
1Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11

Reducing the Cost of Program Debugging

with Effective Software Fault Localization

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong



Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in 
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software 

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

2Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 3

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 3

OutlineOutlineOutlineOutline

3



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 4

� Testing and debugging activities constitute one of the most expensive 
aspects of software development
– Often more than 50% of the cost [Hailpern & Santhanam, 2003]

� Manual debugging is…
– Tedious

– Time Consuming

– Error prone

– Prohibitively expensive

Need ways to debug…

automatically

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 4

MotivationMotivationMotivationMotivation

4

B. Hailpern and P. Santhanam, “Software Debugging, Testing, and Verification,”IBM Systems Journal, 41(1):4-12, 2002



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 5Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 5

Debugging TodayDebugging TodayDebugging TodayDebugging Today

� Program debugging consists of three fundamental activities
– Learning that the program has a fault –fault detection

– Finding the location of the fault –fault localization

– Actually removing the fault –fault fixing

� A lot of progress has been made in the area of test case generationand 
thus we can assume that we will have a collection of test cases (i.e., a test 
set) that can reveal that the program has faults.
– So the programmer can avoid the first task (fault detection).

� Recently fault localizationhas received a lot of focus
– It is one of the most expensive debugging activities [Vessey, 1985]

� Fault Fixinghas also been an important research area
– Have to be very careful not to introduce new faults in the process

5

Iris Vessy, “Expertise in Debugging Computer Programs: A Process Analysis,”International Journal of 
Man-Machine Studies, 23(5):459-494, March1985



Software Fault Localization



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 7Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 77

ObjectivesObjectivesObjectivesObjectives

� Develop a robust and reliable fault localization technique to identify 
faults from dynamic behaviorsof programs 

� Reduce the cost of program debugging by providing a more accurate set 
of candidate fault positions

� Provide software engineers with effective tool support



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 8Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 8

Perfect Bug DetectionPerfect Bug DetectionPerfect Bug DetectionPerfect Bug Detection

� A bug in a statement will be detected by a programmer if the statement is 
examined 
– A correct statement will not be mistakenly identified as a faulty statement

– If the assumption does not hold, a programmer may need to examine more 
code than necessary in order to find a faulty statement

8



Traditional Approach



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 10

Commonly Used TechniquesCommonly Used TechniquesCommonly Used TechniquesCommonly Used Techniques

� Insert print statements

� Add assertionsor set breakpoints

� Examine core dump or stack trace

10

Rely on programmers’ intuition and domain expert knowledge



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 11

OutlineOutlineOutlineOutline

11



Execution Dice-based Fault Localization



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 13Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 13

Execution Slice & DiceExecution Slice & DiceExecution Slice & DiceExecution Slice & Dice

� Faults reside in the execution sliceof a test that fails on execution
– An execution slice is the set of a program’s code 

(blocks, statements, decisions, c-uses, or p-uses) executed by a test

– An execution slice can be constructed very easily if we know the coverage of 
the test (instead of reporting the coverage percentage, it reports which parts of 
the program are covered).

– Too much code in the slice

� Narrowing search domain by execution dices
– An execution dice is obtained by subtracting 

successfulexecution slices from failedexecution slices

13

Dice = Execution slices of failed tests – Execution slices of successful tests

Discussion 2Discussion 1Static & Dynamic



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 14Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 14

Example Example Example Example (1)

14

A Sample Program



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 15Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 15

Example Example Example Example (2)

15

Initial Test Set



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 16Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 16

Example Example Example Example (3)

16

Failure Detected



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 17Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 17

Example Example Example Example (4)

17

Where is the Bug?



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 18Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 18

Example Example Example Example (5)

18

Execution Slice w.r.t. the Failed Test T6 = (4 3 3)

Too much code needs
To be examined!



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 19Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 19

Example Example Example Example (6): Which Test Should be Used Which Test Should be Used Which Test Should be Used Which Test Should be Used ?

19

Failure Detected



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 20Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 20

Example Example Example Example (7)

20

A Successful Test T2 and a Failed Test T6

(should beisosceles)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 21Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 21

Example Example Example Example (8)

21

Execution Slice w.r.t. the Successful Test T2 = (4 4 3)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 22Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 22

Example Example Example Example (9)

22

Execution Dice = Slice (4 3 3) - Slice (4 4 3)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23

One Failed and One Successful TestOne Failed and One Successful TestOne Failed and One Successful TestOne Failed and One Successful Test

23

Possible locations of faults
� Code in the execution dice(top priority)

� A bug is in the failed execution slice (the red 
path) but notin the successful execution slice 
(the blue path)

� Code in the failed execution slice but not in the dice

� A bug is in the failed execution slice (the red path) 
andin the successful execution slice (the blue path)

� The dicing-based technique can be effective in locating some program bugs 
– H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault localization using execution slices and 

dataflow tests,”in Proceedings of the 6th IEEE International Symposium on Software Reliability 
Engineering, pp. 143-151, Toulouse, France, October 1995.
†Authors are listed in alphabetical order
‡Number of citations: 155 (according to the Google Scholar)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24

Locating Bugs using Execution Dice Locating Bugs using Execution Dice Locating Bugs using Execution Dice Locating Bugs using Execution Dice (1)

24

A test case in red fails the program

A test case in green runs the program successfully



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25

Locating Bugs using Execution Dice Locating Bugs using Execution Dice Locating Bugs using Execution Dice Locating Bugs using Execution Dice (2)

25



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 26Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 26

Locating Bugs using Execution Dice Locating Bugs using Execution Dice Locating Bugs using Execution Dice Locating Bugs using Execution Dice (3)

26

Code in red is executed by the failed
test BUT NOT the successful one

Code in blue is executed by the 
failed test AND the successful one

Code in white is NOT executed 
by the failed test



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 27

Multiple Failed and Successful Tests Multiple Failed and Successful Tests Multiple Failed and Successful Tests Multiple Failed and Successful Tests (1)
� The morethat successfultests execute a piece of code, the less likelyfor 

it to contain any fault.

� The morethat failed tests with respect to a given fault execute a piece of 
code, the more likelyfor it to contain this fault.

� A piece of code containing a specific fault is 
– inversely proportionalto the number of successful teststhat execute it

– proportional to the number of failed tests(with respect to this fault) that 
execute it.

27

W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldonado, “Smart Debugging Software Architectural 
Design in SDL,” Journal of Systems and Software,Volume 76, Number 1, pp. 15-28, April 2005 

Jump to Slide 97



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 28Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 28

Multiple Failed and Successful Tests Multiple Failed and Successful Tests Multiple Failed and Successful Tests Multiple Failed and Successful Tests (2)
� Need to consider precisionand recall

– intersection of failed tests – union of successful tests

– union of failed tests – union of successful tests

– intersection of failed tests – intersection of successful tests

– union of failed tests – intersection of successful tests

28



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 29

More Advanced HeuristicsMore Advanced HeuristicsMore Advanced HeuristicsMore Advanced Heuristics

� A bad dicedoes not contain the bug 
– Augmentation of a badexecution dice using inter-block data dependency

� A good dicewith too much code
– Refining a goodexecution dice using additional successful tests

29

W. E. Wong and Yu Qi, “An Execution Slice and Inter-Block Data Dependency-Based Approach for

Fault Localization,”Journal of Systems and Software, Volume 79, Number 7, pp. 891-903, July 2006 



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30

� Bug is not in the execution dice

� Much code that is executed by both the failed test (the red path) and the 
successful test (the blue path)

� How to prioritize the code that still needs to be examined

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 30

Augmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice D(1)  (1)  (1)  (1)  (1)

30

Bug!



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31

� If the bug is not in D(1), we need to examine additional code from the rest
of the failed execution slice (i.e., EF – D(1) denoted by Φ)
– For a blockβ, the notation β∈Φ impliesβ is in the failed execution slice EF

but not in D(1). 

� More prioritization based on inter-block data dependency

� Define a “direct data dependency” relation∆ between a block β and an 
execution diceD(1) such that β ∆ D(1)

if and only if β defines a variable x that is used in D(1) or β uses a variable 
y defined in D(1). 

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 31

Augmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice D(1)  (1)  (1)  (1)  (2)

31



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 32Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 32

Augmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice D(1)  (1)  (1)  (1)  (3)

32

Code in red is in 
the execution dice

Code in blue has some data 
dependency with code in red
� Higher Priority

Code in green has no data 
dependency with code in red 
� Lower Priority



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 33Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 33

Augmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice D(1)  (1)  (1)  (1)  (4)
� Construct A(1), the augmented code segment from the first iteration, 

such that A(1) = {β | β∈Φ∧ (β ∆ D(1))}.

� set k = 1
� Examine code in A(k) to see whether it contains the bug ()

� If YES, 

then

– STOP because we have located the bug

else

– set k = k + 1
� Construct A(k), the augmented code segment from the kth iteration,

such that A(k) = A(k-1)
∪ { β | b ∈Φ∧ (β ∆ A(k-1))}.

� If A(k) = A(k-1) (i.e., no new code can be included from the (k-1)th iteration to the kth iteration) 
then 

– STOP
At this point we have A(*), the final augmented code segment, which equals A(k) (and 
A(k-1) as well)

else

– Go back to step ()

33



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 34

Augmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice D(1)  (1)  (1)  (1)  (5)

34

(a) the execution slice with respect to a failed test t1 (b) the execution slice with respect to a successful test t2
(a=3; b=5)                                          (a= -3; b=5)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 35

Augmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice DAugmentation of A Bad Execution Dice D(1)  (1)  (1)  (1)  (6)

35

dice obtained by subtracting the execution                      Code that has direct data dependency
slice in (b) from the execution slice in (a)                    with S3 (i.e., code in the dice)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 36Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 36

Refining of A Good Execution Dice DRefining of A Good Execution Dice DRefining of A Good Execution Dice DRefining of A Good Execution Dice D(1)  (1)  (1)  (1)  

� Construct the execution slices (denoted by Θ1, Θ2, …, Θk) with respect to 
successful tests t1, t2, …,and tk

� D(1) = EF –Θ1

� D(2) = D(1) –Θ2 =  EF –Θ1 –Θ2

� We have D(1)
⊇D(2)

⊇D(3), etc.

� Since we want to examine the more suspicious code before the less suspicious 
code, code in D(2) should be examined before code in D(1) but not in D(2)

36



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 37

� Assume 

– debugging as soon as a failure is detected (i.e., only one failed test)

– n (say 3) successful tests

� Assume the bug is in the code which is executed by the failed test but not the 
successful test(s)
– first examining the code in D(3) followed by code in D(2) but not inD(3), then 

code in D(1) but not inD(2)

� If this assumption does not hold (i.e., the bug is not in D(1)), then we need to inspect 
additional code in the failed execution slice but not in D(1)

– then starting with code in A(1) but not inD(1), followed by A(2) but not in A(1), …

� Prioritize code in a failed execution slice based on its likelihood of containing the 
bug. The prioritization is done by first using the refining methodand then
the augmentation method.
– Examining code inD(3), D(2) but not inD(3), D(1) but not inD(2), A(1) but not in

D(1) , A(2) but not inA(1), A(3) but not inA(2) , … etc.

� In the worst case, we have to examine all the code in the failed execution slice.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 37

An Incremental ApproachAn Incremental ApproachAn Incremental ApproachAn Incremental Approach

37



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 38

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 38

OutlineOutlineOutlineOutline

38



Suspiciousness Ranking-based 

Fault Localization



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 40Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 40

OverviewOverviewOverviewOverview

� Compute the suspiciousness (likelihood of containing bug) of each 
statement

� Rank all the executable statements in descending order of their 
suspiciousness

� Examine the statements one-by-one from the top of the ranking until the 
first faulty statement is located

� Statements with higher suspiciousness should be examined before 
statements with lower suspiciousness as the former are more likely to 
contain bugs than the latter

40



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 41

� Code coverage-based and calibration

� Crosstab: statistical analysis-based

� BP (Back Propagation) & RBF (Radial Basis Function) neural network

� Similarity coefficient-based

� Tarantula: heuristic-based

� SOBER: statistical analysis-based

� Liblit: statistical analysis-based

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 41

Techniques for Computing SuspiciousnessTechniques for Computing SuspiciousnessTechniques for Computing SuspiciousnessTechniques for Computing Suspiciousness

41

Take advantage of code coverage (namely, execution slice)
and execution result of each test (success or failure) for debugging.



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 42

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 42

OutlineOutlineOutlineOutline

42



Spectra-based Fault Localization



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 44Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 44

SpectraSpectraSpectraSpectra----Based Fault Localization TechniquesBased Fault Localization TechniquesBased Fault Localization TechniquesBased Fault Localization Techniques

� Possible Program Spectra

Name Description

BHS Branch Hit Spectra conditional branches that are executed

BCS Branch Count Spectra number of times each conditional branch is executed

CPS Complete Path Spectra complete path that is executed

PHS Path Hit Spectra loop-free path that is executed

PCS Path Count Spectra number of times each loop-free path is executed

DHS Data-Dependence Hit Spectra definition-use pairs that are executed

DCS Data-Dependence Count Spectra number of times each definition-use pair is executed

OPS Output Spectra output that is produced

ETS Execution Trace Spectra execution trace that is produced

DVS Data Value Spectra the values of variables in the execution

ESHS Executable Statement Hit Spectra executable statements that are executed



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 45Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 45

A Sample Program for Program SpectraA Sample Program for Program SpectraA Sample Program for Program SpectraA Sample Program for Program Spectra

1 double power (double x, int n)
2 {
3 int i;
4 int rv = 1;
5 for (i=0; i<abs(n); i++)
6 {
7 rv = rv× x;
8 }
9 if (n<0) 
10 {
11 if (x!=0)
12 rv = 1/rv;
13 else
14 {
15 printf ("Error input.\n");
16 return 0;
17 }
18 }
19 return rv;
20 }

� Given an integer n and a real number x, the program calculates xn

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 46Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 46

Branch Hit SpectraBranch Hit SpectraBranch Hit SpectraBranch Hit Spectra

� BHS records the conditional branchesthat are covered by the test execution

� Suppose there are mconditional branches: b1, b2, …, bm

� The spectrum with respect to bi (i = 1, 2, …, m) indicates whether bi is covered by 
the test execution

� There are 6 branches in the sample program:(5,7), (5,9), (9,19), (9,11), (11,12), 
and (11,15)

� When test case (x = 2, n = 3) is executed, 

the branch hit spectrum is ( Y, Y,  Y, N, N,  N).

(5,7) is covered

(5,9) is covered

(9,19) is covered

(9,11) is not covered

(11,15) is not covered

(11,12) is not covered

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 47

Branch Count SpectraBranch Count SpectraBranch Count SpectraBranch Count Spectra

� BCS records the number of times that each conditional branch is executed

� Suppose there are mconditional branches: b1, b2, …, bm. The spectrum with 
respect to bi (i = 1, 2, …, m), denoted by si, indicates that bi is executed si times 
by the test execution

� When test case (2,3) is executed, the branch count spectrumis (3, 1, 1, 0, 0, 0)

(5,7) is executed 3 times
(9,19) is executed one time

(11,15) is not executed

Return

� BCS records the number of times that each conditional branch is executed

� Suppose there are mconditional branches: b1, b2, …, bm. The spectrum with 
respect to bi (i = 1, 2, …, m), denoted by si, indicates that bi is executed si times 
by the test execution

� When test case (2,3) is executed, the branch count spectrumis (3, 1, 1, 0, 0, 0)

(5,7) is executed 3 times
(9,19) is executed one time

(11,15) is not executed



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 48Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 48

Complete Path SpectraComplete Path SpectraComplete Path SpectraComplete Path Spectra

� CPS records the complete pathsthat are traversed by the test execution

� When test case (2,3) is executed, the CPS is (3,4,(5,7)3,9,19)

Statement 5 and 7 are executed 3 times

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 49Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 49

Path Hit SpectraPath Hit SpectraPath Hit SpectraPath Hit Spectra

� PHS records the intra-procedural, loop-free paths that are covered by the test 
execution

� The sample program has six possible paths
– 3,4,5,9,19

– 3,4,5,7,9,19

– 3,4,5,9,11,12,19

– 3,4,5,7, 9,11,12,19

– 3,4,5,9,11,15,16

– 3,4,5,7,9,11,15,16

� With respect to  the execution of test case (2,3), the path hit spectrumcan be 
represented by

– (Y,N,N,N,N,N)

(3,4,5,9,19) is covered (3,4,5,7,9,11,15,16) is not covered

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 50Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 50

Path Count SpectraPath Count SpectraPath Count SpectraPath Count Spectra

� PCS records the number of times that each intra-procedural, loop-free path is 
covered by the test execution

� The sample program has six possible loop-free paths
– 3,4,5,9,19
– 3,4,5,7,9,19
– 3,4,5,9,11,12,19
– 3,4,5,7, 9,11,12,19
– 3,4,5,9,11,15,16
– 3,4,5,7,9,11,15,16

� When test case (2,3) is executed, the path count spectrumcan be represented by
– (1,0,0,0,0,0)
– When the function is executed more than one time, the elements in PCS may be larger 

than 1

(3,4,5,9,19) is executed 
one time

(3,4,5,7,9,11,15,16) 
is not executed

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 51Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 51

DataDataDataData----Dependence Hit SpectraDependence Hit SpectraDependence Hit SpectraDependence Hit Spectra

� DHS records the definition-use pairsthat are covered by the execution

� With respect to the sample program, let’s focus on the following definition-use 
pairs

– (rv, 4, 7)

– (rv, 4, 19)

– (rv, 7, 7)

– (rv, 7, 12)

– (rv, 7, 19)

– (rv, 12, 19)

� When test case (2,3) is executed, the spectrum can be represented by
– (Y,N,Y,N,Y,N) which implies (rv,4,7), (rv,7, 7) and (rv,7,19) are covered by this 

execution

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 52Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 52

DataDataDataData----Dependence Count SpectraDependence Count SpectraDependence Count SpectraDependence Count Spectra

� DCS records the number of times that each definition-use pairis executed

� With respect to the sample program, let’s focus on the following definition-use 
pairs

– (rv, 4, 7)
– (rv, 4, 19)
– (rv, 7, 7)
– (rv, 7, 12)
– (rv, 7, 19)
– (rv, 12, 19)

� When test case (2,3) is executed, the data-dependence count spectrumcan be 
represented by (1,0,2,0,1,0)

(rv, 7, 7) is executed 2 times

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 53Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 53

Output SpectraOutput SpectraOutput SpectraOutput Spectra

� OPS records the outputs producedby the test executions

� With respect to the sample program, when test case (2,3) is executed, the output 
spectrumcan be represented by a value 8, which is the output of the function

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 54Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 54

Execution Trace SpectraExecution Trace SpectraExecution Trace SpectraExecution Trace Spectra

� ETS records the sequence of each program statementtraversed by the test 
execution

� With respect to the sample program, when case (2,3) is executed, the execution 
trace spectrum can be represented by
(int i, double rv = 1, (for(i=0;i<abs(n);i++), rv = rv* x )3, if(n<0),return rv)

� Difference between ETS and CPS (Complete Path Spectrum):

– ETS records the actual instructions, whereas CPS does not

These statements are executed 3 times

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 55Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 55

Data Value SpectraData Value SpectraData Value SpectraData Value Spectra

� DVS records the values of variables

� With respect to the sample program, we focus on the value of variable rv
– When test case (2,3) is executed, the sequence of the values of rv is (1,2,4,8) which is 

one of the DVS representations

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 56Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 56

Executable Statement Hit SpectraExecutable Statement Hit SpectraExecutable Statement Hit SpectraExecutable Statement Hit Spectra

Next

� ESHS records the executable statements that are 
coveredby the test execution.

– excluding comments, blank lines, (some) variable 
declarations, function declarations, etc.

� Suppose there are mexecutable statements: s1, s2, 
…, sm

� The spectrum with respect to si (i = 1, 2, …, m), 
indicates whether si is covered by the test execution.

� There are 9 executable statements at lines 4, 5, 7, 9, 
11, 12, 15,16 and 19 

� When test case (2,3) is executed, the executable 
statement hit spectrumis
(Y, Y, Y, Y, N, N, N, N, Y). 

Statement 4 is executed Statement 11 is not executed

3

19 1612

15119

7

5

4

Start

End

Return



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 57

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 57

OutlineOutlineOutlineOutline

57



Code Coverage-based Fault Localization

& 

Calibration

W. E. Wong, V. Debroy and B. Choi,“ A Family of Code Coverage-based 
Heuristics for Effective Fault Localization,”Journal of Systems and Software, 
Volume 83, Issue 2, pp. 188-208, February 2010 
(Best Paper Award; COMPSAC 2007)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 59

� Suppose for a large test suite, say 1000 test cases, a majority of them, say 
995, are successful test cases and only a small number of failed test cases 
(five in this example) will cause an execution failure.

� The challenge is how to use these five failed tests and the 995 successful 
tests to conduct an effective debugging.

� How can each additional test casethat executes the program successfully 
help locate program bugs?

� What about each additional test case that makes the program execution 
fail? 

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 59

Code CoverageCode CoverageCode CoverageCode Coverage----based & Calibration based & Calibration based & Calibration based & Calibration (1)

59



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 60Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 60

Code CoverageCode CoverageCode CoverageCode Coverage----based & Calibration based & Calibration based & Calibration based & Calibration (2)
� Should all the successful test executions provide the same contribution to 

locate software bugs?

� Intuitively, the answer should be “no”

� If a piece of code has already been executed successfully 994 times, then 
the contribution of the 995th successful execution is likely to be less than, 
for example, the contribution of the second successful execution when the 
code is only executed successfully once

� We propose that with respect to a piece of code, the contribution 
introduced by the first successfultest that executes it in computing its 
likelihood of containing a bug is larger than or equal tothat of the second
successful test that executes it, which is larger than or equal tothat of the 
third successful test that executes it, etc. 

� The same also applies to the failed tests. 

60



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 61

� and  

� If the statement S is executed by at least one failed test, then the total contribution from all 
the successful tests that execute S should be less than the total contribution from all the 

failed tests that execute S (namely, )

� All the tests in the same failed group have the same contribution towards fault localization, 
but tests from different groups have different contributions 

S F

S, F,
1 1

i k
i k

c c
= =

<∑ ∑
N N

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 61

Code CoverageCode CoverageCode CoverageCode Coverage----based & Calibration based & Calibration based & Calibration based & Calibration (3)

61

SS,1 S,2 S,3 S, ... c c c c≥ ≥ ≥ ≥ N FF,1 F,2 F,3 F, ... c c c c≥ ≥ ≥ ≥ N



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 62Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 62

Code CoverageCode CoverageCode CoverageCode Coverage----based & Calibration based & Calibration based & Calibration based & Calibration (4)
� For illustrative purposes, we set GF = GS = 3, nF,1 = nS,1= 2, and nF,2 = nS,2 = 4 

– The first failed (or successful) group has at most two tests, the second group has at most 
four from the remaining, and the third has everything else, if any. 

� We also assume each test case in the first, second, and third failed groups gives a 
contribution of 1, 0.1 and 0.01, respectively (wF,1= 1, wF,2= 0.1, 
and wF,3= 0.01).

� Similarly, we set wS,1= 1, wS,2= 0.1, and wS,3to be a small value defined as α ×
χF/S where α is a scaling factor.

62



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 63

Code CoverageCode CoverageCode CoverageCode Coverage----based & Calibration (5)based & Calibration (5)based & Calibration (5)based & Calibration (5)

More Details

Next



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 64Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 64

Code CoverageCode CoverageCode CoverageCode Coverage----based & Calibration based & Calibration based & Calibration based & Calibration (6)
� Two fundamental principles

– and

–

64

SS,1 S,2 S,3 S, ... c c c c≥ ≥ ≥ ≥ N FF,1 F,2 F,3 F, ... c c c c≥ ≥ ≥ ≥ N

S F

S, F,
1 1

i k
i k

c c
= =

<∑ ∑
N N



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 65

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 65

OutlineOutlineOutlineOutline

65



Crosstab-based Fault Localization

W. Eric Wong, Vidroha Debroy and Dianxiang Xu, “Towards Better 
Fault Localization: A Crosstab-based Statistical Approach,”
IEEE Transactions on Systems, Man, and Cybernetics –Part C: 
Applications & Reviews
(Accepted in December 2010 for publication) 
(http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05772029)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 67Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 67

CrosstabCrosstabCrosstabCrosstab

� The crosstab (cross-classification table) analysis is used to study 

the relationship between two or more categorical variables.

� A crosstab is constructed for each statement as follows

67



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 68Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 68

Dependency Relationship Dependency Relationship Dependency Relationship Dependency Relationship (1)
� For each crosstab, we conduct a hypothesis testto check the dependency 

relationship. The null hypothesis is

� A chi-square testcan be used to determine whether this hypothesis should 
be rejected. The Chi-square statisticis given by

(1)      

where                                                      and

� Under the null hypothesis, the statistic χ2(ω) has approximately a 
Chi-square distribution.

68

H0:  Program execution result is independent of the
coverage of statement ω

2 2 2 2
2 CF CF CS CS UF UF US US

CF CS UF US

( (ω) (ω)) ( (ω) (ω)) ( (ω) (ω)) ( (ω) (ω))
(ω)

(ω) (ω) (ω) (ω)

N E N E N E N E

E E E E
χ − − − −= + + +

C F
CF

(ω)
(ω) ,

N N
E

N

×= C S
CS

(ω)
(ω) ,

N N
E

N

×= U F
UF

(ω)
(ω) ,

N N
E

N

×=U S
US

(ω)
(ω) .

N N
E

N

×=



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 69Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 69

Dependency Relationship Dependency Relationship Dependency Relationship Dependency Relationship (2)
� Given a level of significance σ (for example, 0.05), we can find the 

corresponding Chi-square critical value from the 
Chi-square distribution table.

– If χ2(ω) >       we rejectthe null hypothesis, i.e., the execution result is 
dependenton the coverage of ω. 

– Otherwise, weacceptthe null hypothesis, i.e., the execution result and the 
coverage of ω are “independent.”

69

2 ,σχ

2 ,σχ



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 70Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 70

Degree of Association Degree of Association Degree of Association Degree of Association (1)
� The “dependency” relationship indicates a high associationamong the 

variables, whereas the “independency” relationship implies a low 
association. 

� Instead of the so-called “dependency”/ “independency” relationship, we 
are more interested in the degree of associationbetween the execution 
result and the coverage of each statement. 

� This degree can be measured based on the standard Chi-square statistic. 
However, such a measure increases with increasing sample size. As a 
result, the measure by itself may not give the “true” degree of association.

� One way to fix this problem is to use the contingency coefficient
computed as follows

(2)

where row and col are the number of categorical variables in all rows and 
columns, respectively, of the crosstab  

70

2(ω)
(ω)

( 1)( 1)

N

row col

χ=
− −

M



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 71

� The contingency coefficient M(ω) lies between 0 and 1.
– When χ2(ω) = 0, it has the lower limit 0 for complete independence. 

– In the case of complete association, the coefficient can reach the upper limit 1
when row = col

� In our case, row = col = 2 and N is fixed. From Equation (2), M(ω) 
increases with increasing χ2(ω). 

� Under this condition, the Chi-square statisticχ2(ω) for statement ω gives 
a good indication of the degree of the association between the execution 
result and the coverage of ω.

– N is fixed because every faulty version is executed with respect to all the test cases 

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 71

Degree of Association Degree of Association Degree of Association Degree of Association (2)

71



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 72Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 72

What kind of Execution Result is More Associated What kind of Execution Result is More Associated What kind of Execution Result is More Associated What kind of Execution Result is More Associated (1)

� Need to decide whether it is the failed or the successful execution result
that is more associated with the coverage of the statement. 

� For each statement ω, we compute PF(ω) and PS(ω) as          and      
which are the percentages of all failed and successful tests that execute ω. 

� If PF(ω) is larger than PS(ω), then the association between the failed 
execution and the coverage of ω is higher than that between the 
successful execution and the coverage of ω. 

72

CF

F

(ω)N

N
CS

S

(ω)N

N



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 73Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 73

What kind of Execution Result is More Associated What kind of Execution Result is More Associated What kind of Execution Result is More Associated What kind of Execution Result is More Associated (2)

� We defineϕ(ω) as

(3)

� If ϕ(ω) = 1, we haveχ2(ω) = 0, which implies the execution result is 
completely independentof the coverage of ω. In this case, we say the 
coverage of ω makes the same contributionto both the failed and the 
successful execution result. 

� If ϕ(ω) > 1, the coverage of ω is more associated with the failed
execution. 

� If ϕ(ω) < 1, the coverage of ω is more associated with the successful
execution.

73

CF

F

CS

S

      (ω )
F

(ω )
S

   (ω)
(ω)

(ω)

N
N

N
N

ϕ = =P

P



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 74Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 74

Five Classes of StatementsFive Classes of StatementsFive Classes of StatementsFive Classes of Statements

� Depending on the values of χ2(ω) and ϕ(ω), statements of the program 
being debugged can be classified into five classes:
– Statements with ϕ > 1 and χ2 >         have a high degree of association

between their coverage and the failedexecution result

– Statements with ϕ > 1 and χ2
≤ have a low degree of association

between their coverage and the failedexecution result

– Statements with ϕ < 1 and χ2 >         have a high degree of association
between their coverage and the successfulexecution result

– Statements with ϕ < 1 and χ2
≤ have a low degree of association

between their coverage and the successful execution result

– Statements with ϕ = 1 (under this situation 0 = χ2 <       ) whose coverage is 
independentof the execution result

74

2 ,σχ

2 ,σχ

2 ,σχ

2 ,σχ

2 ,σχ

Statements in the first class are most likely (i.e., have the highest suspiciousness) to contain 
program bugs followed by those in the second, the fifth, and the fourth classes, respectively. 
Statements in the third class are least likely (i.e., have the least suspiciousness) to contain bugs.



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 75

� The largerthe coefficient M(ω), the higherthe association between the 
execution result and the coverage of ω.
– For statements in the first and the secondclasses, those with a larger M are 

more suspicious. 
– For statements in the third and the fourthclasses, those with a smaller M are 

more suspicious.

� The suspiciousness of a statement ω can be defined by a statistic ζ as

(4)

� Each ζ lies between -1 and 1. The larger the ζ value, the more suspicious 
the statement ω. 

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 75

Suspiciousness of Each StatementSuspiciousness of Each StatementSuspiciousness of Each StatementSuspiciousness of Each Statement

75

(ω)     if (ω) 1

(ω)  0             if (ω) 1

(ω)     if (ω) < 1

ϕ
ζ ϕ

ϕ

>
= =
−

M

M



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 76Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 76

Crosstab Example Crosstab Example Crosstab Example Crosstab Example (1)
� The following table gives the statement coverageand execution results. 

Of the 36 test cases, there are nine failed tests (e.g., t1) and 27 successful 
tests (e.g., t2)

– An entry 1 implies the statement iscoveredby the corresponding test and an entry 0 
means it is not. 

– An entry 1 implies a failedexecution and an entry 0 means a successful execution.

76



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 77Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 77

� We can construct the crosstab for s1 as shown in the following

� We have

� From Equation (1)

= 5.2800

Crosstab Example Crosstab Example Crosstab Example Crosstab Example (2)

77

C 1 F
CF 1

( ) 25 9
( ) 6.25,

36

N s N
E s

N

× ×= = =

C 1 S
CS 1

( ) 25 27
( ) 18.75,

36

N s N
E s

N

× ×= = =

U 1 F
UF 1

( ) 11 9
( ) 2.75,

36

N s N
E s

N

× ×= = =

U 1 S
US 1

( ) 11 27
( ) 8.25.

36

N s N
E s

N

× ×= = =

2 2 2 2
2 CF 1 CF 1 CS 1 CS 1 UF 1 UF 1 US 1 US 1

1
CF 1 CS 1 UF 1 US 1

( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
( )

( ) ( ) ( ) ( )

N s E s N s E s N s E s N s E s
s

E s E s E s E s
χ − − − −= + + +

2 2 2 2(9 6.25) (16 18.75) (0 2.75) (11 8.25)

6.25 18.75 2.75 8.25

− − − −= + + +



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 78

� If we choose the level of significance as 0.05, the Chi-square critical value is 
3.841. Sinceχ2(s1) = 5.2800 is largerthan 3.841, the null hypothesis for s1 should 
be rejected. 

� Similarly, we can compute χ2 for other statements. For example, we have χ2(s2) = 
4.4954, χ2(s3) = 0.1481, and χ2(s4) = 1.3333.

� Next, we use Equation (2)to compute the contingency coefficientM for each 
statement. We have M(s1)= 0.1467,M(s2)= 0.1249,M(s3)= 0.0041, and M(s4)= 
0.0370. 

� Compute ϕ and ζ using Equations (3) and (4).

� Based on the suspiciousness, 
statement s8 should be examined first 
for locating program bugs followed by 
s1, s5, s10, s9, s6, s3, s7, s4, and s2.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 78

Crosstab Example Crosstab Example Crosstab Example Crosstab Example (3)

78

Jump to Slide 164Level of Significance



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 79

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 79

OutlineOutlineOutlineOutline

79



RBF Neural Network-based

Fault Localization

• W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaofeng Xu
and Bhavani Thuraisingham, “Effective Software Fault Localization using 
an RBF Neural Network,”IEEE Transactions on Reliability
(Accepted in May 2011 for publication)
(http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6058639)

• W. Eric Wong and Yu Qi, “BP Neural Network-based Effective 
Fault Localization,”International Journal of Software Engineering 
and Knowledge Engineering, 19(4): 573-597, June 2009



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 81

� A typical RBF neural network has a three-layer feed-forward structure

– Input layer: Serve as an input distributor to the hidden layer by passing inputs 
to the hidden layer without changing their values. 

– Hidden layer: All neurons in this layer simultaneously receive the 
n-dimensional real-valued input vector x. 

� Each neuron uses a Radial Basis Function (RBF)as the activation function

� An RBF is a strictly positive radically symmetric function, where the center µ has 
the unique maximum and the value drops off rapidly to zero away from the center

� When the distance between x and µ (denoted as ||x–µ||) is smaller than the receptive 
field width σ, the function has an appreciable value.

� A commonly used RBF is the Gaussian basis function

where µj and σj are the mean(namely, the center) and the standard deviation
(namely, the width) of the receptive field of the jth hidden layer neuron, and Rj(x) is 
the corresponding activation function. 

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 81

RBF Neural Network  RBF Neural Network  RBF Neural Network  RBF Neural Network  (1)

2

2

|| ||
( ) exp

2
j

j
j

R
σ

 −
 = −
 
 

x µ
x



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 82

– Usually the distance ||x–µµµµ|| is the Euclidean distancebetween x and µµµµ (||x–µµµµ||E) 

– However, (||x–µµµµ||E) is inappropriatein the fault localization context 

– We use a weighted bit-comparison based distance(||x–µµµµ||WBC)

Let x be      (the coverage vector of i th test case ti)

where          and          are the kth element of                    respectively. 

This distance is more desirable because it effectively takes into account the 
number of bits that are both 1 in two coverage vectors (i.e., those statements 
covered by both vectors). 

WBC ,|| || 1 cos
i t ji
t j θ− = − c µc µ

1
,

E E 2 2

1 1

( ) ( )

where  cos ,
|| || || ||

[( ) ] [( ) ]

i

i

t ji

i

i

m

t k j k
t j k

m m
t j

t k j k
k k

θ =

= =

•
= =

×

∑

∑ ∑
c µ

c µ
c µ

c µ
c µ

( )c
it k

( )µ j k  and ,
it jc µ

it
c

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 82

RBF Neural Network  RBF Neural Network  RBF Neural Network  RBF Neural Network  (2)

82



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 83Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 83

RBF Neural Network  RBF Neural Network  RBF Neural Network  RBF Neural Network  (3)

83

– Output layer: y = [y1, y2, …, yk] with yi as the output of the i th neuron given by 

for i = 1, 2 ,…, k

where h is the number of neurons in the hidden layer and wji is the weight
associated with the link connecting the j th hidden layer neuron and the i th

output layer neuron.

1

( )
h

i ji j
j

y w R
=

=∑ x



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 84Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 84

RBF Neural Network  RBF Neural Network  RBF Neural Network  RBF Neural Network  (4)

84

Input Layer

Hidden Layer

Output Layer

w11 whkOutput Layer Weights:
w11, w12, …, whk

Reception Field 
Centers and Widths:

µµµµ1, µµµµ2, …, µµµµh,

σ1, σ2, …, σh

x1 x2 xmxm-1

y1
Output y = (y1, …, yk)

Input x = (x1, x2, …, xm)

µµµµ1 σ1 µµµµ2 σ2 µµµµh σhµµµµh-1σh-1

yk

w1k wh1

� An RBF network implements a mapping from the mdimensional real-valued input spaceto 
the k dimensional real-valued output space. In between, there is a layer of hidden-layer space. 

� The transformation from the input space to the hidden-layer space is nonlinear, whereas the 
transformation from the hidden-layer space to the output space is linear. 

� The parameters that need to be trained are the centers(i.e., m1,m2,…, mh) and widths(i.e., s1, 
s2, …, sh) of the receptive fields of hidden layer neurons, and the output layer weights.



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 85Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 85

RBF Neural Network  RBF Neural Network  RBF Neural Network  RBF Neural Network  (5)
� We construct an RBF neural network with 

– m input layer neurons(each of which corresponds to one element in a given 
coverage vector of a test case)

– one output layer neuron(corresponding tothe execution result of test ti)

– one hidden layer between the input and output layers 

85



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 86Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 86

RBF Neural Network  RBF Neural Network  RBF Neural Network  RBF Neural Network  (6)
� Once an RBF network is trained, it provides a good mappingbetween the 

input (the coverage vector of a test case) and the output 
(the corresponding execution result). 

� It can then be used to identify suspicious codeof a given program in 
terms of its likelihood of containing bugs. 

� To do so, we use a set of virtual test casesv1, v2, …, vm whose coverage 
vectors are where

Note that execution of test vj covers only one statement sj

86

1

2

1 0 0

0 1 0

0 0 1
m

v

v

v

   
   
   =   
   
    

c

c

c

L

L

M M O MM

L



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 87

� If the execution of vj fails, the probability that the bugs are contained in sj is high.

� This suggests that during the fault localization, we should first examine the 
statements whose corresponding virtual test case fails. 

� However, the execution results of these virtual tests can rarely be collected in the 
real world because it is very difficult, if not impossible, to construct such tests.

� When the coverage vector      of a virtual test case vj is input to the trained neural 
network, its output      is the conditional expectationof whether the execution of vj
fails given 

� This implies the larger the value of      the more likely that the execution of vj
fails. 

� Together, we have the larger the value of     the more likely it is that sj contains  
the bug. 

� We can treat     as the suspiciousness of sj in terms of its likelihood of containing 
the bug.  

RBF Neural Network  RBF Neural Network  RBF Neural Network  RBF Neural Network  (7)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 87

RBF Neural Network  RBF Neural Network  RBF Neural Network  RBF Neural Network  (7)

87

ˆ
jvr

ˆ
jvr

jvc
ˆ

jvr

ˆ
jvr

.
jvc



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 88Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 88

Summary of RBFSummary of RBFSummary of RBFSummary of RBF----based Fault Localization based Fault Localization based Fault Localization based Fault Localization (1)

88



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 89Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 89

Summary of RBFSummary of RBFSummary of RBFSummary of RBF----based Fault Localization based Fault Localization based Fault Localization based Fault Localization (2)

89



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 90

� Introduce a method for representing test cases, statement coverage, 
execution results within a modified RBF neural network formalism
– Training with example test cases and execution results

– Testing with virtual test cases

� Develop a novel algorithm to simultaneously estimate the number of 
hidden neurons and their receptive field centers

� Instead of using the traditional Euclidean distancewhich has been 
proved to be inappropriate in the fault localization context, 
a weighted bit-comparison based distanceis defined to measure the 
distance between the statement coverage vectors of two test cases. 
– Estimate the number of hidden neurons and their receptive field centers

– Compute the output of each hidden neuron

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 90

Three Novel AspectsThree Novel AspectsThree Novel AspectsThree Novel Aspects

90



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 91Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 91

RBF Example RBF Example RBF Example RBF Example (1)
� Suppose we have a program with tenstatements. Seventest cases have 

been executed on the program. Table 1 gives the coverage vector and the 
execution result of each test. 

91

s1 is executed byt1 s6 is not executed byt2

t1 is a successful test

t6 is a failed test



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 92Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 92

RBF Example RBF Example RBF Example RBF Example (2)
� An RBF neural network is constructed and trained

– 10 neurons in theinput layer

– 7 neurons in the hiddenlayer 

– The field width σ is 0.395

– 1 neuron in the outputlayer

– The output layer weights are w = [w1, w2, w3, w4, w5, w6, w7]
T

=[-1.326, -0.665, 0.391, -0.378, -0.308, 1.531, 1.381]T

92



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 93Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 93

RBF Example RBF Example RBF Example RBF Example (3)
� Use the coverage vectors of the virtual test casesas the inputs to the 

trained network. 

� The output with respect to each statement is the suspiciousness of the 
corresponding statement.

93

Highest/
Most suspicious
Lowest/
Least suspicious



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 94Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 94

BP versus RBFBP versus RBFBP versus RBFBP versus RBF

� Although BP (back propagation) networks are the widely used networks 
for supervised learning, RBF networks (whose output layer weights are 
trained in a supervisedway) are even better in our case because 

RBF can learn much fasterthan BP networks and do not suffer from 
pathologies like local minima as BP networks do.

94



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 95

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 95

OutlineOutlineOutlineOutline

95



DStar − A Similarity Coefficient-based 

Fault Localization



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 97Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 97

The Construction of D* The Construction of D* The Construction of D* The Construction of D* (1)
� The suspiciousness assigned to a statement should be

� Intuition 1: directly proportional to the number of failed test cases that 
cover it                                              suspiciousness(s) α NCF

� Intuition 2: inversely proportional to the number of successful test cases 
that cover it                                     suspiciousness(s) α 1/NCS

� Intuition 3: inversely proportional to the number of failed test cases that
do not cover it                         suspiciousness(s) α 1/NUF

� Conveniently enough such a coefficient already exists

Kulczynski[Kulczynski, 1928]:   NCF /(NCS+NUF)

97



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 98Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 98

The Construction of D* (with * = 2) The Construction of D* (with * = 2) The Construction of D* (with * = 2) The Construction of D* (with * = 2) (2)

98

� However, we also have a fourth intuition …

� Intuition 4: Intuition 1 is the most sound of the other intuitions and should 
therefore carry a higher weight.

� Kulczynskidoes not lead to the realization of the fourth intuition. 

� Under the circumstances we might try to do something like this:

�But this is not going to help us (as we shall later see)

�So instead we make use of a different coefficient (D*)

( ) CF CF

UF CS

N N
suspiciousness s

N N

×=
+

2
( ) CF

UF CS

N
suspiciousness s

N N

×=
+

100
( ) CF

UF CS

N
suspiciousness s

N N

×=
+

or maybe even

Back to Slide 118



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 99

D* Example : with * = 2 D* Example : with * = 2 D* Example : with * = 2 D* Example : with * = 2 (1)
� Suppose we are writing a program that computes the sum or average of 

two numbers.
– But with respect to the sum computation (statement 5), instead of adding the 

two numbers, we accidentally subtract them

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 99

Program( P )

read (a);

read (b);

read (choice);

if (choice == “sum”)

result = a - b;   //Correct: a + b;

else if (choice == “average”)

result = (a + b) / 2;

print (result);

Stmt. #. t1

1

2

3

4

5

6

7

8

t2 t3

Coverage

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

t5

•

•

•

•

•

•

•

Execution Result (0 = Successful / 1 = Failed) 1 1 0 0

•

•

•

•

•

•

0

t4

•

•

•

•

•

•

•

0

t6



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 100Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 100

D* Example: with * = 2 D* Example: with * = 2 D* Example: with * = 2 D* Example: with * = 2 (2)

100

Most suspicious

Statement ranking: 5, 1, 2, 3, 4, 8, 6, 7

Tied together Tied together

� Next we collect the statistics we need for D* (NCF, NUF and NCS)

Stmt. # NCF NUF NCS
Suspiciousness based on D*

NCF ×NCF / (NUF+NCS)

1 2 0 4 1

2 2 0 4 1

3 2 0 4 1

4 2 0 4 1

5 2 0 1 4

6 0 2 3 0

7 0 2 3 0

8 2 0 4 1



Other Fault Localization Techniques



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 102

Tarantula, Tarantula, Tarantula, Tarantula, OchiaiOchiaiOchiaiOchiai, SOBER, & Liblit05, SOBER, & Liblit05, SOBER, & Liblit05, SOBER, & Liblit05

� Tarantula

– passed(e)is the number of passed test cases that execute statement eone or more times

– failed(e)is the number of failed test cases that execute statement e one or more times

– totalpassedis the total number of test cases that pass in the test suite

– totalfailed is the total number of test cases that fail in the test suite

� Ochiai

� SOBER

� Liblit05

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 102

failed( e )

totalfailed
suspiciousness( e )

passed( e ) failed( e )

totalpassed totalfailed

=
+

( )
CF

F CF CS

N

N N N× +



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 103

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 103

OutlineOutlineOutlineOutline

103



Empirical Evaluation



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 105

Is a Technique Good at Locating Faults Is a Technique Good at Locating Faults Is a Technique Good at Locating Faults Is a Technique Good at Locating Faults ?
� “Good” is more of a relative term. We can show a fault localization 

technique is good by showing that it is more effective than other 
competing techniques

� We do this via rigorous case studies
– Using a comprehensive set of subject programs

– Comparing the effectiveness between different fault localization techniques

– Evaluating across multiple criteria

� Since it is not possible to theoretically prove that one fault localization 
technique is always more effective than another, such empirical 
evaluation is typically the norm
– We will return to this issue later on

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 105

Jump to Slide 123



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 106

Subject ProgramsSubject ProgramsSubject ProgramsSubject Programs

� Four sets of subject programs – the Siemenssuite, the Unix suite, gzipand 
Ant– were used (19 different programs in all – C & Java)
– Two additional programs (grepand make) are also used which makes a total of 

21 programs

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 106

Program Lines of Code Number of faulty versions used† Number of test cases

print_tokens 565 5 4130
print_tokens2 510 10 4115
schedule 412 9 2650
schedule2 307 9 2710
replace 563 32 5542
tcas 173 41 1608
tot_info 406 23 1052
cal 202 20 162
checkeq 102 20 166
col 308 30 156
comm 167 12 186
crypt 134 14 156
look 170 14 193
sort 913 21 997
spline 338 13 700
tr 137 11 870
uniq 143 17 431

gzip 6573 28 211

Ant 75333 23 871

† Some versions 
were created using
mutation-based 
fault injection



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 107

Techniques D* is Compared toTechniques D* is Compared toTechniques D* is Compared toTechniques D* is Compared to

� First compared D* to the Kulcyznskicoefficient

� Also compared it with 11 other well-known coefficients forming a 
baker’s dozen [Choi et al. 2010, Willett 2003]
(1) Simple-Matching (7) Gower
(2) BraunBanquet (8) Michael
(3) Dennis (9) Pierce
(4) Mountford (10) Baroni-Urbani/Buser
(5) Fossum (11) Tarwid
(6) Pearson(χ2)

� Further comparisons with other techniques were also performed
– To be discussed later

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 107



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 108

� Number of statements examined
– The number of statements that need to be examined by D* to locate faults 

versus other techniques

– An absolute measure

� The EXAM score: the percentage of code examined
– The percentage of code that needs to be examined by using D* to locate faults 

versus other techniques

– A relative (graphical) measure

� The Wilcoxon Signed-Rank Test
– Evaluate the alternative hypothesis that other techniques will require the 

examination of more statements than D*
� D* is more effective than other techniques

� Null hypothesis being that the other techniques require the examination of a number 
of statements that is less than or equal tothat required by D*

– A statistical measure

Three Evaluation Metrics/CriteriaThree Evaluation Metrics/CriteriaThree Evaluation Metrics/CriteriaThree Evaluation Metrics/Criteria



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 109

Ties in the Ranking: Best/WorstTies in the Ranking: Best/WorstTies in the Ranking: Best/WorstTies in the Ranking: Best/Worst

� The suspiciousness assigned to a statement by D* (and other techniques) 
may not be unique, i.e., two or more statements can be tied for the same 
position in the ranking.

From our 

example:

� Assuming a faulty statement and some correct statements are tied
– In the bestcase we examine the faulty statement first

– In the worstcase we examine it last

� For each of the previously discussed evaluation criteria, we will have the 
best caseand the worst caseeffectiveness.
– Presenting only the averagewould have resulted in a loss of information

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 109

Statement ranking: 5, 1, 2, 3, 4, 8, 6, 7

Tied together Tied together



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 110

� D* is very consistent in its performance

� Often the worst case of D* is better than the best case of the other 
techniques (Note that * = 2)

Results Results Results Results –––– Total Number of Statements ExaminedTotal Number of Statements ExaminedTotal Number of Statements ExaminedTotal Number of Statements Examined

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 110

Fault Localization
Technique

Best Case Worst Case

Siemens Unix gzip Ant Siemens Unix gzip Ant

D* 1754 1805 1220 672 2650 5226 3087 1184

Kulcynzki 2327 2358 1272 1557 3186 5779 3139 2069

Simple-Matching 6335 5545 9087 250414 7187 8977 10968 253631

BraunBanquet 2438 2767 1358 2196 3296 6187 3135 2698

Dennis 2206 2934 1960 1974 3074 6504 3737 2476

Mountford 1974 2183 1317 3298 2832 5644 3111 3818

Fossum 2230 2468 4547 150415 3126 5843 8701 150917

Pearson 3279 3581 1450 1188 4247 7221 3227 1690

Gower 6586 8630 26215 967307 7434 12027 27992 967809

Michael 1993 3713 2504 4502 2864 7283 4281 5004

Pierce 8072 11782 24065 322033 15299 23387 46753 1018725

Baroni-Urbani/Buser 3547 3189 1428 4693 4404 6605 3205 5195

Tarwid 2453 3399 3110 5964 3321 7883 5032 9935

D* is clearly 
the most 
effective

Jump to Slide 119



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 111

Results Results Results Results –––– EXAM Score EXAM Score EXAM Score EXAM Score (Siemens suite)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 111

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Percentage of Code Examined

P
er

ce
n

ta
g

e 
o

f 
F

au
lt

y 
V

er
si

o
n

s 
w

h
er

e 
F

au
lt

 i
s 

L
o

ca
te

d

D* Best Case

D* Worst Case

Mountford Best Case

Mountford Worst Case

D* is clearly 
the most 
effective



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 112Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 112

Results Results Results Results –––– EXAM Score EXAM Score EXAM Score EXAM Score (Unix suite)

112

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Code Examined

P
er

ce
n

ta
g

e 
o

f 
F

au
lt

y 
V

er
si

o
n

s 
w

h
er

e 
F

au
lt

 i
s 

L
o

ca
te

d

D* Best Case

D* Worst Case

Mountford Best Case

Mountford Worst Case

D* is clearly 
the most 
effective



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 113

Results Results Results Results –––– EXAM Score EXAM Score EXAM Score EXAM Score (Gzip)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 113

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35%

Percentage of Code Examined

P
er

ce
n

ta
g

e 
o

f 
F

au
lt

y 
V

er
si

o
n

s 
w

h
er

e 
F

au
lt

 i
s 

L
o

ca
te

d

D* Best Case

D* Worst Case

Mountford Best Case

Mountford Worst Case

D* is clearly 
the most 
effective



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 114

Results Results Results Results –––– EXAM Score EXAM Score EXAM Score EXAM Score (Ant)

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 114

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% 2.25% 2.50%

Percentage of Code Examined

P
er

ce
n

ta
g

e 
o

f 
F

au
lt

y 
V

er
si

o
n

s 
w

h
er

e 
F

au
lt

 i
s 

L
o

ca
te

d

D* Best Case

D* Worst Case

Mountford Best Case

Mountford Worst Case

Pearson Best Case

Pearson Worst Case

D* is clearly 
the most 
effective



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 115

Results Results Results Results –––– WilcoxonWilcoxonWilcoxonWilcoxon SignedSignedSignedSigned----Rank Test  Rank Test  Rank Test  Rank Test  (1)

� Generally the confidence with which we can claim that D* is more
effective than the other techniques is very high (easily over 99%).

� But there are a few exceptions.

� Why? Perhaps this has something to do with the way our hypothesis was 
constructed.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 115

Fault Localization
Technique

Best Case Worst Case

Siemens Unix gzip Ant Siemens Unix gzip Ant

Kulcynzki 99.99% 99.99% 93.75% 98.43% 99.99% 99.99% 93.75% 98.43%

Simple-Matching 100% 100% 99.80% 99.90% 100% 100% 97.60% 99.80%

BraunBanquet 99.99% 100% 99.80% 99.80% 99.99% 99.99% 71.43% 99.21%

Dennis 99.99% 100% 99.99% 99.80% 99.99% 100% 94.20% 99.21%

Mountford 99.99% 99.99% 99.21% 99.90% 99.99% 99.99% 73.82%99.80%

Fossum 100% 99.99% 99.21% 99.21% 100% 99.99% 99.62% 96.87%

Pearson 100% 99.99% 99.21% 99.21% 100% 99.99% 70.87% 96.87%

Gower 100% 100% 99.99% 99.99% 100% 100% 99.99% 99.99%

Michael 99.68% 99.99% 99.99% 99.97% 99.54% 99.99% 99.99% 99.97%

Pierce 100% 100% 99.99% 99.99% 100% 100% 99.99% 99.99%

Baroni-Urbani/Buser 99.99% 100% 99.80% 99.80% 99.99% 100%74.42% 98.82%

Tarwid 99.99% 99.99% 99.99% 99.99% 99.99% 100% 99.99% 99.99%



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 116

Results Results Results Results –––– WilcoxonWilcoxonWilcoxonWilcoxon SignedSignedSignedSigned----Rank Test Rank Test Rank Test Rank Test (2)
� Let us modify our alternative hypothesis to consider equalities.

– We now evaluate to see if D* is more effective than, or at least as effective as,
the other techniques.

– Which is to say D* requires the examination of a number of statements that is 
less than or equal tothat required by the other techniques.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 116

Fault Localization Technique
Best Case Worst Case

gzip Ant gzip Ant

Kulcynzki 100% 100% 100% 100%

Simple-Matching 100% 100% 99.94% 99.90%

BraunBanquet 100% 100% 99.14% 99.61%

Dennis 100% 100% 99.43% 99.61%

Mountford 100% 100% 95.78% 99.90%

Fossum 100% 100% 99.67% 99.44%

Pearson 100% 100% 92.19% 98.44%

Baroni-Urbani/Buser 100% 100% 95.42% 99.22%

Confidence levels have gone up significantly. All entries but one are greater than 95%.

D* is clearly 
the most 
effective



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 117

More Discussion on D*More Discussion on D*More Discussion on D*More Discussion on D*

� D* with a higher value for the *

� Compare D* with other fault localization techniques

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 117



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 118

Effectiveness of D*Effectiveness of D*Effectiveness of D*Effectiveness of D*

� The effectiveness of D* for the makeprogram increases until it levels off 
as the value of * increases.

� A similar observation also applies to other programs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 8 14 20 26 32 38 44 50

T
o

ta
l n

um
b

e
r 

o
f s

ta
te

m
e

nt
s 

e
xa

m
in

e
d

Star

DBest

DWorst



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 119

Effectiveness of Other Fault Localization TechniquesEffectiveness of Other Fault Localization TechniquesEffectiveness of Other Fault Localization TechniquesEffectiveness of Other Fault Localization Techniques

� The best- and worst-case effectiveness of 18 fault localization techniques 
(excluding D*) on 21 different programs.

Best Case Worst Case
Unix Simens grep gzip make Ant Unix Simens grep gzip make Ant

H3c 1655 1396 2702 1535 8553 1320 5026 2292 4435 3312 14272 1882
H3b 1701 1439 3019 1535 10817 1358 5072 2335 4752 3313 16556 1860
RBF 1302 2114 2075 2966 9188 233 4758 2980 3964 4743 14590 759
Ochiai 1906 1796 3092 1270 10305 887 5322 2692 4825 3047 16044 1389
Crosstab 2524 2005 4005 1314 12403 1076 6094 2873 7443 3091 18142 1578
Tarantula 3394 2453 5793 3110 16890 5964 7704 3311 7812 5032 23468 9935
Kulcynzki 2358 2327 3458 1272 10701 1557 5779 3186 5192 3139 16668 2069
Simple-Matching 5545 6335 23806 9087 41374 250414 8977 7187 25606 10968 48401253631
BraunBanquet 2767 2438 4114 1358 11734 2196 3296 3296 5847 3135 17986 2698
Dennis 2934 2206 5498 1960 15016 1974 6504 3074 8936 3737 20755 2476
Mountford 2183 1974 3450 1317 11269 3298 5644 2832 5189 3111 17152 3818
Fossum 2468 2230 15952 4547 19567 150415 5843 3126 21193 8701 25036 150917
Pearson 3581 3279 6894 1450 17689 1188 7221 4247 10796 3227 23569 1690
Gower 8630 6586 43428 26215 128318 967307 12027 7434 45262 27992 134057 967809
Michael 3713 1993 5027 2504 14986 4502 7283 2864 8501 4281 20725 5004
Pierce 11782 8072 16646 24065 30568 322033 23387 15299 60437 46753 164856 1018725
Baroni-Urbani/Buser 3189 3547 4902 1428 12130 4693 6605 4404 6635 3205 17689 5195
Tarwid 3399 2453 5793 3110 16890 5964 7883 3321 9517 5032 23468 9935

Jump to Slide 105



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 120

Comparison between D* and Other TechniquesComparison between D* and Other TechniquesComparison between D* and Other TechniquesComparison between D* and Other Techniques

� The effectiveness of D2 is better than the other 12 similarity coefficient-
based fault localization techniques.

� From the following table, we also observe that D* (with an appropriate 
value of*) performs better than other fault localization techniques, 
regardless of the subject programs, and the best- or worst-case.

– The cell with a black background gives the smallest * such that D* 
outperforms others.

Best Case Worst Case
Unix Simens grep gzip make Ant Unix Simens grep gzip make Ant

D2 1805 1754 3023 1220 10287 672 5226 2650 4757 3087 16254 1184

D3 1667 1526 2946 1088 10257 368 5088 2422 4680 2955 16224 880

D4 1594 1460 2833 1087 10022 293 5015 2356 4567 2954 15989 805

D5 1507 1435 2762 1085 10022 228 4928 2331 4496 2952 15989 740

D* 1386 (*=7) 2693 (*=8) 8529 (*=20) 2284 (*=7) 4427 (*=8) 14219 (*=25)
H3b 1701 1439 3019 1535 10817 1358 5072 2335 4752 3313 16556 1860
H3c 1655 1396 2702 1535 8553 1320 5026 2292 4435 3312 14272 1882

Tarantula 3394 2453 5793 3110 16890 5964 7704 3311 7812 5032 23468 9935
Ochiai 1906 1796 3092 1270 10305 887 5322 2692 4825 3047 160441389

Jump to Slide 106



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 121

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 121

OutlineOutlineOutlineOutline

121



Theoretical Comparison: Equivalence



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 123

� As discussed earlier the general norm for comparing fault localization 
techniques has been to use empirical data.

� If technique α is better than technique β, then it should lead programmers 
to the location of fault(s) faster than β.

� Multiple metrics have been proposed to do this such as the ones used in 
our research.

� Case studies can be quite expensive and time-consuming to perform. 
Often a lot of data has to be analyzed.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 123

Comparing Fault Localization Techniques Comparing Fault Localization Techniques Comparing Fault Localization Techniques Comparing Fault Localization Techniques (1) 

But is empirical comparison always required…especially when 
trying to show that two techniques will be equally effective?



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 124Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 124

Comparing Fault Localization Techniques Comparing Fault Localization Techniques Comparing Fault Localization Techniques Comparing Fault Localization Techniques (2)
� Note that the suspiciousness of a statement is irrelevant from an absolute

sense. 
– It only matters how the suspiciousness of two (or more) statements compare 

with respect to each other (i.e., relativeto one another).

� Supposing we have two statements s1 and s2 with suspiciousness values of 
5 and 6, respectively. This means that s2 is ranked above s1 as it is more 
suspicious.

� However, s2 would still be ranked above s1 if the suspiciousness values 
were 6 and 7, or 50 and 60, respectively – the relative ordering of s1 and 
s2 is still maintained. 

� Thus, subtracting the same constant from (or adding it to) the 
suspiciousness of every statement will have no effect on the final ranking. 
The same applies for multiplication/division operations.

124



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 125

� Recall the suspiciousness computation of Kulczynski

� It now becomes clear that an identical ranking will be produced by

or

� This is why D* was constructed the way it was

� Any operation that is order-preservingcan be safely performed on the 
suspiciousness function without changing the ranking.

� If the ranking does not change…then the effectiveness will not change 
either. We can exploit this!

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 125

( ) ( ) 10CF

UF CS

N
suspiciousness s

N N
= ×

+
( ) ( ) 1CF

UF CS

N
suspiciousness s

N N
= +

+

( ) CF

UF CS

N
suspiciousness s

N N
=

+

Comparing Fault Localization Techniques Comparing Fault Localization Techniques Comparing Fault Localization Techniques Comparing Fault Localization Techniques (3)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 126Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 126

� Consider a program P with a set of elements M. Let rank(r,s) be a 
function that returns the position of statement s in ranking r.

� Two rankings rα and rβ (produced by using two techniques Lα and Lβ on 
the same input data) are equalif
–∀s∈M, rank(rα,s) = rank(rβ,s). 

– Two rankings are equal if for every statement, the position is the same in both 
rankings.

� If two fault localization techniques Lα and Lβ always produce rankings 
that are equal, then the techniques are said to be equivalent, i.e., Lα ≡ Lβ
and therefore will always be equally as effective (at fault localization).

� So is the equivalence relation useful?
Certainly! In at least two scenarios it holds great potential
– Eliminating the need for time-consuming case studies.

– Making suspiciousness computations more efficient.

126

Comparing Fault Localization Techniques Comparing Fault Localization Techniques Comparing Fault Localization Techniques Comparing Fault Localization Techniques (4)



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 127Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 127

Eliminating the Need for Case Studies Eliminating the Need for Case Studies Eliminating the Need for Case Studies Eliminating the Need for Case Studies (1)
� Take the example of [Abreu et al. 2009] where

– The authors use of the Ochiaicoefficient to compute suspiciousness. 

– The coefficient is compared to several other coefficients empirically.

– Among others, it is compared to the Jaccardand Sorensen-Dicecoefficients.

� We posit that this was unnecessary, as per the equivalence relation.

� Via a set of order-preserving operations, both can be 

reduced to:

127

( ) CF

CF UF CS

N
suspiciousness s

N N N
=

+ +
2

( )
2

CF

CF UF CS

N
suspiciousness s

N N N
=

+ +

Jaccard≡ Sorensen-Dice

Jaccard Sorensen-Dice

( ) CF

UF CS

N
suspiciousness s

N N
=

+

R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A Practical Evaluation of Spectrum-based 
Fault Localization,” Journal of Systems and Software, 82(11):1780-1792, November 2009



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 128

� As it turns out the coefficient Anderbergalso evaluates to the same form. 
Ochiai was empirically compared to Anderberg.

� In fact the authors also compared Ochiai to the SimpleMatchingand 
Rogers and Tanimotocoefficients, the both of which are also equivalent 
to one another.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 128

Eliminating the Need for Case Studies Eliminating the Need for Case Studies Eliminating the Need for Case Studies Eliminating the Need for Case Studies (2)

128

Such redundant comparisons could have been avoided by making 
use of the fault localization equivalence relation.

Jaccard≡ Sorensen-Dice ≡ Anderberg

SimpleMatching≡ Rogers and Tanimoto



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 129

� As shown, if Jaccard were the chosen fault localization technique, using 
the suspiciousness function

would give the same results as using

� We should go with the simplest computation as it is expected to be faster. 

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 129

Making Computations More Efficient Making Computations More Efficient Making Computations More Efficient Making Computations More Efficient (1)

129

( ) CF

UF CS

N
suspiciousness s

N N
=

+

( ) CF

CF UF CS

N
suspiciousness s

N N N
=

+ +



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 130Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 130

Making Computations More Efficient Making Computations More Efficient Making Computations More Efficient Making Computations More Efficient (2)
� We performed an additional case study on the 7 programs of the Siemens 

suite

� Observed the relative time savedin computing suspiciousness for all the 
statements in a faulty program, by using the simplified formof Jaccard
(J*) as opposed to theoriginal (J).

– The quantity (J–J*) represents the computational time that is saved.

– ((J–J*)/J)×100% represents the relative time saved, i.e., efficiency gained. 

� 100 trials were performed per faulty version. 

� Difference in times was computed to nanosecond precision.

130



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 131Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 131

Making Computations More Efficient Making Computations More Efficient Making Computations More Efficient Making Computations More Efficient (3)

131

Programs
Average 

Percentage Time 
Saved

print_tokens 35.37%

print_tokens2 39.21%

schedule 44.62%

schedule2 49.74%

replace 41.65%

tcas 52.46%

tot_info 47.68%

� The savings in terms of time are quite significant.

� Using the equivalence relation can thus, help reduce techniques to 
simplified forms, thereby greatly increasing efficiency.



Programs with Multiple Faults



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 133Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 133

Programs with Multiple FaultsPrograms with Multiple FaultsPrograms with Multiple FaultsPrograms with Multiple Faults

� One bug at a time

� A good approach is to use “fault-focused” clustering.
– Divide failed test cases into clusters that target different faults 

– Failed test cases in each fault-focused cluster are combined with the successful 

tests for debugging a single fault.

133



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 134

� Motivation and Background

� Execution Dice-based Fault Localization

� Suspiciousness Ranking-based Fault Localization
– Program Spectra-based Fault Localization

– Code Coverage-based Fault Localization

– Statistical Analysis-based Fault Localization

– Neural Network-based Fault Localization

– Similarity Coefficient-based Fault Localization

� Empirical Evaluation

� Theoretical Comparison: Equivalence

� Mutation-based Automatic Bug Fixing

� Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 134

OutlineOutlineOutlineOutline

134



Mutation-based Automatic Bug Fixing

V. Debroy and W. E. Wong, “Using Mutation to Automatically Suggest 
Fixes for Faulty Programs,” in Proceedings of the 3rd International 
Conference on Software Testing, Verification and Validation (ICST), 
Paris, France, April 2010 



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 136

� For research experiments, large comprehensive data sets are rarely 
available

� Need faulty versions of programs to perform all kinds of experiments on, 
but don’t always have a way to get them

� Recently many researchers have relied on mutation
– Mutants generated can represent realistic faults

– Experiments that use these mutants as faulty versions can yield trustworthy 
results

– As opposed to seeding faults, mutant generation is automatic

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 136

Mutation as a Fault Generation AidMutation as a Fault Generation AidMutation as a Fault Generation AidMutation as a Fault Generation Aid

136

Jump to Slide 105



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 137

If mutating a correct program can produce a realistic fault, can

mutating an incorrect program produce a realistic fix?

� Supposing we wanted to write program P

� But we ended up writing a faulty program P’
– We know P’ is faulty because at least one test case in our test set results in 

failure when executed on P’

� Mutate P’ to get P”

� If P” = P… we automatically fixed the fault in P’

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 137

Mutation as a Fault Fixing Aid?Mutation as a Fault Fixing Aid?Mutation as a Fault Fixing Aid?Mutation as a Fault Fixing Aid?

137



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 138Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 138

Our SolutionOur SolutionOur SolutionOur Solution

138

Mutation

The Good: Can result in 
potential fixes for faulty 
programs automatically.

The Bad: We have no idea as to 
where in a program a fault is, and 
so we do not know how to 
proceed. Randomly examining 
mutants can be prohibitively 
expensive.

Fault Localization

The Good: Can potentially 
identify the location of a fault 
in a program.

The Bad: Even if we locate the 
fault, we have no idea as to 
how to fix the fault. This is left 
solely as the responsibility of 
the programmers/debuggers.

So…what if we combined the two?



Conclusion



Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 140

� Existing and new fault localization techniques
– Many of them use the same information (statement coverage and execution 

results) to identify suspicious code likely to contain program bug(s)

� A strategy to automatically suggest fixes for faults that 
– makes as few assumptions as possible about the software being debugged

– is generally applicable to different types of software and programming 
languages

– still manages to produce some useful information even when it is unable 
to fix faults automatically

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 140

What We Have DiscussedWhat We Have DiscussedWhat We Have DiscussedWhat We Have Discussed

Present a framework to automate the debugging process.


