testing of pro-
grams. For large programs, the number of basic blocks
and branches that must be covered may be overwhelm-
ing. The techniques presented here help us identify
a signi�cantly smaller subset of relatively \high e�-
ciency" blocks and branches such that covering them
implies that other blocks and branches are automati-
cally covered. The same techniques may also be used
to reduce the number of probes placed in a program
in order to �nd out which blocks and branches have
been covered. This helps reduce the object code size
and the runtime overhead imposed by coverage testing
tools. Preliminary experiments have shown that these
techniques may indeed be very e�ective in saving both
the user and the system time spent during coverage test-
ing of programs. More experimentation is required to
evaluate how well testers are able to exploit these tech-
niques in reducing the number of test cases they develop.
Also, it would be interesting to determine how well these
techniques perform compared to a heuristic approach,
such as covering the most deeply nested blocks �rst.
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