STAR Lahoratory of Advar on Software Technology_

Reducing the Cost of Program Debugging
with Effective Software Fault Localization

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 1



Speaker Biographical SRetch

* Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

* Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIS

* Vice President, IEEE Reliability Society
» Secretary, ACM SIGAPP (Special Interest Group oplisal Computing)

* Principal Investigator, NSF TUES (Transforming Urgfaduate Education in
Science, Technology, Engineering and Mathematiageet

— Incorporating Software Testing into Multiple Comgu$cience and Software
Engineering Undergraduate Courses

* Founder & Steering Committee co-Chair for the SEREference
(IEEE International Conference on Software Secuaitg Reliability
(http://paris.utdallas.edu/serel3)

— —
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 2



Outline

* Motivation and Background
* Execution Dice-based Fault Localization
e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Motivation

e Testing and debugging activities constitute onthefmost expensive
aspects of software development

— Often more than 50% of the cost [Hailpern & Santman2003]

* Manual debugging is.
— Tedious
— Time Consuming

— Error prone Y

— Prohibitively expensive

Need ways to debug...

automatically

B. Hailpern and P. Santhanam, “Software Debuggimgtifig, and Verification,lBM Systems Journa1(1):4-12, 2002

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 4



Debugging Today

* Program debugging consists of three fundamentaditaes
— Learning that the program has a fapfault detection
— Finding the location of the faultfault localization
— Actually removing the fault| fault fixing

* A lot of progress has been made in the ardastfcase generati@and
thus we can assume that we will have a collectfdesi cases (i.e., a test
set) that can reveal that the program has faults.

— So the programmer can avoid the first tedskilf detectioi.

» Recentlyfault localizationhas received a lot of foct(é)
— It is one of the most expensive debugging actwifiéessey, 1985]

 Fault Fixinghas also been an important research area
— Have to be very careful not to introduce new faultthe process

Iris Vessy, “Expertise in Debugging Computer ProggsaA Process Analysislhternational Journal of
Man-Machine Studie3(5):459-494, March1985

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 5



Software Fault Localization




Objectives

* Develop a robust and reliable fault localizatiocht@que to identify
faults fromdynamic behavioref programs

e Reduce the cost of program debugging by providimgore accurate set
of candidate fault positions

* Provide software engineers witlffective tool support

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Perfect Buyg Detection

A bug in a statement will be detec}ted by a programifithe statement is

examined

— A correct statement will not be mistakenly idewriifias a faulty statement

— If the assumption does not hold, a programmer negygl rio examine more
code than necessary in order to find a faulty state

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 8



TS A
s




Commonly Used Techniques

* Insertprint statements

* Add assertionr setbreakpoints
* Examine core dump or stack trace

Rely on programmerstuition and domain expert knowledge

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10



Outline

* Motivation and Background
* Execution Dice-based Fault Localization
e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

11



Execution Dice-based Fault Localization




Execution Slice T Dice

* Faults reside in thexecution slicef a test that fails on execution

— An execution slice is the set of a program’s code
(blocks, statements, decisions, c-uses, or p-esesuted by a test

— An execution slice can be constructed very easiyeitknow the coverage of
the test (instead of reporting the coverage peaggntit reports which parts of
the program are covered).

— Too much code in the slice

* Narrowing search domain ®xecution dices

— An execution dice is obtained by subtracting
successfugxecution slices frorfailed execution slices

Dice = Execution slices of failed tests — Execusboes of successful tests

Static & Dynamic Discussion 1 Discussion 2

— Ceeee—

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 13



Example (1)

A Sample Program

read (a, b, ¢);
class = scalene; 3
ifa=bl|lb=a b

class = isosceles;
ifaa=b"b +c'c C

class = right; a:-bsc
fa=b&&b=c

class = equilateral,
case class of

right . area =b*c /2,

equilateral : area = a*a * sqrt(3)/4;

otherwise : s = (a+b+c)/2;

area = sqgrt(s*(s-a)*(s-b)*(s-c));

end;
write(class, area);

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

14



Example (2)

Initial Test Set

Test case Input Output
a b C class area
Ty 2 2 2 equilateral  1.73
T, 4 4 3 isosceles 9.56
T, S 4 3 right 6.00
Ty 6 S 4 scalene 9.92
Ts 3 3 3 equilateral  3.90

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Example (3)
Failure Detected
Test case Input Output

a b c class area
T 2 2 2 equilateral  1.73
T, 4 4 3 isosceles 9.56
Ty 9 4 3 right 6.00
T, 6 S 4 scalene 9.92
Ts 3 3 3 equilateral  3.90
T¢ 4 3 3 scalene 4.47

Failure!

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

16



Example (4)

Where is the Bug?

read (a, b, ¢);=—— 4,3,3
class = scalene;
ifa=b|lb=a
class = isosceles;
if a*a =b"b + c*¢
class = right;
fa=bé&&b=c
class = equilateral;
case class of
right : area =b*c/2;
equilateral : area = a*a * sqrt(3)/4;
otherwise : s = (a+b+C)/2;
area = sgrt(s*(s-a)*(s-b)*(s-c));

end; T~

write(class, area); scalene

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

17



Example (D)

Execution Slice w.r.t. the Failed Test T, = (4 3 3)

read (a, b, ¢);
class = scalene;
ifa=b|lb=a Too much code needs
class = isosceles; To be examined!
ifa*a=b"b +c'c
class = right;
ifa=b&&b=c
class = equilateral;
case class of
right carea=b*c/2
equilateral : area = a*a " sqrt(3)/4;
otherwise : s = (a+b+c)/2;
area = sqgrt(s*(s-a)*(s-b)*(s-c));
end;
write(class, area);

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

18



Example (6): Which Test Should be Used ?

Failure Detected

Test case Input Output

a b C class area
T 2 2 2 equilateral  1.73
T, 4 4 3 isosceles 9.56
Ty 9 4 3 right 6.00
T, 6 S 4 scalene 9.92
Ts 3 3 3 equilateral  3.90
Ts 4 3 3 scalene 4.47

Failure!

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Example (1)

A Successful Test T, and a Failed Test T,

Test case Input Output §uccess

a b c class / area
T 2 2 2 equilatera 1.73
T, 5.56
T, 9 4 3 right 6.00
Ty 6 S 4 scalene 9.92
Ts 3 3 3 equilateral 3.90
Ts 4 3 3 scalene 4.47

Failure! (should basoscelep

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Example (8)

Execution Slice w.r.t. the Successful Test T, = (4 4 3)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

21



Example (9)

Execution Dice = Slice (4 3 3) - Slice (4 4 3)

read (a, b, ¢);

class = isosceles;
ifa*a=b"b + c*c
class = right;
ifa=b&&b=c
class = equilateral;
case class of
right : area=b*c/2;
equilateral : area = a*a * sqrt(3)/4,;
otherwise : s = (a+b+c)/2;
area = sgrt(s*(s-a)*(s-b)*(s-c));
end;
write(class, area);

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

22



One Failed and One Successful Test

Possible locations of faults

* Code in the execution dig¢®p priority) » Code in the failed execution slice but not in tieed

* A bug is in the failed execution slice (the ree A bug is in the failed execution slice (the rednpat

path)but notin the successful execution slic  andin the successful execution slice (the blue path)
(the blue path)

* The dicing-based technique can be effective intingasome program bugs

— H. Agrawal, J. R. Horgan, S. London, and W. E. WdR@uilt localization using execution slices and
dataflow tests,in Proceedings of the 6th IEEE International Synmpmson Software Reliability
Engineering pp. 143-151, Toulouse, France, October 1995.

TAuthors are listed in alphabetical order
*Number of citations: 155 (according to the Googtbdar)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23



Locating Bugs using Execution Dice (1)

File Tool Options Sunmary TestCases Update GoBack Help

all passed all failed all neutral Disable Sort_by

block slicing summary by testcase

sort.1 191 of hO4 37.9%

223 of 504 44, 2%

164 of 504 32.5%

v _|

94 of 504 18.7%

A test case in green runs the program successfully

A test case in red fails the program

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Locating Bugs using Execution Dice (2)

File Tool oOptions Summary TestCases Update GoBack Help
0 : I
-~ hy—-type % hy-file -, by-function Disable Sort_bhy

block slicing summary by file ower selected testcases ‘

_ 69 of 178 3s.8%)
e miso. o 18 of 101 :—
. gqsort.c 3 of 33 -
¢ cnpl.c 0 of 102 _
= ez oor 2 NN
. skip.c 0 of 29 0%
..~ sort.o 0 of K9 _
‘XISZI:CQ ‘ Coverage: ‘ Files: Passed Tests: ‘ Failed Tests: ‘
hlock T of 7 1 of 4 1 of 4
E— L ——

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25



C—
Locating Bugs using Execution Dice (3)
C—
File Tool Options Summary TestCases Update GoBack Help
0 1 I
|
= (struct %31 ; . .
j-0: %" Codein blue is executed by the
for(i=a; i « b; i++) { .
£ = setfil(i); failed testAND the successful one
if(f == 0)
§ p—=b = stdin; ,*
else if((p—=bh = fopen(f, “"r")) == HULL) P
cant(f); T
ibuf[jl =p; - -
if(!rline(p)) ) PRSP -
p++; 2 0 . .
} .-~ Code in red is executed by the failed
S 7 testBUT NOT the successful one
tlls;ril'.i[(char"/**)ihuf, (char **) (ibuf+i)); f
1 = 0; !
| - while(--1i) I ______
: i
1 =1;
if{rline(ibuf[il)) {
. . k = i;
Code in white iSNOT executed while(rk < B)
. ibuf [k- = ibu ;
by the failed tesf } j--
‘I } lll
— } oo ceoemeel -7
Sz + File: Line: Coverage: Highl ight ing:
x ice main.c 152 of 240 block all prioritized

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Multiple Failed and Successful Tests (1)

* Themorethatsuccessfutests execute a piece of code, Ithees likelyfor
it to contain any fault.

 Themorethatfailed tests with respect to a given fault execute a poéce
code, themore likelyfor it to contain this fault.

* A piece of code containing a specific fault is
— inversely proportionato the number ofuccessful testhat execute it

— proportionalto the number ofailed testqwith respect to this fault) that
execute it.

W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldon&8mart Debugging Software Architectural
Design in SDL,” Journal of Systems and Softwavelume 76, Number 1, pp. 15-28, April 2005

Jump to Slide 97

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27



Multiple Failed and Successful Tests (2)

* Need to considgrrecisionandrecall @
— intersection of failed tests — union of successfsts
— union of failed tests — union of successful tests
— intersection of failed tests — intersection of sgsfd tests
— union of failed tests — intersection of successfatd

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

28



More Advanced Heuristics

* A bad dicedoes not contain the bug
— Augmentation of a baelxecution dice usingpter-block data dependency

* A good dicewith too much code
— Refining a goo@xecution dice using additional successful tests

=

W. E. Wong and Yu Qi, “An Execution Slice and InBlock Data Dependency-Based Approach fg
Fault Localization,”Journal of Systems and Softwav@lume 79, Number 7, pp. 891-903, July 2006

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29



Augmentation of A Bad Execution Dice DY (1)

* Bug is not in the execution dice

* Much code that is executed by both the failed(tbstred path) and the
successful test (the blue path)

* How to prioritize the code that still needs to Barmained

Ses s=e o
: s

0

®

e

. ==

- = s
® ® o000 e (X
® e 0 0
o e OO0 XX
® ® QXXX (XX
3 o LLLLLL -
® seseeee (XX
O o . 9000
0 S, 29998
oes o Se8ee
(L2 S, 99088,
LK S
00 T L LA
5 e
X0 Seeeeee
= Sessess
OO Sesesee

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30



Augmentation of A Bad Execution Dice DY (2)

* If the bug is not inD®), we need to examine additional code fromrest
of the failed execution slice (i.e& — D) denoted byb)

— For a bloclkf, the notatioB< ® impliesf3 is in the failed execution slicg-
but not inad(d).

e More prioritization based ainter-block data dependency

* Define a ‘tlirect data dependentyelation A between a block and an
execution diced® such thaf3 A o)

if and only if B defines a variablg that is used i) or 3 uses a variablg

(D

y defined ind®),

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31



Augmentation of A Bad Execution Dice DY (3)

Code in blue has some data
dependency with code in red
=» Higher Priority

Code in green has no data
dependency with code in red
=>» Lower Priority

Codeinredisin
the execution dice

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 32



Augmentation of A Bad Execution Dice DY (4)

 Construct4D), the augmented code segment from the first itamati
such thatit® ={B B €D N (B A D)}
e setk=1
e Examine code iti® to see whether it contains the bu@)
* If YES,
then
— STOP because we have located the bug
else
— setk=k+1
e Constructa®, the augmented code segment fromkth&eration,
such thata® = 4&D U {B|bEd A (B A _akD)},
o If 40 = 21 (i.e., no new code can be included from thd X" iteration to thek!" iteration)
then

— STOP
At this point we havet®”, the final augmented code segment, which egadlgand

A% as well)
else
— Go back to step€)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 33



Augmentation of A Bad Execution Dice DY (5)

#include <gtdio.h= #include <stdio.h=
int main() { int main() {
floata, b, c, d, X, v; float a, b, c, d, X, v;
S0 scanf ("of %of, &a, &b); Sgp scanf ("%of %of", &a, &b);
5 iffa<=0) Sy i{a==0)
5 c=2%+1; 54 c=2%+1;
elze elze
S c=3%a; 53 c=3%a;
4 lf(b <= ﬂ) .4 lfl:b == ﬂ)
Ss d =b*b - 4*a*c S d = b*b - 4*a*c
elze elze
56 d = 5*b; S d = 5%b;
57 x=b+d; S E=b+d;
S; y=ctd; S ¥=ctd;
Sy printf ("x=%f &y=%f'n", x,¥); S pontf("x=%f & y="%1"'n", X, ¥);
} }
(@) the execution slice with respect to a failed tes (b) the execution slice with respect to a succésséit,
(a=3; b=5) (a= -3; b=5)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34



Augmentation of A Bad Execution Dice DY (6)

I |

#include <<stdio.h= #include <stdio.h>

int main() { int main() {

float a, b, ¢, d, X, y; floata, b, c, d, X, v;
Sy scanf ("of %of", &a, &b); Sg scanf ("ef %of”, &a, &b);
S, if(a<=0) S, if(a<=0)
Sq c=2*a+1; S c=2%+1,

else else
s; N s; [
S, if(b<=0) S, if(b<=0)
S d = b*b - 4*a*c Ss d =b*b - 4*a*c

else else
S d = 5+%b; Se d=5%; g

’ _— Bug! Should be 2*c

N x=hb+ d, 7 = =fh;|.‘d'; g
S: v=c+d; S yzEc)—Hl;
Sy prntf ("x=%f &y=%f'n",x,y), S printf ("x=%f & y="%f'n", X, v);

h )

dice obtained by subtracting the execution Code that has direct data dependency
slice in (b) from the execution slice in (a) with $(i.e., code in the dice)
| I |

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35



Refining of A Good Execution Dice DY

 Construct the execution slices (denotedhy®,, ..., ®,) with respect to
successful tests, t,, ...,andt,

e P =¢F -0,
e =P -0,= E-0,-0,
e \We havep® D92 D pd), etc.

| Since we want texamine the more suspicious code before the |sgscsous
code code inD@ should be examined before coden® but not ind®@

| for{=0;i=Nmax;it+) | For{i=0 =N max; i++) [ for(i=0;i=Nmax; i+
{ probtab[i].valore=0; | probtab|i].valore=0; I probtablil.valore=i;
probrabli].posizione=0;} probeab|i]. pasizone=0;} probtab]il.posizione=0;]
i=0y; =1 i=0;
while (i<riga) while {i<riga) while {i<riga)
{ fscanfifp,” Yo", &c); | Teeanfifp," %ec” &e); { fscanfifp,” Yec", &c);
for(i=0;cl="mn":j4+) for(=0;ct="tn";j4++) far(j=0;e!="n"j+£)
Fscanfifp," Yac" &) [Fseanf(Fp," %oc" Rc);}
i=it+l;} i=itl;) i=i+l;)
fscanf(fp,” %ed " ,&a); Fseanfifp,"%ed * &a); Eseanf(fp," Yod ", &a);
for (i=0; i=a; i++) for (i=0; i<a: iH++) for (i=0; i<a; i++)
_ { Fscanfifp," % d " & probtab]i]. posidone);
fscanfifp," %alf " & probtab|i].valore);}
fecloseifp); felose(fp); feloseifp);
for(i=0;i=100;i++) for(i=0;i=1005i++) fordi=0;i=100;5++)
urnalij=0; urnalif=0; urnalij=0;
q=0; z=0; j=0; q=0; z=0; j=0; q=0; ==0; =0
for (i=0; i=INmax; i++) for (i=0; i=MNmax; i+) for (i=0; i=Nmax; i++)
{ z=probtabli].valore*100+z; [ s=probtahfi].valore*100-+2; { z=probtahfil.valore* 100+
for (j=q; j<=; j++ for i'l-;i; i.,-l; jH for ﬁ:i; i.f.zi =t}
q=i: a=i;) 4=iii
Part (a) Code in " is highlighted in red | Part (b) Code 1n @2 iz highlighted in red Part (c) Code in &7 is highlighted in red
e TT—— T B |

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 36



An Incremental Approach

e Assume

— debugging as soon as a failure is detected (né/,ane failed test)
—n (say 3) successful tests

e Assume the bug is in the code which is executetthéyailed test but not the
successful test(s)

— first examining the code i@ followed by code inD but not ind®), then
code ino® but not inD®?

* |If this assumption does not hold (i.e., the bugastin ®@), then we need to inspect
additional code in the failed execution slice boit in 1)

— then starting with code iAa® but not ind, followed by 4@ but not in 2@, ...

* Prioritize code in a failed execution slice basrdts likelihood of containing the

bug. The prioritization is done biiyst using the refining methcandthen
the augmentation method.

— Examining code i3, © but not ind®), o1 but not ind®@), 20 but not in
o), 4@ put not in 4D, 44 but not in2@ , ... etc.

-

* |n the worst case, we have to examine all the aotlee failed execution slice.

o—
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

37



Outline

* Motivation and Background
* Execution Dice-based Fault Localization

e Suspiciousness Ranking-based Fault Localization

— Program Spectra-based Fault Localization

— Code Coverage-based Fault Localization

— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization

— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

38



Suspiciousness Ranking-based F
Fault Localization




Overview

e Compute the suspiciousness (likelihood of contgituing) of each
statement

* Rank all the executable statements in descenduohey of their
suspiciousness

e Examine the statements one-by-one from the tobeofdnking until the
first faulty statement is located

e Statements with higher suspiciousness should bmiard before

statements with lower suspiciousness as the foamgeemore likely to
contain bugs than the latter

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 40



Technigues for Computing Suspiciousness

» Code coverage-based and calibration
» Crosstab: statistical analysis-based

* BP (Back Propagation) & RBF (Radial Basis Functioaliral network

 Similarity coefficient-based

e Tarantula: heuristic-based
 SOBER: statistical analysis-based
e Liblit: statistical analysis-based

Take advantage of code coverage (namely, execslits)
and execution result of each test (success ordaifor debugging

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

41



Outline

* Motivation and Background

* Execution Dice-based Fault Localization

e Suspiciousness Ranking-based Fault Localization
— | Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)






Spectra-Based Fault Localization Techniques

* Possible Program Spectra

Name

Description

BHS Branch Hit Spectra

conditional branches that arewesl

BCS Branch Count Spectra

number of times each conditlmmasach is executed

PS Complete Path Spectra

complete path that is executed

PHS Path Hit Spectra

loop-free path that is executed

PCS Path Count Spectra

number of times each loop-fréeip@&xecuted

HS | Data-Dependence Hit Spectra

definition-use pairsal@mexecuted

DCS Data-Dependence Count Spectra

number of times esdufithn-use pair is executed

OPS Output Spectra

output that is produced

ETS Execution Trace Spectra

execution trace that isymred

DVS Data Value Spectra

the values of variables in tleE@tion

ESHS | Executable Statement Hit Spectra

executable statsriteat are executed

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

44



A Sample Program for Program Spectra

e Given an integen and a real numbet, the program calculates
1 double power (doublbe intn)
2 |
3 inti;

4 intrv =1;
5 for (1=0; i<absf); i++)
6 {
7 rv=rv X x;
8 1}
9 if (n<0)
10
11 if (x1=0)
12 rv=1kv;
13 else
14 {
15 printf ("Error input.\n");
16 return O;
17 }
18 }
19 returnrv;
20 }
Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 45



Branch Hit Spectra

* BHS records theonditional brancheghat are covered by the test execution

* Suppose there armaconditional branchedy, b,, ..., b,

* The spectrum with respectio(i = 1, 2, ...,m) indicatesvhetherb, is covered by
the test execution

* There are 6 branches in the sample program:(%,B),(9,19), (9,11), (11,12),
and (11,15)

* When test caseE 2,n = 3) is executed,

the branch hit spectrum i @ \@ @ @,N\
(11,15) is not covered
(11,12) is not covered
ered

(5,7) is covered

(9,11) is not covered

(5,9) is cov

(9,19) is covered

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 46



Branch Count Spectra

* BCS records thaumber of times that each conditional branglexecuted

* Suppose there amconditional branchedy, b,, ..., b.. The spectrum with
respect td, (i = 1, 2, ...,m), denoted by, indicates thab, is executed; times
by the test execution

* When test case (2,3) is executed, lthench count spectruims @ 1{ 1), O, )

e

(5,7) is executed 3 times

(9,19) is /e{<ecuted one time

/

(11,15) is not executed

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47



Complete Path Spectra

* CPS records theomplete paththat are traversed by the test execution
* When test case (2,3) is executed, the CPS is%37%#)0,19)

Statement 5 and 7 are executed 3 times

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 48



Path Hit Spectra

* PHS records thmtra-procedural loop-free pathshat are covered by the test
execution

* The sample program has six possible paths
- 3,4,5,9,19
-3,4,5,7,9,19
-3,4,5,9,11,12,19
-3,4,5,7,9,11,12,19
-3,4,5,9,11,15,16
-3,4,5,7,9,11,15,16
* With respect to the execution of test case (#@path hit spectruncan be
represented by

- ) N 17 N 1) N ) N )
(3,4,5,9,19) is covered (3,4,5,7,9,11,15,16) is not covered
Return
e TT—— T B |

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 49



Path Count Spectra

* PCS records theumber of times that each intra-procedyiabp-free paths
covered by the test execution

* The sample program has six possible loop-free paths
-3,4,5,9,19
-3,4,5,7,9,19
-3,4,5,9,11,12,19
-3,4,5,7,9,11,12,19
-3,4,5,9,11,15,16
-3,4,5,7,9,11,15,16

* When test case (2,3) is executed,ghth count spectrurman be represented by

- 010101 )
— When the funstion is executed more than one timegetements in PCS may be larger
than 1

(3,4,5,9,19) is executed (3,4,5,7,9,11,15,16)
one time is not executed

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 50



Data-Dependence Hit Spectra

* DHS records thdefinition-use pairghat are covered by the execution
* With respect to the sample program, let’'s focushenfollowing definition-use
pairs
—(rv,4,7)
—(rv, 4, 19)
—(rv, 7, 7)
—(rv, 7, 12)
—(rv, 7, 19)
—(rv, 12, 19)
* When test case (2,3) is executed, the spectrurbeaapresented by

- (Y,N,Y,N,Y,N) which implies (rv,4,7), (rv,7, 7) and (rv,7,19) ax@vered by this
execution

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 51



Data-Dependence Count Spectra

* DCS records thaumber of times that each definition-use psiexecuted

* With respect to the sample program, let’'s focush@following definition-use
pairs

—(rv,4,7)

—(rv, 4, 19)

—(rv, 7,7)

—(rv, 7, 12)

—(rv, 7, 19)

—(rv, 12, 19)

* When test case (2,3) is executed,dbh&a-dependence count spectrocam be
represented by (1%2,0,1,0)

(rv, 7, 7) is executed 2 times

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 52



Output Spectra

* OPS records theutputs producedtly the test executions

* With respect to the sample program, when test (38is executed, theutput
spectruncan be represented by a value 8, which is the bofghe function

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 53



Execution Trace Spectra

e ETS records theequence of each program statemeatersed by the test
execution

* With respect to the sample program, when case 2gXecuted, the execution
trace spectrum can be represented by

(inti, double rv = 1| (for(i=0;i<abs(n);i++), rv = rvx )3, if(n<0),return rv)

* Difference between ETS and CPS (Complete Path ekt
—ETS records the actual instructions, whereas CeS dot

These statements are executed 3 times

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 54



Data Value Spectra

* DVS records th&alues of variables

* With respect to the sample program, we focus omvéhee of variablev

— When test case (2,3) is executed, the sequenbe eBtues ofv is (1,2,4,8) which is
one of the DVS representations

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 55



Executable Statement Hit Spectra

e ESHS records thexecutable statements that are
coveredby the test execution.

— excluding comments, blank lines, (some) variable
declarations, function declarations, etc.

cs Sy

* The spectrum with respectso(i = 1, 2, ...,m),
indicateswhethers is covered by the test execution.

(>

» Suppose there areexecutable statements; s,, (D
| (2
O

* There are 9 executable statements at lines 4%, 7,
11, 12, 15,16 and 19

* When test case (2,3) is executed,dRecutable
statement hit spectrum

@YQ’ Y,[NsN, N, N, Y).

Statement 4 is executed Statement 11 is not executed

Next Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 56



Outline

* Motivation and Background

* Execution Dice-based Fault Localization

e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— | Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



_ Code Covemge—ﬁasec[ Tau[t Localization

Calibration

W. E. Wong, V. Debroy and B. ChdiA Family of Code Coverage-based
Heuristics for Effective Fault LocalizationJournal of Systems and Software
Volume 83, Issue 2, pp. 188-208, February 2010
(Best Paper Award; COMPSAC 2007




Code Coverage-based < Calibration (1)

e Suppose for a large test suite, say 1000 test,casesjority of them, say
995, are successful test cases and only a smabewon failed test cases
(five in this example) will cause an executionuad.

* The challenge is how to use these five failed taststhe 995 successful
tests to conduct an effective debugging.

* How caneach additional test catiwat executes the program successfully
help locate program bugs?

* What about each additional test case that makgstiggam execution
fail?

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 59



Code Coverage-based < Calibration (2)

» Should all the successful test executions prosndesame contribution to
locate software bugs?

* Intuitively, the answer should bed’

* If a piece of code has already been executed ssfatlg994 times, then
the contribution of the 995th successful executsdrkely to be less than,
for example, the contribution of the second sudaéssecution when the
code is only executed successfully once

* We propose that with respect to a piece of coaecdmtribution
iIntroduced by thérst successfulest that executes it in computing its
likelihood of containing a bug isrger than or equal that of thesecond
successful test that executes it, whickaiger than or equal that of the
third successful test that executes it, etc.

* The same also applies to the failed tests.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 60



Code Coverage-based & Calibration (3)

Dy total number of failed test cases for @

D total number of successful test cases for 3

Nr total mumber of failed test cases with respectto @ that execute §
Ng total number of successful test cases that execute §

CF contribution from the i failed test case that executes §

Cgi contribution from the i successful test case that executes §

Gr number of groups for the failed tests that execute §
Gs number of groups for the successful tests that execute §
HE ; maximal number of failed test cases in the /® failed group

Mg ; maximal number of successful test cases in the i successful group
W, ; contribution from each test in the i failed group
We, ; contribution from each test in the i* successful group
LEs Dr/Ds
© G512 Cg,2Cg32 ... 2Cg and G 2Cpp,2Cpp2 oo 2 Cpy

* If the statemeng is executed by at least one failed test, theridtze contribution from all
the successful tests that execsthould be less than the total contribution frontla!

)‘F

failed tests that executg(namelyy®c <3tc,

 All the tests in the same failed group have thessaamtribution towards fault localization,
but tests from different groups have different cimitions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 61



Code Coverage-based < Calibration (4)

* For illustrative purposes, we sgt= G5 = 3,N- ;=Ng = 2, andn. ,=Ng ,= 4
— The first failed (or successful) group has at nhesttests, the second group has at most
four from the remaining, and the third has everndhelse, if any.

* We also assume each test case in the first, seanddhird failed groups gives a
contribution of 1, 0.1 and 0.01, respectivedy (= 1, w.,= 0.1,
andwg ;= 0.01).

* Similarly, we setvg ;= 1, wg ,= 0.1, andw; ;to be a small value defined asX
Xgswherea is a scaling factor.

[(1.0) 1, + (0.1) % e 5 +(0.01) x 15 | [ (1.0) % 7y + (0.1) 1 5 + 00X Y X 1 5 |

0, foranv.=0 0, for v, =2 .
- for iy g o Ar = 0, for NF< 6 q
where gy =41, forNp=1  mg, = Np—-2, for3=nN;=6 Mz3= Ne— 6, for Ne>6 an
4,

2, forn.=2 for Ny > 6
N =
j'U, for Mg = O, 1 D: for ne< Hs:l [O. for A< H5.1+ Mg 4
= ) = A o O\ = ' '
81 11, forng,=2 and M =1 Moy =M= Moy, forng, < Ne<ng; 4y Ths 15-‘.‘5— Hg,— Mg, fOrN& =mg +ng,
- Mgs, for ne= Mg, +Hgy ' ' ' '
I e |

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 62



Code Coverage-based & Calibration (5)

o

5 &£ &5 &K %5 K F & % | F

1 o o o0 1 1 o0 1 1 |17| [1%— failedtest

t 1 1 0 1 1] 0 1] 1) 1 a V]

L 1 0 1 0 0 1 1 1 1 1 1 +— failed test

[ 1 1 1 1 0 0 1 1 1 0 0

t 1 1 1 1 i} 1 1 1 1 1} 0

t 1 i} i} 0 0 0 1 1 1 1 0

t 1 1 0 0 1} 1 1 0 1 1 0

k 1 1 1 1 0 0 1 1 1 0 0

t o 1 ] o 0 1 o 0 1 1 ]

b |1 0 ] 0 1 0 1 1 1 1 1 +—— failed test

ty | O 1 1 0 0 0 0 1 1 0 0

bt |1 1 o 1 1 o 1 o 1 |1 0

by |1 0 1 0 i} 0 1 1 1 0 0

fa | O 1 0 1 1 0 1 0 1 1 0

< |2 o a1 @ 21 o a1 1 a. |z ] +— failed test

b: | O 1 0 1 0 0 0 1 1 0 0

by |1 1 1 1 0 0 1 1 1 i} 0

b 1 0 1 0 1 1 0 1 1 1 1 #—— failed test

by |1 1 1 1 0 0 1 0 1 0 0

by | O 0 1 1 1 1 1 a 1 1 L0 ] i

number of failed tests that
o . 3 LI I i 1 K ~ execute each staternent
number of successful tests
0) 12| 8 0] 3 4 1] 8 ] » ““that execute each statement
0.980 (0.04 0.980-0.033)1.000 | 0.993 0.970|0.987/0.96 [0.993 L ::zﬁi:it:m':ﬁ of

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

<
o
=
(0]
D
—
Q.
n




Code Coverage-based < Calibration (6)

e Two fundamental principles

— CS,12 CS,ZZ CS,SZ e 2 C3Ys andCe 12 G52 Ce32 ... 2 Cpy

- ZCS,i < kZ: Cre W
i=1 =1

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

64



Outline

* Motivation and Background

* Execution Dice-based Fault Localization

e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— | Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



¥
e

5 Crosstab-based Fault Localization

W. Eric Wong, Vidroha Debroy and Dianxiang Xu, “Towar8etter
Fault Localization: A Crosstab-based Statisticapiyach,”
IEEE Transactions on Systems, Man, and CyberneffatC:
Applications & Reviews

(Accepted in December 2010 for publication)
(http://ieeexplore.ieee.org/stamp/stamp.jsp?arnuntlie 72029)




Crosstab

* The crosstabcfoss-classification tab)eanalysis is used to study

the relationship between two or more categoricabhbées

e A crosstab is constructed for each statement &snel

0 15 covered (3 15 not covered ¥
successful executions Nesio) Nesio) Ns
failed executions Nep(m) Neg(o) N
> Ne(@) NiA@) N

N total number of test cases

NE total number of failed test cases

Ne total number of successtul test cases
Nel(m) number of test cases covering

Nep(m) | number of failed test cases covering
Nez(m) | number of successfil test cases covering @

NiAe) number of test cases not covering

Nypim) | number of failed test cases not covering @
Ni=(m) | number of successfil test cases not covering

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

67




Dependency Relationship (1)

* For each crosstab, we condudtygothesis tegb check the&lependency
relationship The null hypothesis is

H,: Program execution result is independent of th

coverage of statemeat

e A chi-square testan be used to determine whether this hypothesiddh
be rejected. Th&€hi-square statistits given by

(o) = Nerl0)= Ecc0)” | (Nedo) = Eclo)” , (N0)= Eufol)”  (Nofo)= Efo))® )
o+(©) Ee©) (o) Edo)

N N N N
WthGEﬂwFW, Ecs(@)zw’ Eys(o) = u(CON)X S andEUF(o)): u(OJN)X £

e Under the null hypothesis, the statisti€w) has approximately a
Chi-square distribution

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 68



Dependency Relationship (2)

* Given a level of significance (for example, 0.05), we can find the
corresponding hi-square critical valugz, from the
Chi-square distribution table.

—1f x2(w) >X5 werejectthe null hypothesis, i.e., the execution result is
dependenbn the coverage ab.

— Otherwise, waaccepthe null hypothesis, i.e., the execution result ted
coverage otvare ‘independent

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 69



Degree of Association (1)

* The “dependencyrelationship indicates aigh associatioamong the
variables, whereas thetlependencyrelationship implies a&ow
association

* Instead of the so-called “dependency”/ “indepengténglationship, we
are more interested in thiegree of associatidoetween the execution
result and the coverage of each statement.

* This degree can be measured based on the stankliasduare statistic.
However, such a measurereases with increasing sample sixs a
result, the measure by itself may not give thed'tdegree of association.

e One way to fix this problem is to use thentingency coefficient

computed as follows ,

M(0) = X ((D)/N (2)
J(row-1)(col-1)

whererow andcol are the number of categorical variables in all rawd
columns, respectively, of the crosstab

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 70



Degree of Association (2)

* The contingency coefficientZ(w) lies between 0 and 1.

— When x?%(w) = 0, it has théower limit Ofor complete independence

— In the case ofomplete associatigthe coefficient can reach theper limit 1
whenrow = col

* In our casetow = col= 2 andN is fixed. From Equation (2)y(w)
Increases with increasing (w).

e Under this condition, the Chi-square statistiw) for statemento gives
a good indication of the degree of the associdigtween the execution

result and the coverage of
— Nis fixed because every faulty version is executét vespect to all the test cases

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 71



What Kind of Execution Result is More Associated (1)

* Need to decide whether ittise failed or the successful execution result
that is more associated with the coverage of e stent.

Nee(w) Ncs(o
* For each statemeni, we computer-(w) and?{w) as—y_ andf

which are theercentages of all failed and successful testsettextuteaw.

* If &-(w) is larger thar{w), then the association between the failed
execution and the coveragewfs higher than that between the
successful execution and the coverage.of

C— —
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 72



What Kind of Execution Result is More Associated (2)

* We defineg(w) as

(o) ey 3)
¢((D) - CPS(O)) - NCS(O)%S

o If ¢(w) =1, we havex?(w) = 0, which implies the execution result is
completely independeof the coverage ab. In this case, we say the

coverage ofto makes thesame contributioto both the failed and the
successful execution result.

 If ¢(w) > 1, the coverage abis more associated with the failed
execution.

e If ¢(w) < 1, the coverage abis more associated with the successful
execution.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 73



Five Classes of Statements

* Depending on the values of?(w) and@(w), statements of the program
being debugged can be classified into five clas@s:

— Statements witlp > 1 and x2 > Xs»  have &igh degree of association
between their coverage and theed execution result

— Statements witlp > 1 and x2 << Xo: have dow degree of association
between their coverage and théed execution result

— Statements witlp < 1 and x2> Xo»  have &igh degree of association
between their coverage and thecessfuexecution result

— Statements witlp < 1 and x 2 < X5 have dow degree of association
between their coverage and thecessfuexecution result

— Statements witlp = 1 (under this situation 0 x2< Xo ) whose coverage is
iIndependenof the execution result

Statements in the first class are most likely,(have the highest suspiciousness) to contail
program bugs followed by those in the second, iftie ind the fourth classes, respectively.
Statements in the third class are least likely, (have the least suspiciousness) to contain bugs.

—

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 74



Suspiciousness of Each Statement

Thelargerthe coefficientm(w), thehigherthe associatid
execution result and the coveragexof

— For statements in thest and the seconclasses, those withlargerds are
more suspicious

n between the

— For statements in theird and the fourtlclasses, those withsanalleras are
more suspicious

* The suspiciousness of a statemeiian be defined by a statisy@s

M) if plo)>1
i OO ®

* Eachdlies between -1 and Ihe larger the” value, the more suspicious
the statemenb.

—
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 75



A~
—
—r
2
=y
S
3
)
<[
S
S
.
O

* The following table gives thetatement covera@ndexecution results

Of the 36 test cases, there are nine failed teggst) and 27 successful

tests (e.g.t,)

entry O

0

;

0¥

lies afailed execution and an entry O means a successful eracuti

IS not.

:

— An entry 1

— An entryl implies the statement isverecby the corresponding test and an
means |

Iy

76

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Crosstab Example (2)

* We can construct the crosstab $pas shown in the following

51 is coverad | 5 is not coverad ¥
successful executions 16 11 27
failed executions 9 ] g
¥ 25 11 36
Nc(s)x N- _ 25%9
E =< F= =6.25,
« We have=% N 36
N(8) % N _ 25 27
= = =18.75,
E(s) =22 - .

Ep(g) = (XN X9 75

N 36
_NG(9)x Ny _11x 27 _
Eus(s) N % 8.25.

* FromEquation (1)
(Ne(9)-EL9)° , (NL9- EEH* (NEB B, ( N)s B

Ee(s) B9 B 9 BL 3
_(9-6.25¢ (16- 18.75) (6 2.7%) (11 8.25
0-25 18.75 2.75 825 =52800

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Crosstab Example (3)

* If we choose the level of significance as 0.05,@hesquare critical value is
3.841. Sincey’(s,) = 5.2800 idargerthan 3.841, the null hypothesis frshould

berejected

* Similarly, we can computg? for other statements. For example, we hg(s,) =

4.4954 x(s,) = 0.1481, ang¥(s,) = 1.3333.

* Next, we usé-quation (2to compute theontingency coefficieniz for each
statement. We have(s,)= 0.1467 ,M(s,)= 0.1249,M(s;)= 0.0041, andu(s,)= 1

D

0.0370. - -
7 M @ ¢
: : 51| 52800 | 0.1467 | 1.6875 | 0.1467
. !
Computeg and{ using Equations (3) and 5, | 24954 | 01229 | 03529 | —0 1249
» Based on the suspiciousness, 53 | 0.1481 | 0.0041 | 08571 | 00041
tatemens, should be examined first | 15333 | 9537 ) 0.0000 L 99270
= : 5 s: | 1.8204 | 0.0506 | 1.6364 | 0.0506
for locating program bugs followed by s | 01558 | 0.0043 | 12000 | 00043
Si: S5 S10 Sor S S S Sy @NS, s- | 06000 | 0.0167 | 0.7500 | —0.0167
53 | 7.6364 | 02121 | 207694 0.2121 |
53 | 0.1846 | 0.0051 | 1.1053 | 0.0051
. L 515 | 1.3333 | 0.0370 | 1.5000 | 0.0370
Jump to Slide 16 Level of Significance '
]

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

78



Outline

* Motivation and Background

* Execution Dice-based Fault Localization

e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— | Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



RBF Neural Network-based
Fault Localization

* W. Eric Wong, Vidroha Debroy, Richard Golden, XiaufexXu
and Bhavani Thuraisingham, “Effective Software Fawtalization using
an RBF Neural Network,|JEEE Transactions on Reliability
(Accepted in May 2011 for publication)
(http://lieeexplore.ieee.org/stamp/stamp.jsp?tp=&anner=6058639)

* W. Eric Wong and Yu Qi, “BP Neural Network-baseddefive
Fault Localization, International Journal of Software Engineering
and Knowledge Engineerin@9(4): 573-597, June 2009




RBF Neural Network (1)

* A typical RBF neural network haslaree-layer feed-forward structure

— Input layer:Serve as an input distributor to the hidden layepdissing inputs
to the hidden layer without changing their values.

— Hidden layerAll neurons in this layer simultaneously receive th
n-dimensional real-valued input vector Xx.

0o Each neuron usesRadial Basis Function (RBFs the activation function

0 An RBF is a strictly positive radically symmetrigriction, whereéhe centep has
the unigue maximum and the value drops off rapidigero away from the center

0 When the distance between x gan(enoted as ||xH{) is smaller than the receptive
field width g, the function has an appreciable value.

oA commonly used RBF is thBaussian basis function

R;(x) = exp{——”X ‘sz lf]

20
Whereu andaJ are themean(namely, thecente) and thestandard deviation
(namely, thewidth) of the receptive field of thg" hidden layer neuron, angi(x) IS
the corresponding activation function.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 81



RBF Neural Network (2)

— Usually the distancexjj|| is theEuclidean distancleetweerx andp (|X—4|fg)

— However, (§—|) isinappropriatan the fault localization context

—We use aveighted bit-comparison based dista(i¢ei||,sc)
Letx be C; (the coverage vectoritiftest casé)

llc, —m; Huec=/ I co#, ,,

Cti.uj

Z(Cti ()i
k=1

where co§Ct =

] ”Cti “E "’"j H \/Z[(Ct)k]Z x\/Z[(uJ)k] 2
k=1 =1

k

where(c, ), andk;)« are thek" element ofc, andp; , respectively.

This distance is more desirable because it effelgtitakes into account the

number of bits that areoth 1 in two coverage vectors (i.e., those statements
covered by both vectors).

C— —
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 82



RBF Neural Network. (3)

— Output layer:y = [y, Yo, ..., Y] with y. as the output of thé neuron given by

h
Y = > w; R(X) fori=1,2,...k
j=1

whereh is the number of neurons in the hidden layer efds the weight
associated with the link connecting tfie hidden layer neuron and th&
output layer neuron.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 83



RBF Neural Network (4)

Inputx = f, X, ..., Xm) X x Yol Xm

Input Layer

Reception Field
Centers and Widt

H, e, .., Hn,
g, 0, ..., G

Hidden Layer

Output Layer Weights
Wi, W2, ..., Whk

Output Layer

Outpuy = §n, ..., W) vt W

* An RBF network implements a mapping from thelimensional real-valuedput spacdo
thek dimensional real-valuedutput spaceln between, there is a layerlafiden-layer spac

e The transformation from the input space to the &idthyer space isonlinear, whereas the
transformation from the hidden-layer space to tipuat space ignear.

* The parameters that need to be trained ared¢hters(i.e., m;,m,,..., m,) andwidths(i.e., s,
S,, ..., S, of the receptive fields of hidden layer neurcarsd theoutput layer weights

— —
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 84




RBF Neural Network (D)

* \We construct an RBF neural network with

—minput layer neurongach of which corresponds to one element in agive
coverage vector of a test case)

—one output layer neurdiecorresponding tthe execution result of tegy
—one hidden layer between the input and output fayer

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 85



RBF Neural Network (0)

* Once an RBF network is trained, it providegood mappinbetween the
Input (he coverage vector of a test geand the output
(the corresponding execution re$ult

W

* [t can then be used toentify suspicious codef a given program in
terms of its likelihood of containing bugs.

* To do so, we use a setwoftual test caseg,, v,, ..., v, whose coverage
vectors are where

| 1oL 0
¢, | |01L O
M| |[MMO M
C, _OOL 1]

Note that execution of tegtcovers only one statemqq

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 86



RBF Neural Network, (7) o _

* If the execution of; falls, the probability that the bugs are contairmes is high.

* This suggests that during the fault localizatior,siwould first examine the
statements whose corresponding virtual test calse fa

* However, the execution results of these virtuaktean rarely be collected in the
real world because it is very difficult, if not imagsible, to construct such tests.

* When the coverage vectoy of a virtual tesEtvpts input to theérained neural

network its outputr is theonditional expectatioof whether the execution of
fails glverb

* This |mpI|es the larger the value @f  the midrely that the execution of
fails.

* Together, we have the larger the valué,of  theertikely it is thats contains
the bug.

* We can treat;, as the suspiciousnessiofterms of its likelihood of containing
the bug.

o— —
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 87



Summary of RBF-based Fault Localization (1)

51 /5{ i I T 3:-:1-21‘3??!&1 S /’\
< Each element
i 11 - 0 1 ’{@\ is used as an
yyr_o o - --- 0 0 11\ (0] expected output
57 [ 7 T T . . (5]
fn-l\N 1 1 ¥ |[0]
b [15 0 1]
Y
Each row (L¢., a coverage
wector) 15 uspd as an input .
Determine (1) the qumber of neurons in
b4 CP :
. = 8 :
Afla 1} |11 |1 H
0f|1 1 [o] |1 Beasnon, =
gwves an estimate :
1/ (1 1] 10| |1 of the execution ;
1|1 0/ 0] |0
0] |1 11 10f |1 ;.
_1 1 1/ |1 1_
5l g8 G Stage 2

The output layer weights are traimed to minimize
the sum of the square errors between the actual
outputs and the expected outputs

Train an RBF neural network using the coverage vectors and program execution results
EE———— B ]

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 88



Summary of RBF-based Fault Localization (2)

O ey
N ‘“.? -~ (0] 10| |0
ONIk -~ 0] 0] |0
%
0N (0] 0] [0
A Serd=l B E The suspiciousness
: ."\\_l RERE of each statement
0/ 0 MNo| 0
of o] - [o[YaNo
I
ol lo] - o] [o]\1}
<, C, €S, Ic“,‘

|
]
.

Compute the suspiciousness of each statement in P using virtual test cases

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 89



Three Novel Aspects

* Introduce a method for representing test casegnséat coverage,
execution results within a modified RBF neural r@txwwformalism

— Training with example test cases and executiontsesu
— Testing withvirtual test cases

* Develop a novel algorithm tamultaneously estimate the number of
hidden neurons and their receptive field centers

e Instead of using theaditional Euclidean distancwhich has been
proved to be inappropriate in the fault localizatamntext,
aweighted bit-comparison based distaisdefined to measure the
distance between the statement coverage vectbnodést cases.
— Estimate the number of hidden neurons and theaptee field centers
— Compute the output of each hidden neuron

o —
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 20



RBF Example (1)

* Suppose we have a program with statementsSevertest cases have
been executed on the program. Table 1 gives therage vector and the
execution result of each test.

AN A%, $3 AY A A 57 AY: Sa §p I
1 1 1 1 0 1 0 0 1 1 @4— t, is a successful test
i1\ 0 o0 1 1 @ 1 0o 0 1|0
511 \1 1 0 0 1\ 0 o0 1 1 0
fy | 1 1 0 0 1 1 0 1 1 0
s 11 1 1 0 1 0o v o0 1 0 0
e | 1 1 1 1 0o o0 1 1 1 @'—— t, is a failed test
711 0 \1 1 1 1 1 \ 1 0 1 1

s, is (><ecuted by, S, Is not executed bty

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 91



RBF Example (2)

* An RBF neural network is constructed and trained
— 10 neurons in thenput layer
— 7 neurons in théiddenlayer
— The field widtho is 0.395
— 1 neuron in theutputlayer

— The output layer weights ave= [w,, W,, W, W,, Wg, W, W,]T
=[-1.326, -0.665, 0.391, -0.378, -0.308, 1.53181]8

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

92



RBF Example (3)

* Use thecoverage vectors of the virtual test caasthe inputs to the
trained network.

e The output with respect to each statement is thpisiousness of the
corresponding statement.

¢, ]t 00000000 O
¢ | |01 000 O00O0O0O0 [ 0.0384 P 0.0179
c,, 601 00O0O0CO0O0O0 n 3 _

! ] 57
¢, | /OO 0O1 00O0CO0O0O0 V2 Lo " —

. A Highest/

- g . g
©u =2 E g E [lj ? E E g E ?’-’3 0.1246 ""g 0.2900 Most suspicious
€, | | - =

ro | 00768 ||, | o.0066] |-OWESY
(|0 000001000 . L | 1 |Least suspicious
%|[|0000000100 | 00173 | 1, | 0.0782
.| looooo0oo0o001 0 2 .
<, 0000000001 Part (b): Outputs produced by the trained network

Part (a): Input coverage vectors which are the suspiciousness of the statements

Inputs and outputs/statement suspiciousness
i -

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 93



BP versus RBF

 Although BP (back propagation) networks are thealyidised networks
for supervised learning, RBF networks (whose ouligyer weights are
trained in asuperviseavay) are even better in our case because

RBF canlearn much fastahan BP networks and do not suffer from
pathologies likeocal minimaas BP networks do.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 94



Outline

* Motivation and Background
* Execution Dice-based Fault Localization
e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— | Similarity Coefficient-based Fault Localizatior

* Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

—

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

95



DStar - A Similarity Coefficient-based F
Fault Localization




The Construction of D* (1)

* The suspiciousness assigned to a statement sheuld b

e Intuition 1: directly proportional to the number of failedtteases that
cover it > suspiciousne$s) o N.¢

e Intuition 2 inversely proportional to the number of succdd®fst cases
that cover it — suspiciousnes$s) o 1/N.g @

e Intuition 3. inversely proportional to the number of failedtteases that
do not cover it > suspiciousnesgs) a 1/N ¢

e Conveniently enough such a coefficient alreadytexis
KulczynskiKulczynski, 1928]f Neg/(NestNyg)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 97



The Construction of D* (with * = 2)(2)
* However, we also have a fourth intuition ...

e |ntuition 4: Intuition 1 is the most sound of the other inant and should
therefore carry a higher weight.

» Kulczynskdoes not lead to the realization of the fourthitrdn.

e Under the circumstances we might try to do somgthke this:

100x N
I\IUF + NCS

. 2% Ngp -
suspiciousnegs) s N or maybe eversuspiciousnegs) s

UF NCS
 But this is not going to help us (as we shall |a&)
* So instead we make use of a different coefficiér) (

- N.. XN
suspiciousnegs) s —F—FF
NUF + NCS

Back to Slide 118

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 98



D* Example : with * =2 (1)

e Suppose we are writing a program that computesuheor average of
two numbers.

— But with respect to the sum computation (staterbgnbstead of adding the
two numbers, we accidentally subtract them

Coverage
Stmt. #. | Program( P ) | L [t |t |t |t
1 read (a); . . . . . .
2 read (b); . . . . . .
3 read (choice); . . . . . .
4 if (choice == “sum”) . . . . . .
5 I _Le_ga_lt__:_f_;z)_;-i l[Correct:a+b; | -« . .
6 else if (choice == “average”) . . .
7 result = (a + b) / 2; . . .
8 print (result); . . . . . .
Execution Result (0 = Successful / 1 = Failed)| 1 1 0 0 0 0

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 99



D* Example: with * =2 (2)

* Next we collect the statistics we need for D£, Ny andNgo

STt # | Nop | N | Neg | SUSREueness based on b

1 2 0 4 1

2 2 0 4 1

3 2 0 4 1

4 2 0 4 1

5 2 0 1 4 «—— Most suspicious
6 0 2 3 0

7 0 2 3 0

8 2 0 4 1

Statement rankings, |1, 2, 3, 4, §6, 7

Tied togethel%T T— Tied together

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 100






Tarantula, Ochiai, SOBER, & L%Oj'

e Tarantula

failed(e)

totalfailed
passed(e)+ failed(e
totalpassed totalfailec

suspiciousness( &)

— passed(eis the number of passed test cases that execteenstiate one or more times
— failed(e)is the number of failed test cases that executeraente one or more times
— totalpasseds the total number of test cases that pass itegtesuite

— totalfailedis the total number of test cases that fail intdst suite

e Ochial

Ner
\/NF X(NCF + Ncs)
* SOBER

* Liblit05

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 102



Outline

* Motivation and Background
* Execution Dice-based Fault Localization
e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

e Empirical Evaluation

* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 103



o T TR
A e A D e
LS




Is a Technique Good at Locating Faults”?

* “Good is more of a relative term. We can show a fautalazation
technique is good by showing that it is more effecthan other
competing techniques

* We do this via rigorous case studies
— Using a comprehensive set of subject programs
— Comparing the effectiveness between different flaghilization techniques
— Evaluating across multiple criteria

e Since it is not possible to theoretically provet thiae fault localization
technique is always more effective than anothe) simpirical
evaluation is typically the norm

— We will return to this issue later on

Jump to Slide 123

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 105



Subject Programs

* Four sets of subject programs — iemensuite, theJnix suite,gzipand
Ant— were used (19 different programs in all - C & Java)
— Two additional programgy(epandmakg are also used which makes a total of
21 programs(é)

Program Lines of Code | Number of faulty versions used | Number of test cases|  + §gme versions
AL Zoeers 20 > 4130 were created using
print_tokens2 510 10 4115 :
schedule 412 9 2650 mUta_tl(_jn_pased
schedule? 307 9 5710 fault injection
replace 563 32 5542 @
tcas 173 41 1608 =
tot_info 406 23 1052
cal 202 20 162
checkeq 102 20 166
col 308 30 156
comm 167 12 186
crypt 134 14 156
look 170 14 193
sort 913 21 997
spline 338 13 700
tr 137 11 870
uniq 143 17 431
gzip 6573 28 211
Ant 75333 23 871
| I o

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 106



Technigques D™ is Compared to

* First compared D* to thKulcyznskicoefficient

* Also compared it with 11 other well-known coeffiete forming a
baker’'s dozefChoi et al. 2010, Willett 2003]

(1) Simple-Matching (7) Gower

(2) BraunBanguet (8) Michael

(3) Dennis (9) Pierce

(4) Mountford (10) Baroni-Urbani/Buser
(5) Fossum (11) Tarwid

(6) Pearson(x?)

* Further comparisons with other techniques were [@stormed
— To be discussed Iate@

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 107



Three Evaluation Metrics/Criteria

e Number of statements examined

— The number of statements that need to be examyn& bo locate faults
versus other techniques

— An absolute measure

* The EXAM score: the percentage of code examined

— The percentage of code that needs to be examinadibhy D* to locate faults
versus other techniques

— A relative (graphical) measure

* The Wilcoxon Signed-Rank Test

— Evaluate the alternative hypothesis that othenmtegies will require the
examination ofnore statements than D*

o D* is more effective than other techniques

o Null hypothesis being that the other techniquesiiregdhe examination of a number
of statements that Isss than or equal tthat required by D*

— A statistical measure

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 108



Ties in the Ranking: Best/Worst

* The suspiciousness assigned to a statement byrid*ather techniques)

may not be unique, i.e., two or more statementdeaired for the same
position in the ranking.

From our
example: Statement rankings, 1, 2, 3, 4, 86, 7

Tied togethe%T L Tied together

* Assuming a faulty statement and some correct s&ateare tied
— In thebestcase we examine the faulty statemfest
— In theworstcase we examine ldist

* For each of the previously discussed evaluatideraa, we will have the
best casand theworst caseeffectiveness.

— Presenting only theveragewould have resulted in a loss of information

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 109



Results — Total Number of Statements Examined

]
Fault Localization Best Case Worst Case
Technique Siemend Unix | gzip Ant | Siemerls Uni gzip| _—An
[o* 1754 | 1805 | 1220 672 2650[ 5226  3087( 11k
Kulcynzki 2327 | 2358 | 1272( 155 3186 5779 313 2049
Simple-Matching 6335 | 5545 908y 250414 7187 897 10968 2BBEF—
BraunBanquet 2438 2767 1355 2146 3206 6187 3185 249 D* is clearly
Dennis 2206 | 2934 196((19 3074 6504 3747 24pq € MOSt
Mountford 1o74 | 2183| 13171 320 283] s6ds 31l 3sjg Cliective
Fossum 2230 | 2468| 4547 1504f5 3125 5843 87p1 150t _
Pearson 3279| 3581 145p 1188 424  72p1  a2p7  14c Jump o Slide 119
Gower 6586 | 8630| 26215 96737 743h 12027 27992 961809
Michael 1003 | 3713 2504 450 2864 7243 4241 s0p4
Pierce 8072 | 11782 24065 3220B3 15299 23387 46[53 1018725
Baroni-Urbani/Busey 3547 3189 1428 4693 4404 6605 32P5 5195
Tarwid 2453 | 3309 3110 5964 33211 783 5032 995

* D" is very consistent in its performance

e Often the worst case of [ better than the best case of the other
techniques (Note that * = 2)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 110



Results — EXAM Score (Slemens suite)

100%

. //Vg—;_—g/ﬁl
5% /Z/ M
W D* is clearly
70%

z/ / the most
50% effective
40% ///
30% //
20% //

—B— D* Best Case
—o— D* Worst Case

Percentage of Faulty Versions where Fault is Located

10% —A— Mountford Best Case
—x— Mountford Worst Case
0% ‘ ‘ ‘ ‘ ‘ ‘ ‘
0% 10% 20% 30% 40% 50% 60% 70% 80%

Percentage of Code Examined

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 111



Results — EXAM Score (UNIX suite)

100%

90%

80%

70%

60%

50%

40%

30%

20%

Percentage of Faulty Versions where Fault is Located

10%

0%

7

[

/

e

[/

//

—B— D* Best Case
—o— D* Worst Case
—A— Mountford Best Case

—— Mountford Worst Case

/

0% 10% 20%

30%

40% 50% 60%
Percentage of Code Examined

70% 80% 90%

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

100%

D* is clearly
the most
effective

112



Results — EXAM Score (GzIp)

100% /E/Z“\ o
90%
5
= 80% -
(8]
2 %
2 D* is clearly
= 70%
3 the most
P effective
5 60%
<
=
(%))
S 50%
@
(]
>
> 40% -
S
©
LL
S 30%
(0]
(@]
g
c
o 20% |
S —B— D* Best Case
o —o— D* Worst Case
10%
—A— Mountford Best Case
—%— Mountford Worst Case
0% T T T T T T
0% 5% 10% 15% 20% 25% 30% 35%
Percentage of Code Examined
B B |

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 113



Results — EXAM Score (ANt)

100%

90%

(| VN

80%

70%

60%

50%

40%

30%

20%

Percentage of Faulty Versions where Fault is Located

10%

—B— D* Best Case
—o—D* Worst Case
—A— Mountford Best Case

—>— Mountford Worst Case

---4+-- Pearson Best Case
---&-- Pearson Worst Case

0%
0.00%

0.25% 0.50% 0.75% 1.00% 1.25%

1.50%

1.75% 2.00% 2.25%

Percentage of Code Examined

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

2.50%

D* is clearly
the most
effective

114



Results — Wilcoxon Signed-Rank Test (1)

]
Fault Localization Best Case Worst Case
Technique Siemens Unix gzip Ant Siemens$ Unix gzip Ant
Kulcynzki 99.99% | 99.99% 93.75% 98.43 99.99%  99.99% 53:1ﬁ% 98 Y43%
Simple-Matching 100% 100% 99.80% 99.90%0 100% 100 )
BraunBanquet 99.99% 100% 99.80% 99.80% 99.99%  99.9
Dennis 99.99% 100% 99.99% 99.800*3 99.99% 100¢ 1%
Mountford 99.99% [ 99.99% 99.21% 99.90% 99.99%  99.99%
Fossum 100% 99.99% 99.219 99.21%6 100% 99.9 : B7%
Pearson 100% 99.99¢ 99.21% 99.210 10096 99.94% 70} B7%
Gower 100% 100% 99.99% 99.99% 1009 100% 99.99%  99.99%
Michael 99.68% [ 99.99% 99.99% 99.97"*) 99.54%  99.99%  99.99% .9799
Pierce 100% 100% 99.99% 99.990*) 100% 100%6 99.99%  99.99%
Baroni-Urbani/Busgqr 99.99% 100% 99.80% 99.80p6 99.99% 10Qba4.42% || 98.82
Tarwid 99.99% | 99.99% 99.99% 99.99% 99.99% 100% 99.99%  98.99

* Generally the confidence with which we can claiat th* is more
effective than the other techniques is very higagis(ly over 99%).

* But there are a few exceptions.

* Why? Perhaps this has something to do with theauayhypothesis was
constructed.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 115



Results — Wilcoxon Signed-Rank Test (2)

 Let us modify our alternative hypothesis to consilgialities
—We now evaluate to see if D* isore effective than, or at least as effective as,
the other techniques.

— Which is to say D* requires the examination of anber of statements that i$

less than or equal that required by the other techniques.

o . Best Case Worst Case
Fault Localization Technique . .
gzip Ant gzip Ant

Kulcynzki 100% 100% 100% 100%
Simple-Matching 100% 100% 99.94% 99.90%9 | D* is C|ear|y
BraunBanquet 100% 100% 99.14% 99.619 the most
Dennis 100% 100% 99.43% 99.61% effective
Mountford 100% 100% 95.78% 99.90%
Fossum 100% 100% 99.67% 99.44%
Pearson 100% 100% | C 92.19% 98.44%
Baroni-Urbani/Buser 100% 100% 7 95.42% 99.229

Confidence levels have gone up significanglif.entries but one are greater than 95%.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 116



More Discussion on D>

e D* with a higher value for the *

e Compare Dwith other fault localization techniques

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

117



Effectiveness of D™

* The effectiveness of D* for thmakeprogram increases until it levels o

ff

as the value of * increases.

» A similar observation also applies to other progsrz@
18000 -

16000 | =—

14000 -

12000 -

10000 | e

8000 -

6000 -

4000 -

Total number of statements examined

- DBest

2000 - e D\N/Orst

O I I I I I I I I
2 8 14 20 26 32 38 44 50

Star

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 118



Effectiveness of Other Fault Localization Techniques

* The best- and worst-case effectiveness of 18 facdtlization techniques
(excluding D*) on 21 different programs.

Best Case Worst Case
Unix | Simens grep gzip make| Ant Unix]  Simers grep gzi make Ant
H3c 1655 1396 2702 1535 8553 132( 5026 2292 4485 3312 14272 1882
H3b 1701 1439 3019 1535 1081y 1358 5072 2335 47652 3313 16556 1860
RBF 1302 2114 2075 2966 9188 233 4758 2940 3964 4743 14590 159
Ochiai 1906 1796 3092 1270 1030% 887 532p 2692 4825 3047 16044 1389
Crosstab 2524 2005 4005 1314 12408 1076 6094 2813 7443 3091 18142 1578
Tarantula 3394 2453 5793 3110 16890 5964 7704 3311 7812 5032 23468 9935
Kulcynzki 2358 2327 3458 1272 10701 1557 5779 3186 51P2 3139 16668 2069
Simple-Matching 5545 6335 23806 9087 41374 2504Q14 8917 7187 25606 10968  4848mB631
BraunBanquet 2767 2438 4114 1358 11734 2196 3296 3296 5847 3135 17986 2698
Dennis 2934 2206 5498 1960 15016 1974 6504 3074 8936 3737 24755 2476
Mountford 2183 1974 3450 1317 11269 3298 5644 2832 5189 3111 17152 3818
Fossum 2468 2230 15952 4547 1956F 150415 5843 3126 21193 8701 25039911
Pearson 3581 3279 6894 1450 17689 1188 7221 4247 10196 3327 23569 1690
Gower 8630 6586 43428| 26215 128318 967307 12027 7434 45p62 279920513 967809
Michael 3713 1993 5027 2504 14986 4502 7283 2864 8501 4281 20725 5004
Pierce 11782 8072 16646 24064 30568 322033 23387 15299 60437 467%31856| 1018725
Baroni-Urbani/Buser| 3189 3547 4902 1428 12130 4693 6605 4404 6685 3205 17689 5195
Tarwid 3399 2453 5793 3110 16890 5964 78883 3321 95117 5032 23468 9935
Jump to Slide 105
EE S S—— - —

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 119



Comparison between D* and Other Techniques

* The effectiveness of Ds better than the other 12 similarity coefficient-
based fault localization techniqui(i)

* From the following table, we also observe that @itljf an appropriate
value of*) performs better than other fault localizatiomtaques,
regardless of the subject programs, and the bestomt-case.

— The cell with a black background gives the smaliesich that D*
outperforms others.

Best Case Worst Case
Unix Simens grep i Uni Simens grep gzip make Ant
D2 1805 1754 3023 5226 2650 4757 3087 16254 R}
D3 1667 1526 2946 88 2422 tlt 2955 16224 880
D4 1594 1460 2833 1087 10022 2356 4567 2954 15989 804
D5 1507 1435 2762 1084 10022 224 2331 4496 2952 15989 740
D* 1386 (*=7) 2693 (*=8 8529 (*=20 2284 (*=7 14219 (*=25
H3b 1701 1439 3019 153% 10817 1358 502 2335 4752 3313 16566 60 [18
H3c 1655 1396 2702 153% 8553 1320 5026 2292 443% 3312 142y2 2 |88
Tarantuld 3394 2453 5793 3110 16890 5964 7104 3311 7812 5032 34682 9935
Ochiai | 1906 1796 3092 1270 10305 887 53p2 2697 4825 3047 160441389
Jump to Slide 106
N |

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 120



Outline

* Motivation and Background
* Execution Dice-based Fault Localization
e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

*  Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
e Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 121






Comparing Fault Localization Techniques (1)

* As discussed earlier the general norm for compdauoly localization
techniques has been to usapirical data.

e If techniquea is better than technigug: then it should lead programmers
to the location of fault(s) faster thfin

e Multiple metrics have been proposed to do this ascthe ones used in
our researcl(i)

» Case studies can be quite expensive and time-conguomperform.
Often a lot of data has to be analyzed.

But is empirical comparison always required...espicvehen
trying to show that two techniques will be equaffective?

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 123



Comparing Fault Localization Techniques (2)

* Note that the suspiciousness of a statement Iswart from arabsolute
sense.

— It only matters how the suspiciousness of two (orajstatements compare
with respect to each other (i.es)ativeto one another).

e Supposing we have two statemegjtands, with suspiciousness values of
5 and 6, respectively. This means thas ranked abovs, as it is more
suspicious.

* However,s, would still be ranked abow if the suspiciousness values
were 6 and 7, or 50 and 60, respectively — theivelardering ofs, and
s, is still maintained.

* Thus, subtracting the same constant from (or adtliioy the
suspiciousness of every statemerit have no effect on the final ranking
The same applies for multiplication/division operas.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 124



Comparing Fault Localization Techniques (3)

* Recall the suspiciousness computatioKolczynski

.. N
suspiciousnegs) s Ll
NUF + NCS

* It now becomes clear that an identical ranking balproduced by

.. N . N
suspiciousnegs) s ( €f__)+1 or suspiciousnegs)s (——<——)x10
UF NCS NUF + NCS

e This is why D* was constructed the way it was

* Any operation that isrder-preservingcan be safely performed on the
suspiciousness function without changing the ramkin

* If the ranking does not change...then the effectisemall not change
either.We can exploit this!

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 125




Comparing Fault Localization Techniques (4)

e Consider a prograra with a set of elements. Letrank(r,s) be a
function that returns the position of statenmeint rankingr.

* Two rankings , andr, (produced by using two techniquegand £z on
the same input data) aegualif
— VsOM, rank(r,,s) = rank(r,s).
— Two rankings are equal if for every statement,gbsition is the same in both
rankings.

°|If two fault localization techniques, and £, always produce rankings
that are equal, then the techniques are said égbealent, i.e., = £
and therefore will always be equally as effectiaefqult localization).

* S0 Is the equivalence relation useful?

Certainly! In at least two scenarios it holds gsatential
— Eliminating the need for time-consuming case ssidie
— Making suspiciousness computations more efficient.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 126



Eliminating the Need for Case Studies (1)

» Take the example of [Abreu et al. 2009] where
— The authors use of tilfechiai coefficient to compute suspiciousness.
— The coefficient is compared to several other cordffitsempirically.
— Among others, it is compared to thaccardandSorensen-Diceoefficients.

* We posit that this was unnecessary, as per the@agquace relation.

Jaccard Sorensen-Dice

. N
suspiciousnegs) s cF suspiciousnegs) s ZNer
NCF + NUF T NCS 2NCF + I\IUF + NCS

* Via a set of order-preserving operations, bothlman
NCF
NUF + NCS

reduced tOsuspiciousnegs) s

Jaccarc Sorensen-Dice

R. Abreu, P. Zoetewelj, R. Golsteijn, and A. Jv&n Gemund, “A Practical Evaluation of Spectrumeuhs
Fault Localization,” Journal of Systems and Softw&&{11):1780-1792, November 2009

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 127



Eliminating the Need for Case Studies (2)

* As it turns out the coefficieinderbergalso evaluates to the same form.
Ochiai was empirically compared to Anderberg.

Jaccardce Sorensen-Dice Anderberg

* In fact the authors also compared Ochiai toShmapleMatchingand
Rogers and Tanimotooefficients, the both of which are also equivalent
to one another.

SimpleMatchings Rogers and Tanimoto

Such redundant comparisons could have been avbidataking
use of the fault localization equivalence relation.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 128



Making Computations More Efficient (1)

e As shown, if Jaccard were the chosen fault locabmakechnique, using
the suspiciousness function

NCF
NCF + NUF + NCS

suspiciousnegs) s

would give the same results as using

- N
suspiciousnegs) s L
I\IUF + NCS

* WWe should go with the simplest computation as &dgected to be faster,

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 129



Making Computations More Efficient (2)

* We performed an additional case study on the 7rprog of the Siemens
suite

e Observedhe relative time savad computing suspiciousness for all the
statements in a faulty program, by usingsheplified formof Jaccard
(J*) as opposed to theriginal (J).

— The quantity J-J*) represents the computational time that is saved.
—((3-J%/J)x 100% represents the relative time saved, i.egieffcy gained.

100 trials were performed per faulty version.

e Difference in times was computed to nanoseconds)oec

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 130



Making Computations More Efficient (3)

Average

Programs Percentage Time
Saved

print_tokens 35.37%
print_tokens2 39.21%
schedule 44.62%
schedule2 49.74%
replace 41.65%
tot_info 47.68%

* The savings in terms of time are quite significant.

» Using the equivalence relation can thus, help redechniques to
simplified forms, thereby greatly increasing effiacy.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 131






Programs with Multiple Faults

* One bug at a time

* A good approach is to usegult-focused” clustering
— Divide failed test cases into clusters that tadyéé¢rent faults
— Failed test cases in each fault-focused clustec@réined with the successful
tests for debugging a single fault.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 133



Outline

* Motivation and Background
* Execution Dice-based Fault Localization
e Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization

* Empirical Evaluation

* Theoretical Comparison: Equivalence
 Mutation-based Automatic Bug Fixing
» Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 134



Mutation-based Automatic Bug Tixing

V. Debroy and W. E. Wong, “Using Mutation to Autoncally Suggest
Fixes for Faulty Programs,” iRroceedings of the 3rd International

Conference on Software Testing, Verification antidd#ion (ICST),
Paris, France, April 2010




Mutation as a Fault Generation Aid

* For research experiments, large comprehensivesaétare rarely
available

* Need faulty versions of programs to perform alldsiof experiments on,
but don’t always have a way to get them

* Recently many researchers have relied on mutation
—|Mutants generated can represent realistic faults

— Experiments that use these mutants as faultyoreysian yield trustworthy
results

— As opposed to seeding faults, mutant generatiant@matic

Jump to Slide 105

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 136



Mutation as a Fault Fixing Aid?

If mutating a correct program can produce a realiatlt, can
mutating an incorrect program produce a realistie f

e Supposing we wanted to write progrém

e But we ended up writing a faulty progrdsh

— We knowP’ is faulty because at least one test case in ouséesesults in
failure when executed d@

* MutateP’ to getP”

e If P” =P... we automatically fixed the fault iR’

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 137



Our Solution

Mutation

Fault Localization

The Good Can result in
potential fixes for faulty
programs automatically.

The Good Can potentially
identify the location of a fault
In a program.

The Bad We have no idea as foThe Bad: Even if we locate the
where in a program a fault is, anfdwult, we have no idea as to

so we do not know how to
proceed. Randomly examining
mutants can be prohibitively
expensive.

how to fix the fault. This is left
solely as the responsibility of
the programmers/debuggers.

So...what if we combined the two[?

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 138



TS A
s




What We Have Discussed

 Existing and new fault localization techniques

— Many of them use the same information (statemevérame and execution
results) to identify suspicious code likely to aintprogram bug(s)

A strategy to automatically suggest fixes for fauftthat
— makes as few assumptions as possible about thveasefbeing debugged

—is generally applicable to different types of s@terand programming
languages

— still manages to produce some useful informaticgnewhen it is unable
to fix faults automatically

Present a framework to automate the debugging ps=ce

A\ 4

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 140



