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Motivation
I -

* Testing and debugging activities constitute onthefmost expensive
aspects of software development

— Often more than 50% of the cost [Hailpern & Santmanz003]

* Manual debugging is.

. N\
- T_edlous . " 0

— Time Consuming

— Error prone v /

— Prohibitively expensive

Need ways to debug...

automatically

B. Hailpern and P. Santhanam, “Software Debuggimgtifig, and Verification,/BM Systems Journa#1(1):4-12, 2002
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Debugging Today

* Program debugging consists of three fundamentaities

— Learning that the program has a fa{ﬁ&lt detection

— Finding the location of the faultfault localization ‘

— Actually removing the fault|fault fixing

* A lot of progress has been made in the areagifcase generati@nd
thus we can assume that we will have a collectfdesi cases (i.e., a test
set) that can reveal that the program has faults.
— So the programmer can avoid the first taskilf detectioi.

* Recentlyfault localizationhas received a lot of fom@
—Itis one of the most expensive debugging actisifiéessey, 1985]

* Fault Fixinghas also been an important research area
— Have to be very careful not to introduce new faintthe process

Iris Vessy, “Expertise in Debugging Computer ProgsaA Process Analysis|hternational Journal of
Man-Machine Studie®3(5):459-494, March1985
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Objectives

* Develop a robust and reliable fault localizatiochtgique to identify
faults fromdynamic behavioref programs

* Reduce the cost of program debugging by providimgore accurate set
of candidate fault positions

* Provide software engineers witlfective tool support

N |
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Perfect Bug Detection
N |

']A bug in a statement will be deteched by a programifithe statement is
examined
’ — A correct statement will not be mistakenly idewiifias a faulty statement

— If the assumption does not hold, a programmer negg o examine more
code than necessary in order to find a faulty state
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Traditional Approach

Commonly Used Techniques

* Insertprint statements
* Add assertionsor setbreakpoints
* Examine core dump or stack trace

Rely on programmerntuition and domain expert knowled

ge
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Execution Shice T Dice

* Faults reside in thexecution slicef a test that fails on execution

— An execution slice is the set of a program’s code
(blocks, statements, decisions, c-uses, or p-esesuted by a test

— An execution slice can be constructed very easilyeifknow the coverage of
the test (instead of reporting the coverage peacgntit reports which parts of
the program are covered).

— Too much code in the slice

* Narrowing search domain lgxecution dices

— An execution dice is obtained by subtracting
successfuéxecution slices frorfailed execution slices

Dice = Execution slices of failed tests — Execustioes of successful tests

Static & Dynamic Discussion 1 Discussion 2

e—
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E{amflé (1)

A Sample Program

read (a, b, ¢);
class = scaleneg; a
ifa=b|lb=a b

class = isosceles;
if a*a = b*b + c*c c

class = right; asbsc
fa=b&&b=c

class = equilateral;
case class of

right T area=b*c/2;

equilateral : area = a*a * sqri(3)/4;

otherwise : s = (a+b+c)/2;

area = sqri(s*(s-a)*(s-b)*(s-¢));

end;
write(class, area);
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Example (2)
Initial Test Set
Test case Input Output
a b c class area
T, 2 2 2 equilateral 1.73
T, 4 4 3 isosceles 5.56
T, 5 4 3 right 6.00
Ty 6 5 4 scalene 9.92
Ts 3 3 3 equilateral  3.90
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 15
Example (3)
Failure Detected
Test case Input Output
a b c class area
T 2 2 2 equilateral  1.73
T, 4 4 3 isosceles 5.56
T3 5 4 3 right 6.00
T, 6 5 4 scalene 9.92
Ts 3 3 3 equilateral  3.90
Ts 4 3 3 scal:ane 4.47
Failure!

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)
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Example (4)
Where is the Bug?
read (a, b, ¢);«—— 4,3,3
class = scalene;
fa=b||b=a
class = isosceles;
if a*a = b*b + ¢'c
class = right;
ifa=b&&b=c
class = equilateral,
case class of
right :area=b*c/2;
equilateral : area = a*a * sqrt(3)/4,
otherwise : s = (a+b+c)/2;
area = sqrt(s*(s-a)*(s-b)*(s-c));
end; P
write(class, area); scalene
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Example (5)
Execution Slice w.r.t. the Failed Test T, = (4 3 3)
read (a, b, ¢);
class = scalene;
ifa=b|lb=a Too much code needs
class = isosceles; To be examined!
ifaa=b"b +c'c
class = right;
ifa=b&&b=c
class = equilateral;
case class of
right carea=b'c/2
equilateral : area = a*a * sqri(3)/4;
otherwise : s = (a+b+c)/2;
area = sqrt(s*(s-a)*(s-h)*(s-c));
end;
write(class, area);
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Eycamflé (6): Which Test Should be Used ?

Failure Detected
Test case Input Output
a b c class area
T 2 2 2 equilateral  1.73
T, 4 4 3 isosceles 5.56
T 5 4 3 right 6.00
T, 6 5 4 scalene 9.92
Ts 3 3 3 equilateral  3.90
Ts 4 3 3 scalfne 4.47
Failure!
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Example (7)
A Successful Test T, and a Failed Test T
Test case Input Output Success
a b c area
T, 2 2 2 1.73
T, 4 4 _ 5.56
T 5 4 3 6.00
Ty 6 5 4 scalene 9.92
Ts 3 3 3 equilateral  3.90
Ts 4 3 3 scalfme 4.47
Fail)zzre! (should basoscelep
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Eycamf&z (8)

Execution Slice w.r.t. the Successful Test T, = (4 4 3)

 class = Is0sceles;
_ifa*fa=bb+c'c
. Class =right;
ifa=b&&b=c
class = equilateral,
- caseclassof
right T area=b’c/2;
__equilateral : area = a"a ~ sqri(3)/4;
_ otherwise (a+b+c)2;

ved
 write(class, area);
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E{amflé (9)

Execution Dice = Slice (4 3 3) - Slice (4 4 3)

read (a, b, ¢);
class = scalene;
ifa=bl|b=a :
class = isosceles;
if a*a=b*b +c*c
class = right;
ifa=b&&b=c
class = equilateral;
case class of
right carea=b'c/2;
equilateral : area = a*a * sqrt(3)/4;
otherwise : s = (a+b+c)/2;
area = sqrt(s*(s-a)*(s-b)*(s-c));
end;
write(class, area);

e
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One Failed and One Successful Test

Possible locations of faults

» Code in the execution digeop priority) » Code in the failed execution slice but not in tiwed

* Abug is in the failed execution slice (the res A bug is in the failed execution slice (the redmat
path)but notin the successful execution slic andin the successful execution slice (the blue path)
(the blue path)

!
Bug! Bug!

* The dicing-based technique can be effective intiogssome program bugs
— H. Agrawal, J. R. Horgan, S. London, and W. E. Wdikgult localization using execution slices and
dataflow tests,in Proceedings of the 6th IEEE International Synipmson Software Reliability
Engineering pp. 143-151, Toulouse, France, October 1995.
TAuthors are listed in alphabetical order
*Number of citations: 155 (according to the Googlédar)
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Locating Bugs using Execution Dice (1)

File Tool Options Summary TestCases Update GoBack Help

all_passed all_failed all_neutral Disable Sort_by

block slicing sumary by testcase

sort.1 191 of 504 37.9%

sort.2 223 of 504 44 .2%

v 164 of 504 32.5%

i

X a 94 of 504 18.7%

A test case in green runs the program successfully

A test case in red fails the program
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Locating Bugs using Execution Dice (2)

——
File Tool Options Summary TestCases Update GoBack Help
o ' e
~ hy-type # by-file .- hy-function Disable Sort_hy
block slicing summary by file over selected testcases ‘
- gsort.c 3 of 33
o o oo MM
e cor 1 DN
akipee ootz [N
- sort.¢ 0 of 59 |_
Sl- Coverage: Files: Passed Tests: Failed Tests:
x ice block T of 7 1 of 4 1 of 4
T— ——
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File Tool Options Summary TestCases Update GoBack Help
0 1 [
—
p = (struct merg *)lspace; . .
j=o0; Code in blue is executed by the
for(i=a; i1 < b; i++) { .
£ = sebFil (i) failed testAND the successful one
if(f == 0) 4
—>h = stdin; ‘
else if((p=>B = fopen(f, "r")) == NULL) .
cant(f); S
ibuf[j] = p;
if{!rline(p)) 4t -
pt; B . . :
} - Code in red is executed by the failed
do ~ testBUT NOT the successful one
i=17; ’ A
gsort ((char’ **)ibuf, (char **) (ibuf+i)); '
1-=0; g
while(--1) I A
= - ;) 1
JEE— if(rline(ibuf[il)) {
. e R k = i;
Code in white ilNOT executed whileCek < 9)
. ibuf[k-1]1 = ibu ;
by the failed tesf ) j-—;
! }
~—1 | Soooeszzo=ooT
Sl + File: Line: Coverage: Highlighting:
x ice main.c 152 of 240 hlock all prioritized
— —
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Multiple Failed and Successful Tests (1)

* Themorethatsuccessfutests execute a piece of code, Ithes likelyfor
it to contain any fault.

* Themorethatfailed tests with respect to a given fault execute a pidce
code, themore likelyfor it to contain this fault.

* A piece of code containing a specific fault is
—inversely proportionato the number ofuccessful testhat execute it

— proportionalto the number ofailed testgwith respect to this fault) that
execute it.

W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldon&&mart Debugging Software Architectural
Design in SDL,” Journal of Systems and Softwavlume 76, Number 1, pp. 15-28, April 2005

Jump to Slide 97
i ]
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Multiple Failed and Successful Tests (2)

* Need to consideurecisionandrecall @
— intersection of failed tests — union of successfatg
—union of failed tests — union of successful tests
— intersection of failed tests — intersection of sssfd tests
— union of failed tests — intersection of successats
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More Advanced Heuristics

* A bad dicedoes not contain the bug
— Augmentation of a bagexecution dice usinipter-block data dependency

* A good dicewith too much code
— Refining a gooexecution dice using additional successful tests

W. E. Wong and Yu Qi, “An Execution Slice and Iniock Data Dependency-Based Approach far
Fault Localization,’"Journal of Systems and Softwav@lume 79, Number 7, pp. 891-903, July 200

(<]

S e -
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Augmentation of A Bad Execution Dice DV (1)
* Bug is not in the execution dice

* Much code that is executed by both the failed (thst red path) and the
successful test (the blue path)

* How to prioritize the code that still needs to Bamined

08,
T

’
2o

ot
(8

9
<>
000 00
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Augmentation of A Bad Execution Dice DV (2)

* If the bug is not inD®, we need to examine additional code fromrtst
of the failed execution slice (i.e& — 'V denoted byb)

— For a block3, the notatiorB = ® impliesp is in the failed execution slice-
but not ind®.

* More prioritization based ointer-block data dependency

* Define a tirect data dependentyelation A between a blocR and an
execution diced® such thafy A o1

1

if and only if @ defines a variablz that is used i or B uses a variable
y defined ino®.

| |
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Augmentation of A Bad Execution Dice DY (3)

Code in blue has some data
dependency with code in red
=> Higher Priority

Code in green has no data
dependency with code in red
=>» Lower Priority

Code inredisin
the execution dice
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Augmentation of A Bad ExecutionZ)ice DY (4) o

Constructa®, the augmented code segment from the first iwmati
such tha® = {B |[B €@ A (B A D)}
setk=1
Examine code imi® to see whether it contains the bug)
If YES,
then
— STOP because we have located the bug
else
— setk=k+1
Constructa®, the augmented code segment fromkthéeration,
such thapa® = 2D U {B|bEd A (B A_akD)}.
If 4% = 20D (i.e., no new code can be included from th X" iteration to thekt iteration)
then

— STOP
At this point we havel®, the final augmented code segment, which ega8ligand
AkD as well)

else
— Go back to step€)

—  —
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Augmentation of A Bad ﬂecuti(m:®ice oV (5)

#include <stdio.h> #include <stdio.h=
int main() { int main() {
float a, b, ¢, d, X, ¥; floata, b,c,d. x, v;
Sp  scanf ("%f %of", &a, &b); Sp scanf ("%f %f", &a, &b);
5 if{a<=0) 5 if(a<=0)
S c=2%a+1; S c=2%+1;
else else
S c=3%y S3
S, if(b==0) 54 if(b==0)
Ss d=Db*b - 4*a*c 55 d=b*b - 4*a*c
elze elge
S¢ d=5%b; S d=5%b;
Sy x=b+td; $; x=b+d;
3 y=c+d; S5 ¥=c+td;
3o printf ("x=%f & y=%f'n",x,¥); Sy prntf("x="%f & y="%f'n", 5 ¥);
} H
(a) the execution slice with respect to a failed tes (b) the execution slice with respect to a succésséit,
(a=3; b=5) (a= -3; b=5)
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Augmentation of A Bad Execution Dice DY (6) -

#include <stdio.h>
int main() {
floata, b, c,d, % ¥,
Sy scanf ("aef Yaf", &a, &b); S
5 if(a<=0) 51
55 c=2%*+1, 5
elze
S3 S3
54 if(b<=0) Sy
Ss d =b*b - 4*a*c S5
elze
S d = 5%b; 84
S, x=b+d, 84
Sz ¥y=c + d', Sz
Sy printf ("x=%f &y=2%'n",xv); S

}

dice obtained by subtracting the execution
slice in (b) from the execution slice in (a)

#nclude <stdio.h>
int main{) {
floata, b, c,d, x,v;
scanf ("%of %of", &a, &b);
if (a<=10)
c=2%a+1,;
else
if (b <=0)
d=b% - 4*a*c
else
d 5 b

— Bug! Should be 2*c
X=
yacha
printf ("x = %6f & y=%f\n", X, ¥);
}

Code that has direct data dependency
with §(i.e., code in the dice)
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Refining of A Good Execution Dice DY

» Construct the execution slices (denotedhy®,, ..., ®

[ farg=0;i<Nmax;i++)

successful tests, t,, ...,andt,
o =F -0,
D= -0,= F-0,-0,

We havend) 292 D), etc.

o With respect to

Since we want texamine the more suspicious code before the |sgscsous
code code ind®@ should be examined before coderif¥ but not in®®

far(i=0i<N max; i+
{ probtabil.valore=0;
probtabli]. posizione=0;}
i=0; =0
while Gi=riga) while (i<riga)

5 i)
rabtablil.valore 100+

L
far ii—.; j<z; ,Hi

a=i:)
| Part (a) Code in ® is highlighted in red |

w3}
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{ probtabfivalore=0;
probeablil. posizione=0;)

(= n'nuh[llnlnu 100+2;
hri—i j<r; j+)

Part (b) Cods in @ is highlighted in red |

t 5
probiabli].posirione=0;}
i

while Geriga)

]
d "' &probrabli]. posizone);
If * &probrabli] valore):}

et
art (c) Code in @) is highlighted in red
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An Incremental Approach

* Assume
—debugging as soon as a failure is detected (inéy,ane failed test)
—n (say 3) successful tests
* Assume the bug is in the code which is executethéyailed test but not the
successful test(s)
— first examining the code im followed by code inp@ but not ind®), then
code ind but not ind@
« If this assumption does not hold (i.e., the bugdsin ©®), then we need to inspec
additional code in the failed execution slice boi im o1

—then starting with code ia® but not ino®), followed by 2@ but not in2®), ...

* Prioritize code in a failed execution slice basadts likelihood of containing the
bug. The prioritization is done biyst using the refining methcandthen
the augmentation method.
— Examining code im®), ©@ but not in®®), ©® but not ino@), 4™ but not in
o, 4@ but not in4Y), 4® but not in4®, ... etc.

* In the worst case, we have to examine all the codtlee failed execution slice.

I -
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Suspiciousness Ranking-based
Fault Localization

Overview

* Compute the suspiciousness (likelihood of contajiting) of each
statement

* Rank all the executable statements in descenduhey of their
suspiciousness

* Examine the statements one-by-one from the topeofdanking until the
first faulty statement is located

 Statements with higher suspiciousness should bmiera before
statements with lower suspiciousness as the foangemore likely to
contain bugs than the latter
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Techniques for Computing Suspiciousness

* Code coverage-based and calibration

* Crosstab: statistical analysis-based

* BP (Back Propagation) & RBF (Radial Basis Functioejiral network
* Similarity coefficient-based

e Tarantula: heuristic-based

* SOBER: statistical analysis-based

e Liblit: statistical analysis-based

Take advantage of code coverage (namely, execsiiite)
and execution result of each test (success ordifar debugging

| -
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- Spectra-based Fault Localization

Spectra-Based Fault Localization Techniques

* Possible Program Spectra

Name Description
BHS | Branch Hit Spectra conditional branches that areeel
BCS | Branch Count Spectra number of times each conditionamch is executed
CPS | Complete Path Spectra complete path that is executed
PHS | Path Hit Spectra loop-free path that is executed
PCS | Path Count Spectra number of times each loop-freeip@xecuted
DHS | Data-Dependence Hit Spectra definition-use pairsahaexecuted
DCS | Data-Dependence Count Spectra number of times efititibn-use pair is executed
OPS | Output Spectra output that is produced
ETS Execution Trace Spectra execution trace that isymed
DVS | Data Value Spectra the values of variables in treeton
ESHS | Executable Statement Hit Spectra executable statsrtieat are executed
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A Sample Program for Program Spectra

-
* Given an integen and a real numbex; the program calculated
1 double power (doublbe intn)
2
3 inti;
4 intrv=1;
5 for (i=0; i<abs); i++)
6
7 rv=rv X x;
8 1}
9 if (n<0)
10 {
11 if (x!=0)
12 rv =1kv;
13 else
14 {
15 printf (“Error input.\n");
16 return 0;
17}
18 }
19  returnrv;
20 }
Return
C e——
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Branch Hit Spectra
- - N ]

* BHS records theonditional brancheshat are covered by the test execution
* Suppose there areconditional branchesy,, b,, ..., b,

* The spectrum with respecttp(i = 1, 2, ...,m) indicatesvhetherb; is covered by
the test execution

* There are 6 branches in the sample program:(%,8),((9,19), (9,11), (11,12),
and (11,15)

* When test casx € 2,n = 3) is executed,

the branch hit spectrum Q @@@ 0 @ .
@ |

_ (11,12) is not covered
(5,7) is covered

(5.9) is covered (9,11) is not covered
(9.19) is covered

Return

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)
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Branch Count Spectra

* BCS records thaumber of times that each conditional bramskexecuted
* Suppose there arB conditional branchedy,, b,, ..., b, The spectrum with

respect td, (i = ..,m), denoted by, indicates thal, is executed; times
by the test executlon

* When test case (2,3) is executed, thench count spectruiis @ @\fb

(5.7)is d 3 times | (9,19) is gxecuted one time

(11,15) is not executed

Return
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Complete Path Spectra
* CPS records theomplete paththat are traversed by the test execution
* When test case (2,3) is executed, the CPSi 9,19)
Statement 5 and 7 are executed 3 times
Return

& |
©
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Path Hit Spectra

* PHS records thmtra-procedural loop-free pathshat are covered by the test
execution

* The sample program has six possible paths
-3,4,59,19
-3,4,5,7,9,19
-3,4,59,11,12,19
-3,4,57,9,11,12,19
-3,4,59,11,15,16
-3,4,5,7,9,11,15,16
* With respect to the execution of test case (2(@path hit spectruncan be
represented by

- (UNN,N,N,N,
(3,4,5,9,19) is covered ‘ l (3,4,5,7,9,11,15,16) is not covered
Return
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Path Count Spectra
. | |

* PCS records theumber of times that each intra-procedytlabp-free paths
covered by the test execution

* The sample program has six possible loop-free paths
-3,4,59,19
-3,4,5,7,9,19
-3,4,59,11,12,19
-3,4,57,9,11,12,19
-3,4,59,11,15,16
-3,4,5,7,9,11,15,16
* When test case (2,3) is executed,ihéh count spectrurman be represented by

— When the funstion is executed more than one tieeetements in PCS may be larger

(3.4,5,9,19) is executed (3.4,5,7,9,11,15,16)
one time is not executed

Return
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Data-Dependence Hit Spectra

» DHS records thdefinition-use pairshat are covered by the execution
* With respect to the sample program, let’s focushenfollowing definition-use
pairs
—(rv, 4,7)
—(rv, 4, 19)
(v, 7,7)
—(rv, 7,12)
—(rv, 7, 19)
—(rv, 12, 19)
* When test case (2,3) is executed, the spectrurbeaepresented by

- (Y,N,Y,N,Y,N) which implies (rv,4,7), (rv,7, 7) and (rv,7,19) a@vered by this
execution

Return
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Data-Dependence Count Spectra

* DCS records thaumber of times that each definition-use paiexecuted

* With respect to the sample program, let's focushenfollowing definition-use

pairs

—(rv,4,7)

—(rv, 4, 19)

—(rv,7,7)

— (v, 7,12)

—(rv, 7, 19)

—(rv, 12, 19)

* When test case (2,3) is executed,data-dependence count spectroam be
represented by (1%2,0,1,0)

‘ (rv, 7, 7) is executed 2 times ‘

Return
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Output Spectra

* OPS records theutputs producebly the test executions

* With respect to the sample program, when test (38 is executed, theutput
spectruncan be represented by a value 8, which is the btofghe function

Return
N C—
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Execution Trace Spectra
_1 |

* ETS records theequence of each program statenmtesersed by the test
execution

* With respect to the sample program, when case ()ecuted, the execution
trace spectrum can be represented by

(inti, double rv = lL (for(i=0;i<abs(n);i++), rv = rrx )3

« Difference between ETS and CPS (Complete Path Smelct
—ETS records the actual instructions, whereas CRS dot

, if(n<0),return rv)

‘ These statements are executed 3 times ‘

Return

g |
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Data Value Spectra

* DVS records thealues of variables

» With respect to the sample program, we focus orvahge of variablev

— When test case (2,3) is executed, the sequenbe ebtues ofv is (1,2,4,8) which is
one of the DVS representations

Return
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Executable Statement Hit Spectra

* ESHS records thexecutable statements that are
coveredby the test execution.

— excluding comments, blank lines, (some) variable
declarations, function declarations, etc.

* Suppose there areexecutable statements; s,,
-1 Sy
* The spectrum with respect$o(i = 1, 2, ...,m),
indicateswhethers is covered by the test execution.

e There are 9 executable statements at lines 4,%, 7,
11, 12, 15,16 and 19

* When test case (2,3) is executed,dRecutable
statement hit spectruia
OnY, VY, Y, N, N, Y).

‘ Statement 4 is executed ‘ [ Statement 11 is not executed

e -
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 56




Outline

* Motivation and Background
* Execution Dice-based Fault Localization
* Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— | Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
— Similarity Coefficient-based Fault Localization
* Empirical Evaluation
* Theoretical Comparison: Equivalence
* Mutation-based Automatic Bug Fixing
* Conclusions

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 57

= Code Coverage-based Fault Localization

Calibration

W. E. Wong, V. Debroy and B. ChdiA Family of Code Coverage-based
Heuristics for Effective Fault LocalizationJournal of Systems and Software
Volume 83, Issue 2, pp. 188-208, February 2010
(Best Paper Award; COMPSAC 2007




Code Coverage-based &l Cali'b'mtiorZ(l)

* Suppose for a large test suite, say 1000 test casesjority of them, say
995, are successful test cases and only a smabberofi failed test cases
(five in this example) will cause an executiondad.

* The challenge is how to use these five failed taststhe 995 successful
tests to conduct an effective debugging.

* How caneach additional test catitat executes the program successfully
help locate program bugs?

* What about each additional test case that makgsrtiggam execution
fail?
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Code Coverage-based Ca[i5ratiorZ(2)

* Should all the successful test executions providesame contribution to
locate software bugs?

* Intuitively, the answer should bed’

* If a piece of code has already been executed ssfotlg<994 times, then
the contribution of the 995th successful execuidikely to be less than,
for example, the contribution of the second sudaéssecution when the
code is only executed successfully once

* We propose that with respect to a piece of codectimtribution
introduced by thdirst successfulest that executes it in computing its
likelihood of containing a bug isrger than or equal tihat of thesecond
successful test that executes it, whictaiger than or equal tihat of the
third successful test that executes it, etc.

* The same also applies to the failed tests.
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Code Coverage—liaseef e Ca[ib'mti(Z?:)

(0N total number of failed test cases for B

Dy total mumber of successful test cases for 3

M total number of failed test cases with respect to @ that execute §
Ny total mumber of successful test cases that execute §

CEj contribution from the i failed test case that executes §

g contribution from the i* successful test case that executes .§

Gr number of groups for the failed tests that execute §
Gs number of groups for the successful tests that execute .§
ME; maximal mumber of failed test cases in the ® failed group

Mg maximal number of successful test cases in the /* successful group
Wr,; contribution from each test in the * failed group
Ws,; contribution from each test in the i* successful group
LEs Oe/Ds
* G512 C5,2Cgp2 ... 2 Cgand €y 2Cpp2 Cep> o 2 Gy

* If the statement is executed by at least one failed test, theridte contribution from all
the successful tests that execgighould be less than the total contribution frontlel

failed tests that execusg(namelyy'e, <3, ) =

* All the tests in the same failed group have theeseamtribution towards fault localization,
but tests from different groups have different citntions

—  —
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Code Coverage—liasec{ A Ca[z'5rati¢£4)

e For illustrative purposes, we sgt= Gg = 3,Ng;=Ng = 2, andn ,=Ng ,= 4

— The first failed (or successful) group has at ntesttests, the second group has at most
four from the remaining, and the third has evenghglse, if any.

* We also assume each test case in the first, seanddhird failed groups gives a
contribution of 1, 0.1 and 0.01, respective&gﬁ’(z 1,wg,=0.1,
andwg ;= 0.01).

* Similarly, we setvg ;= 1, ws ,= 0.1, andwg ;to be a small value defined asx
XrsWherea is a scaling factor.

[@oxng,+(0.1)x ey + Q.01 x g5 ][ (LO)x gy + (0.1) ¥ 71y + @X Y g5 X M5 |

N, = N, <
0, for 5\}, 0 O'\, for S\F,? 0, for A< 6 J
where ng, = {1, for,=1 n,={n;-2, for3<n,<6 M= Ne_ 6, for 26> 6 am
2, forngz2 4, for Vg >6
[0, form,=0,1 P’ for pe<ny, 0 for As<ng,+ng,
i &

1;\@— Mg — Mgy, for  =mg +ng,

WSJ:L, forng,=2 and a5 >1 "SJZFS* ngy, forng, < Ne<nmg, +mg; M3 T

Mgy

for D& =g, + 15y

I -
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Code Coverage-based & Calibration (5)

—
0L B & B &% % & 5|5 r
4 1t o © o 1 1 o 1 1|1 14— failed test @ More Details
3 1 1 0 1 o 0 @ @ 1 Q 0 e
|1t e 1 0 o 1 1 1 1|1 14— failed test
L |1t 1 1 1 0 0 1 1 1 ]o 0
£ |1 1 1 1 o 1 1 1 1o 0
t |t o o o o o 1 1 1|1 0
L& lt 1 0 0 0o 1 1 o 1|1 0
|1 1 1 1 9o o 1 1 1o 0
e 1 o o o 1 o o 1|1 0
te |/t o o 0o 1 o 1 1 1|1 14— failed test
/e 1 1 0 o 0o ¢ 1 1 |o 0
L F3 1 U T T S T A B SR O I 0
s |t ¢ 1 0 e o 1 1 1|0 0
ty O 1 0 1 1 0 1 @ 1 |1 0
s |1 0 1 0 1 0 1 1 1|1 14— failed test
g lo 1 0 1 o o ¢ 1 1 |0 0
|1t 1 1 1 o o 1 1 1|0 0
by |1 @ 1 o 1 1 @ 1 1 1 14— failed test
e [t 1 1 1 8 0 1 8 1|0 0
p |0 0 1 1 1 1 1 o 1 ]1 0 | e
number o !
[ sl o] al o[ a]afafs]|s]|s |«umoerclielodiestehal
number of successful tests
I ) 12| 8| 10| 3| 4| 0| 8| B o
I .90 10,04 [0.980|-0.033/1.000 | 0.993 |0.970|0.987 0.963 [0.993 .%:;‘i"“s%
@ Next
o —
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 63

Code Coverage—liased &l Calibration (6)

* Two fundamental principles

—C532C5,2Cg52 ... 2 Co. andC:12C,2 Crp> ... 2 Cpy

N Ne
- Z G <2t W
i=1 k=1
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§ Cros&ta6—6asec[ Fault Localization

W. Eric Wong, Vidroha Debroy and Dianxiang Xu, “TowarBetter
Fault Localization: A Crosstab-based Statisticap/gach,”
IEEE Transactions on Systems, Man, and Cybernetitart C:
Applications & Reviews

(Accepted in December 2010 for publication)
(http://ieeexplore.ieee.org/stamp/stamp.jsp?arnunilia 72029)




Crosstab

* The crosstabcfoss-classification tab)eanalysis is used to study

the relationship between two or more categoricabiées

e A crosstab is constructed for each statement mafsl

o is covered © is not covered ¥
successful executions Nes(n) Nus(a) Ny
failed executions Ner(n) Nypl(a) Nr
¥ Nelo) Nisle) N

N total number of test cases

N total number of failed test cases

Nz total number of successful test cases
Nela) number of test cases covering ©

Nep(©) | number of failed test cases covering @

Nes(@) | number of successful test cases covering @

M) number of test cases not covering
Nxi(®) | number of failed test casesnot covering ©
Nimi{®) | number of successful test cases not covering

N |
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el -
Dependen lationship (1)

* For each crosstab, we condudtygothesis tesb check thalependency
relationship The null hypothesis is

H,: Program execution result is independent of th

coverage of statement

* A chi-square testan be used to determine whether this hypothesisidh
be rejected. Th&€hi-square statistiis given by

XZ((D) - (Nee(w) = Ecp(m))z + (Nedw) = Ecéw))2 + (N yfo) = Eul((")))z + (Nyfw) ~ Eugw))z (1)
Ece(®) Ecs(©) Eul0) Eudo)

- ancku(e) =

Nu(w) % Ng
N

Where Ece(o) = Nc(“”\)lx NF’ Eco(0) = Nc(m’j x Ns’ Eys(®) = W’

* Under the null hypothesis, the statisti¢w) has approximately a
Chi-square distribution
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Dependency Rg[ations/iizy (2)

* Given a level of significance (for example, 0.05), we can find the
correspondinghi-square critical valugs, from the
Chi-square distribution table.

4If X 2(w) >X§, werejectthe null hypothesﬁs, i.e., the execution result is
dependenon the coverage a@b.

— Otherwise, waccepthe null hypothesis, i.e., the execution result thred
coverage oo are ‘independent

I -
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Degree of Association (1)

* The “dependencyrelationship indicates high associatioamong the
variables, whereas thétlependencyrelationship implies aw
association

* Instead of the so-called “dependency”/ “indepengénelationship, we
are more interested in thiegree of associatidsetween the execution
result and the coverage of each statement.

* This degree can be measured based on the stankiasduare statistic.
However, such a measurereases with increasing sample si&s a
result, the measure by itself may not give the€trdegree of association.

* One way to fix this problem is to use thentingency coefficient
computed as follows 2 ()N
M(w) - X(@/N )

JJ(row—-1)(col-1)

whererow andcol are the number of categorical variables in all rawd
columns, respectively, of the crosstab

-
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Degree of Association (2)

* The contingency coefficient/(w) lies between 0 and 1.
— When x(w) = 0, it has théower limit Ofor complete independence

— In the case ofomplete associatigthe coefficient can reach theper limit 1
whenrow = col

* In our caserow = col = 2 andN is fixed. From Equation (2)1(w)
increases with increasing2(w). @

 Under this condition, the Chi-square statistiw) for statemento gives
a good indication of the degree of the associdietween the execution
result and the coverage @f
— Nis fixed because every faulty version is executét respect to all the test cases

I -
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What Rind of Execution Result is%’e ﬁssociatecfm

* Need to decide whether ittise failed or the successful execution result
that is more associated with the coverage of tueistent.

* For each statemeni, we compute?-(w) andPy(w) asN%(:”) and\'%
which are thgpercentages of all failed and successful testsetkedtutew.

* If &-(w) is larger tharyw), then the association between the failed
execution and the coveragecfs higher than that between the
successful execution and the coverage.of

| -
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What Rind of Execution Result is%’e ﬂssociated'a

* We defineg(w) as

B(0) O
p(o) = % = # ()

° If ¢(w) = 1, we havexr?(w) = 0, which implies the execution result is
completely independeiof the coverage ob. In this case, we say the
coverage ofo makes thesame contributioto both the failed and the
successful execution result.

* If () > 1, the coverage abis more associated with the failed
execution.

* If g(w) < 1, the coverage abis more associated with the successful

execution.
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Five Classes of Statements

* Depending on the values of?(w) and¢@(w), statements of the program
being debugged can be classified into five clas(i)s:

— Statements witlp > 1 and x2 > X5, have aigh degree of association
between their coverage and théed execution result

— Statements witlp > 1 and x2 < X5, have d@ow degree of association
between their coverage and théed execution result

— Statements witlp < 1 and x2> X5, have aigh degree of association
between their coverage and theccessfuéxecution result

— Statements witlp < 1 and x2 <. have dow degree of association
between their coverage and theccessfuéxecution result

— Statements witlp = 1 (under this situation 0 x2< X5, ) whose coverage is
independenof the execution result

Statements in the first class are most likely,(have the highest suspiciousness) to contai
program bugs followed by those in the second, iftie find the fourth classes, respectively.
Statements in the third class are least likely, (have the least suspiciousness) to contain by
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Suspiciousness of Each Statement

Thelargerthe coefficientm(w), thehigherthe associatidn between the
execution result and the coverage.of
— For statements in thest and the seconclasses, those withlarger gz are
more suspicious
— For statements in thieird and the fourticlasses, those withsanallerd are
more suspicious

* The suspiciousness of a statem@mian be defined by a statisgas

M) ifp)>1
O, 2

* Each(lies between -1 and The larger the” value, the more suspicious
the statemen.

— —
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Crosstab Example (1)
= —

* The following table gives thetatement coverag@ndexecution results
Of the 36 test cases, there are nine failed teggs i) and 27 successful
tests (e.gt,)

— An entry]l implies the statement isveredby the corresponding test and an entry O
means if is not.

— An entrylimplies afailed execution and an entry 0 means a successful erecuti

sif[ 52 [ ss [ sa [ s [ 56 | 50 [ frsaf suo | 7 w1111 oo 1 o]1] o¥[o
s olole 11 o1 ] 1™ LloJlo [t i [t]o][1][1]e
sl 1l1lel1lolololol1lo e 1] 1]oJoloJo 1 ol1 |1
sl 1 lol1lololi 1l 1111 mloflofof[1 1ot 1[ofoTfe
a1ttt ]oflof[r[i]t]o o] 011 folojoli]jojol 1 |0
|1 1{1]1]of1]1 1[1 0|0 g | 1 S 0 T A 1 |0
|1 ]0fojojofol1]1(1 10 1 jojof1]1]1]0]1]1 0 |1
7 1 1 0 0 0 1 1 0 1 1 0 513 1 1 1 0 0 1 0 0 (1] 1 0
w1 ]1[1]1]JoJol1[1]1]o @ w]1]ojoJololt[t]ol1]1 o
1y Q 1 [ Q 0 1 0 0 1 1 0 s | 0 1 1 1 1 0 0 1 1] 0 1]
mli1]ofole[t o1 t[1]1][1 wslo]ol 1111 fol1]olo e
mlo|t][1]e]olololt[1]o o ml1]oloolt[t]olol1][1 o
ml1|t]olt[t[of1]ol1][1 o w11 ]o|1|oJolo1 o]0 |1
mli1lof1]oelolol1li[1]oTle mlt1]ofo]1 [ttt ]olol1 e
melo | 1]o]i]1Jo][1]o[1]1 0 w1 1]oolo[t]ol1]o]o|a
fs 1 0 1 0 1 0 1 1 1 1 1 T4 1 1] 1 1 1 0 0 1 1 0 1
ol 1ol 1Jololol 11 ]o]o o oot 1 Jolt[1T1]oTo
w1 t[1]t]olo[1]t][1]o]a w00 1]oft]ololo[1]o0 @
ms| 1o 1ot 1ot [1]1]1

| |
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Crosstab Example (2)

» We can construct the crosstab $pas shown in the following

5115 covered | 51 is not covered ¥
successful executions 16 11 27
failed executions 9 0 9
Y 25 11 36

()N _25%9_ o
36

— NC
s We have ™"y

E.(S) =Nc(%)T*Ns =%627=18_75

ND*N _11X9_, 75

Er(9)= N %
N9 N, _11x27_
E(e) =~ =825

* FromEquation (1)
(N£(8)- B9, (NL9- REH’ (NEB B (M) BN

E(s) B9 EA 9 E( 3
_(9-6.25% + (16- 18'752)+ (6 2'73)+ (14 8.25
6.25 18.75 2.75 8.25 =5.2800
I -
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Crosstab Example (3)

* If we choose the level of significance as 0.05,Ghésquare critical value is
3.841. Sincey¥(s,) = 5.2800 idargerthan 3.841, the null hypothesis fgrshould
berejected

* Similarly, we can computg? for other statements. For example, we hg(s,) =
4.4954 x(s;) = 0.1481, and(s,) = 1.3333.

* Next, we usé-quation (2o compute theontingency coefficient/ for each
statement. We hav(s,)= 0.1467,9(s,)= 0.1249,9(s;)= 0.0041, andw(s,)= 1

0.0370.

M o ~

51 | 5.2800 | 0.1467 | 1.6875 | 0.1467

* Computeg and {using Equations (3) and T i1952 To1249 [ 03599 01249

53 | 0.1481 | 0.0041 | 0.8571 | —0.0041

* Based on the suspiciousness,
54 | 13333 [ 00370 | 06000 [ —0.0370

statemens; should be examined first 5 | 18204 00506 | 16364 | 00506

for locating program bugs followed by 56 | 0.1558 | 0.0043 | 1.2000 | 0.0043

S S5 Sipp Sor S Sy Sy Sy @NAS,. 52 | 0.6000 | 0.0167 | 0.7500 | —0.0167

53 | 76364 | 02121 | 20765 C_0.2121

53 | 0.1846 | 0.0051 | 1.1053 | 0.0031

S1g | 1.3333 | 0.0370 | 1.5000 | 0.0370

Jump to Slide 16 Level of Significance
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- RBF Weura[ﬂ\fetwor&—liasef
Fault Localization

« W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaufexu
and Bhavani Thuraisingham, “Effective Software Fawitalization using
an RBF Neural Network,|[EEE Transactions on Reliability
(Accepted in May 2011 for publication)
(http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arner=6058639)
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Fault Localization, International Journal of Software Engineering
and Knowledge Engineering9(4): 573-597, June 2009




RBF Neural Network, (1) - o

* A typical RBF neural network haslaree-layer feed-forward structure

— Input layer:Serve as an input distributor to the hidden layep&ssing inputs
to the hidden layer without changing their values.

— Hidden layerAll neurons in this layer simultaneously receive th
n-dimensional real-valued input vector x.

o Each neuron usesRadial Basis Function (RBRs the activation function

o An RBF is a strictly positive radically symmetrigriction, wherehe centept has
the unique maximum and the value drops off rapidlgero away from the center

aWhen the distance between x gnftlenoted as ||x#{) is smaller than the receptive
field width g, the function has an appreciable value.

alA commonly used RBF is thBaussian basis functioh

=

207

Whereuj andg; are themean(namely, thecente) and thestandard deviation
(namely, thevidth) of the receptive field of thig" hidden layer neuron, ar@l(x) is
the corresponding activation function.

I -
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 81

RBF Neural Network, (2) -

— Usually the distancexfi|| is theEuclidean distancketweerx andp (|x—u|)
— However, (§—u|k) is inappropriatdn the fault localization context
{We use aveighted bit-comparison based distagipe-/|ysc) ‘

Letx beC, (the coverage vectoritiftest case)

lle, —n; Hvec=4 T CO§C|I 2

Z(Q, (I
=

where co§, , = ||ccg|1;-|l:: S Te k = ,
4 ] 2 x 2
S0 = S

where (c,), andi,)« are thek" element ofc, andp; , respectively.

This distance is more desirable because it effelstiiakes into account the
number of bits that ateoth 1 in two coverage vectors (i.e., those statements
covered by both vectors).

| -
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RBF Neural Network, (3) o

— Output layer:y = [y;, V., ..., Y] with y; as the output of th& neuron given by

h
Y = > W R(x) fori=1,2,..k
j=1

whereh is the number of neurons in the hidden layer ands the weight
associated with the link connecting tfie hidden layer neuron and th&

output layer neuron.

| |
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RBF Neural Network, (4)
|

Inpu = ¢a, Xz, ..., Xm)

Input Layer

Reception Field
Centers and Widt|
H e, . P
4,0, ..., ¢

Hidden Layer

Output Layer Weights
Wiz, Wi, .., Whk
Output Layer

Outpuy = 4, ..., W woe g

* An RBF network implements a mapping from thelimensional real-valuedput spacdo
thek dimensional real-valuedutput spaceln between, there is a layerlofiden-layer spac

* The transformation from the input space to the éidbhyer space isonlinear, whereas the
transformation from the hidden-layer space to tput space isnear.

* The parameters that need to be trained aregherg(i.e.,m;,m,,..., m,) andwidths(i.e.,s;,
S, ..., S,) Of the receptive fields of hidden layer neuraarsd theoutput layer weights
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RBF Neural Network, (5)

* We construct an RBF neural network with

—minput layer neurongach of which corresponds to one element in angive
coverage vector of a test case)

— one output layer neurqicorresponding tthe execution result of tesf
—one hidden layer between the input and output fayer

N |
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RBF Neural Network, (6)

* Once an RBF network is trained, it providegood mappinbetween the
input he coverage vector of a test geand the output
(the corresponding execution re3ult

* It can then be used tdentify suspicious codef a given program in
terms of its likelihood of containing bugs.

* To do so, we use a set\oftual test casew,, v,, ..., v,, whose coverage
vectors are where

& | [1oL O
¢,| |01L 0
M| [MMO M
C, 0O0OL 1

Note tha’t execution of testcovers only one statemesﬂ
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RBF Neural Network, (7)

* If the execution of; fails, the probability that the bugs are contaiireg is high. ‘

 This suggests that during the fault localizatior,sivould first examine the
statements whose corresponding virtual test cdlse fa

* However, the execution results of these virtuaktean rarely be collected in the
real world because it is very difficult, if not iragsible, to construct such tests.

* When the coverage vectoy  of a virtual teseepis input to therained neural
network its outputf, is theonditional expectatioof whether the execution of

fails giverg, . !
]

* This implies the larger the value Q,Jf the mideely that the execution of
fails.

* Together, we have the larger the valuévpf tbeerfikely it is thatq contains
the bug.

* We can treaf,, asthe suspiciousnesgiofterms of its likelihood of containing
the bug.
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Summary of RBEF-based Fault Localization (1)

51_/!2/ 53 Sn2 Sind_ S [[7) Eaalsisn
LA A — 01 N [0] is used as an
hifi" 0 0 — "0 0 n\ (0] |expected output
sil_o 1 0o 1 10
|l 1T 1 1 1 ¥|[O
HION 0 1 1L 071
Each row (1 ¢., a coverage

wector) is uspd as an input

=
[ P

The actual output|
gves an eshmate
of the execution

=
—

—
=

afe o = oo
- o o
=)

B
-~
-

The output layer weights are trained to minimize
the sum of the square errors between the actual
outputs and the expected outputs
Train an RBF neural network using the coverage vectors and program execution results
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Summary of RBF-based Fault Localization (2)

The suspiciousness
of each statement

Compute the suspiciousness of each statement in P using virtual test cases

N |
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Three Novel Aspects
L N |

* Introduce a method for representing test casegnséat coverage,
execution results within a modified RBF neural natkvformalism
Training with example test cases and executiontesu
Testing withvirtual test cases

* Develop a novel algorithm tmultaneously estimate the number of
hidden neurons and their receptive field centers

* Instead of using theaditional Euclidean distancehich has been
proved to be inappropriate in the fault localizat@mntext,
[aweighted bit-comparison based distdisdefined to measure the
distance between the statement coverage vecttnodest cases.
— Estimate the number of hidden neurons and theaptée field centers
— Compute the output of each hidden neuron
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RBF Examf[e (D)

* Suppose we have a program with statementsSevertest cases have
been executed on the program. Table 1 gives therage vector and the

execution result of each test.
51 82 853 54 85 g §7 8y So  Sp I
1 1 1 1 (US| (U 1 1 @<— t, is a successful test
1\ oo o 1 1 (o) 1 0 0o 1|0
I3 1 1 1 0 0 1 0 0 1 1 0
141 1 0 0 1 1 0 1 1 0
s 1 1 1 1] 1 0 0 1] 1 0 0
g1 1\1 1 o o0 O 1 1 1 @«— t,is a failed test
711 0 1 1 1 1 1 1 0 1 1
s, is executed by, Ss is not executed bty
N ]
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RBF Examl?[e (2)

* An RBF neural network is constructed and trained
—10neurons in thenputlayer
— 7 neurons in théiddenlayer
— The field widtho is 0.395
— 1 neuron in theutputlayer

— The output layer weights ave= [w,, W,, W, W,, Wy, Wg, W,]T
=[-1.326, -0.665, 0.391, -0.378, -0.308, 1.53181]8
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RBF Examf[e (3)

* Use thecoverage vectors of the virtual test caasshe inputs to the
trained network.

* The output with respect to each statement is thpisiousness of the
corresponding statement.

Part (a): Input coverage vectors which are the suspiciousness of the statements

Inputs and outputs/statement suspiciousness

1t oooo0o0000o0
¢, |01 0 00O0O0CDODO0OD0 A 0.0384 T 0.0179
<, 0010000000 A ~

3 - 5=
| |00oo1 000000 W | 00481 y | 0.01°

- ~ Highest/

3 N | 2 >
i =2 2 g g (1) T 2 2 E g ?"3 0.1246 iy 0"900| Most suspiciou
C -
Vs - - A - ] Lowest/
c, 0000O0CO0OT1 O0O00O0 o 0.0768 |ivb 0'0066| Least suspiciou
¢, | |0 0O0OO0DO0ODO0O0OT1 OO0 f;j 0.0173 "’i 0.0782
o,|loooooooo1 0 : :
<, 00 000O0O0O0GO01 Part (b): Outputs produced by the trained network

N |
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* Although BP (back propagation) networks are theelyidised networks
for supervised learning, RBF networks (whose oulgygr weights are
trained in asupervisedvay) are even better in our case because

RBF canlearn much fastethan BP networks and do not suffer from
pathologies likeocal minimaas BP networks do.
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The Construction of D* (1)

* The suspiciousness assigned to a statement sheuld b

e Intuition 1: directly proportional to the number of failedtteases that
cover it suspiciousness) o N.p

* Intuition 2 inversely proportional to the number of succedsfst cases
that cover it — suspiciousnegs) o 1/Ng @

* Intuition 3: inversely proportional to the number of failedtteases that
do not cover it————— suspiciousness) o 1/N

» Conveniently enough such a coefficient alreadytexis
KulczynskiKulczynski, 1928]f Ngg/(NegtNyg)

—  —
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The Construction of D* (with * =Z__)(2)

* However, we also have a fourth intuition ...

e |[ntuition 4: Intuition 1 is the most sound of the other intnts and should
therefore carry a higher weight.

* Kulczynskidoes not lead to the realization of the fourthitidn.

* Under the circumstances we might try to do somethike this:

suspiciousnes{s)szxii\ICF or maybe everpuspiciousnesﬁs)s%

UF NCS UF + NCS

* But this is not going to help us (as we shall |gt)

* So instead we make use of a different coefficiéri) (

- Nge X N

suspiciousnegs) s —F——CF
Ny + N

UF CS
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D* Examflk cwith *=2(1)

* Suppose we are writing a program that computesuheor average of
two numbers.

— But with respect to the sum computation (staterbgrinstead of adding the
two numbers, we accidentally subtract them

Coverage
Stmt. #. | Program( P ) bl |t |t |t |t
1 read (a); . .
2 read (b); . .
3 read (choice); . .
4 if (choice == “sum”) . .
i
5 | result=a-b; : /ICorrect: a + b; .
6 else if (choice == “average”) .
7 result = (a + b)/ 2; .
8 print (result); . .
Execution Result (0 = Successful / 1 = Failed)| 1 1 0 0 0 0
S e -
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* ; * _
D* Example: with * = 2 (2)
. -

* Next we collect the statistics we need for D¥.{, N, andNg

)*

«—— Most suspicious

I T R
1 2 0 4 1
2 2 0 4 1
3 2 0 4 1
4 2 0 4 1
s 2 0 1 7
6 0 2 3 0
7 0 2 3 0
8 2 0 4 1
Statement rankings, |1, 2, 3, 4, §6, 7|

Tied togetheriT
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Other Fault Localization Techniques

Tarantula, Ochiai, SOBER, < Liblit05
e Tarantula

failed(e)

totalfailed

suspiciousness( &)

passed(e)+ failed(e
totalpassed totalfailec

— passed(e)s the number of passed test cases that exectgenstiate one or more times
— failed(e)is the number of failed test cases that executeraente one or more times
— totalpasseds the total number of test cases that pass itestesuite

— totalfailedis the total number of test cases that fail intése suite

e Ochiai

\/NFX(NCF+ Ncs)
* SOBER
e Liblit05
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Is a Technique Good at Locating Faults?

* “Good is more of a relative term. We can show a fautialization
technique is good by showing that it is more effecthan other
competing techniques

* We do this via rigorous case studies
— Using a comprehensive set of subject programs
— Comparing the effectiveness between different fiaailization techniques

— Evaluating across multiple criteria

* Since it is not possible to theoretically provet thae fault localization
technique is always more effective than anothexh smpirical

evaluation is typically the norm
— We will return to this issue later on

Jump to Slide 123
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Subject Programs

* Four sets of subject programs — iemensuite, thenix suite,gzipand
Ant— were used (19 different programs in all - C & Java)

— Two additional programg(epandmake are also used which makes a total o

21 programs(é)

Program Lines of Code | Number of faulty versions used | Number of test cases t Some versions
print_tokens 565 5 4130 were created using
print_tokens2 510 10 4115 .

schedule 412 9 2650 Ui S
schedule2 307 9 2710 fault injection
replace 563 32 5542 @

tcas 173 41 1608 =7

tot_info 406 23 1052

cal 202 20 162

checkeq 102 20 166

col 308 30 156

comm 167 12 186

crypt 134 14 156

look 170 14 193

sort 913 21 997

spline 338 13 700

tr 137 11 870

uniq 143 17 431

gzip 6573 28 211

Ant 75333 23 871

| I |
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Techniques D* is Compared to

* First compared D* to thKulcyznskicoefficient

* Also compared it with 11 other well-known coeffiote forming a
baker’s dozeifiChoi et al. 2010, Willett 2003]

(1) Simple-Matching (7) Gower

(2) BraunBanquet (8) Michael

(3) Dennis (9) Pierce

(4) Mountford (10) Baroni-Urbani/Buser
(5) Fossum (12) Tarwid

(6) Pearson(x?)

* Further comparisons with other techniques were péstormed
—To be discussed Iat<@

| -
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Three Evaluation Metrics/Criteria

* Number of statements examined

— The number of statements that need to be examin@&t o locate faults
versus other techniques

— An absolute measure

* The EXAM score: the percentage of code examined

— The percentage of code that needs to be examinadiby D* to locate faults
versus other techniques

— A relative (graphical) measure

* The Wilcoxon Signed-Rank Test
— Evaluate the alternative hypothesis that otherriegles will require the
examination ofmore statements than D*
l a D* is more effective than other techniqués

a Null hypothesis being that the other techniquesireghe examination of a number
of statements that Iess than or equal tthat required by D*

— A statistical measure
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Ties in the Ranking: Best/Worst

* The suspiciousness assigned to a statement byrd*diner techniques)
may not be unique, i.e., two or more statementdestied for the same
position in the ranking.

From our

example: Statement rankings, 1, 2, 3, 4, 86, 7
Tied togetherJ L Tied together

* Assuming a faulty statement and some correct stattsrare tied
—In thebestcase we examine the faulty statemfast
— In theworstcase we examine list

* For each of the previously discussed evaluatideriai, we will have the
best casand theworst caseeffectiveness.

— Presenting only theveragewould have resulted in a loss of information

I -
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VI -
Results — Total Number of Statements Examine

I -
Fault Localization Best Case Worst Case
Technique Siemend  Unix | gzip] Ant| Siemeds Uni gzip| _—Ani
D* 1754 | 1805 | 1220] 672] 2650] 5226 _ 308f( 1
Kulcynzki 2327 | 2358 | 1272[( 155 3186 5779 3130 20f9
Simple-Matching 6335 | 5545| 908] 25044 718y 897 10968 2BR6P——
BraunBanquet 2438|2767 135 21 3296 6187 315 2bo| D¥ is clearly
Dennis 2206 | 2934| 1960\_ 19 3074 o504 37d7  24rq the most
Mountford 1074 | 2183] 1317 329§ 283] seda  suli ashs Sffective
Fossum 2230 | 2468] 4547 1504i5 3125 5843 87pl  15pet”
Pearson 3279| 3581 145D 1188 4247  72p1  32p7  1¢c Jumpto Slide 119
Gower 6586 | 8630 26215 9673)7 743% 12027 27992 961809
Michael 1003 | 3713| 2504 4504 2864 7243 4241  sopa
Pierce 8072 | 11787 24085 3220B3 15299 23387 46{53 10]8725
Baron-UrbaniBusel  3547| 3189 1428 4693 4404 6605 3205  5)95
Tarwid 2453 | 3309 | 3110 5964 3321] 78438 5032  99ps

* D" is very consistent in its performance

» Often the worst case of'[is better than the best case of the other
techniques (Note that * = 2)
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Results — EXAM Score (Siemens suite)

C—
- M
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w
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g //
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g 20%
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Results — Wilcoxon Signed-Rank Test (1)
m— I -

Fault Localization Best Case Worst Case
Technique Siemens Unix 9zip Ant Siemen$ Unix 9zip Ant
Kulcynzki 99.99% | 99.99%|| 93.75%|| 98.43fp 99.99% 99.99 93.1#% 98M3%
Simple-Matching 100% 100%|  99.809 99.904  100% 100§ 97.50% .8098
BraunBangquet 99.999  100%|  99.80%  99.80p6  99.99%  99.9p% il }1399.21%
Dennis 99.99%| 100% | 99.99%  99.80%  99.99p6 100§  94.30%  99.31%
Mountford 99.99% [ 99.99%| 99.219%  99.90%  99.99p6  99.9%P6 _ 73.42%9.80%
Fossum 100% | 99.99%  99.219 99.21f6  100%  99.99%  99.60%  96lB7%
Pearson 100% | 99.99%  99.219 99.21)  100%  99.98% 7087%  9dB7%
Gower 100% 100% |  99.99%|  99.999 1009 100%  99.99%  99.99%
Michael 99.68% | 99.99%| 99.99%  99.97%  99.54p6  99.99%  99.99% .9799
Pierce 100% 100% | 99.99%  99.999 1009 1004  99.99%  99.49%
Baroni-Urbani/Busdr  99.9994  100%|  99.80%  99.80ps  99.99%  100}&4.42% || 98.82%4
Tarwid 99.99% | 99.99%| 99.99%  99.99%  99.99% 10096 99.99%  96.99

* Generally the confidence with which we can claiet th* is more
effective than the other techniques is very higgs{ly over 99%).

* But there are a few exceptions.

* Why? Perhaps this has something to do with the auayhypothesis was
constructed.

I -
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Results — Wilcoxon Sz;ﬂecf-ﬂgmﬁgt (2)

* Let us modify our alternative hypothesis to consitgualities

—We now evaluate to see if D*igore effective than, or at least as effective as
the other techniques.

— Which is to say D* requires the examination of anber of statements that i$

less than or equal that required by the other techniques.

L . Best Case Worst Case
Fault Localization Technique - -
gzip Ant gzip Ant

Kulcynzki 100% 100% 100% 100%
Simple-Matching 100% 100% 99.94% 99.90% | D* is clearly
BraunBanquet 100% 100% 99.14% 99.619 the most
Dennis 100% 100% 99.43% 99.61%)| | offective
Mountford 100% 100% 95.78% 99.90%
Fossum 100% 100% _99.67% 99.44%
Pearson 100% 100% | C 92.19% 98.449
Baroni-Urbani/Buser 100% 100% 95.42% 99.229

Confidence levels have gone up significandli.entries but one are greater than 95%.
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More Discussion on D*

* D* with a higher value for the *

e Compare Dwith other fault localization techniques
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Effectiveness of D*

as the value of * increases.

* The effectiveness of D* for thmakeprogram increases until it levels off

* A similar observation also applies to other progﬁ@
18000 -
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Effectiveness of Other Fault Localization Techniques

* The best- and worst-case effectiveness of 18 facdilization techniques
(excluding D*) on 21 different programs.

Best Case Worst Case
Unix_ | Simens grep 9zip | makﬂ Ant Unix Slme?s grel) 9zi ma’fe Ant
H3c 1655 1396 2702 1535 855 132 5026 2292 44%5 3312 14272 1882
H3b 1701 1439 3019 1535 10817 1358 507] 13 16556 1860
RBF 1302 2114 2075 2966 91@ 233 475 14590 159
Ochiai 1906 1796 3092 1270 1030 887| 532 2 47 16044 1389
Crosstab 2524 2005 4005 1314 1240: 107 6094 3 3091 18142 1578
[Tarantula 3394 2453 5793 3110 1689 596 7704 3311 7§E2 5032 23468 9935
Kulcynzki 2358 2327 3458 1272 1070 155 5779 3186 51p2 3139 16668 2069
Simple-Matching 5545 6335 23806 9087 41374 250414 8977 7187 25#06 10968  484EB631
BraunBanquet 2767 2438 4114 1358 1173 219 3296 3296 %7 3135 17986 2698
Dennis 2934 2206 5498 1960 15011 197: 6504 3074 8986 3737 20755 2476
Mountford 2183 1974 3450 1317 1126 329 5644 2832 5189 3111 17152 3818
Fossum 2468 2230 15952 4547 1956y 150415 5843 3126 21193 8701 25089911
Pearson 3581 3279 6894 1450 1768 118 72! 4247 10796 3227 23569 1690
Gower 8630 6586 43428| 26215 128318 967307 12027 7434 45p62 279920513 967809
Michael 3713 1993 5027 2504 1498 450:. 72 2864 85p1 4281 20725 5004
Pierce 11782 8072 16646 2406 3056 322083 23387 15299 60437  467%385G| 101872
Baroni-Urbani/Buser| 3189 3547 4902 1428 12131 469 66! 4404 6685 3205 17689 5195
[Tarwid 3399 2453 5793 3110 16890 596 78_Sb 3321 95017 5032 23468 do3s
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Comparison between D* and Other Techniques
= T— T—

* The effectiveness of s better than the other 12 similarity coefficient-
based fault localization techniqui

* From the following table, we also observe that Ritif an appropriate
value of*) performs better than other fault localizationhteiques,
regardless of the subject programs, and the besgtermst-case.

— The cell with a black background gives the smaftesich that D*
outperforms others.

Best Case ‘ Worst Case |
Unix Simens grep Zi make Ant] Uni: Simens grep | gz‘p make nt|
D2 1805 1754 3023 0 10287 5226 2650 4757 3087 16254
D3 1667 1526 2946 108: 10257 36! 5088 2422 468! 16224 880
D4 1460 2833 1087, 10022 29 0 2356 4567 2954 15989 804
Ds 1507 1435 2762 1085 10022 22 4928 2331 449 2952 15989 [74
D* 1386 (*=7) 2693 (*=8 8 4 q 9
H3b 1701 1439 3019 153! 10817 1358 5072 233§ 475 3313 16556 60 [18]
H3c 1655 1396 2702 153! 8553 1320  50p6 2292 443! 3312 14272 2 18]
Tarantulg 3394 2453 5793 3110 1689Q 5964 77104 3311 7812 5032 34682 9935
Ochiai | 1906 1796 3092 127 10305 88y 53p2 2697 482% 3047 160441389
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- Theoretical Comparison: Equivalence




Comparing Fault Localization Techniques (1)

* As discussed earlier the general norm for compdenty localization
techniques has been to wsepirical data.

* If techniquea is better than techniqug then it should lead programmers
to the location of fault(s) faster th@n

* Multiple metrics have been proposed to do this athe ones used in
our researcl(i)

* Case studies can be quite expensive and time-caongumperform.
Often a lot of data has to be analyzed.

But is empirical comparison always required...espiscrehen
trying to show that two techniques will be equafiective?

— -
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Comparing Fault Localization Techniques (2)

* Note that the suspiciousness of a statement isvaet from arabsolute
sense.

— It only matters how the suspiciousness of two (orejistatements compare
with respect to each other (i.e]ativeto one another).

* Supposing we have two statemesgjtands, with suspiciousness values of
5 and 6, respectively. This means thds ranked abovs, as it is more
suspicious.

* However,s, would still be ranked abog if the suspiciousness values
were 6 and 7, or 50 and 60, respectively — theivelardering ofs, and
s, is still maintained.

* Thus, subtracting the same constant from (or adiditay the
suspiciousness of every statemwiit have no effect on the final ranking
The same applies for multiplication/division opéas.
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Comparing Fault Localization Techniques (3)

* Recall the suspiciousness computatioKwoliczynski

- N
suspiciousnegs) s CF
UF + NCS

* It now becomes clear that an identical ranking tdlproduced by

- . N
suspiciousnegs) s (L) +1 or suspiciousnegs)s (——<F—)x10
UF NCS UF CS

* This is why D* was constructed the way it was

* Any operation that isrder-preservingcan be safely performed on the
suspiciousness function without changing the ramkin

* If the ranking does not change...then the effectigenell not change
either.We can exploit this!

— -
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Comparing Fault Localization Tecﬂzigues (4)

* Consider a prograif with a set of elementss. Letrank(r,s) be a
function that returns the position of statemeim rankingr.

* Two rankings', andr, (produced by using two techniquesand £, on
the same input data) aequalif
— Vs, rank(r,s) = rank(rg,s).
— Two rankings are equal if for every statement,gbsition is the same in both
rankings.

If two fault localization techniques, and £; always produce rankings
that are equal, then the techniques are said énbalent, i.e.£, = £,
and therefore will always be equally as effectiaeféult localization).

* So is the equivalence relation useful?

Certainly! In at least two scenarios it holds grgatential
— Eliminating the need for time-consuming case studie
— Making suspiciousness computations more efficient.
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Eliminating the Need for Case Stuzes (1)

* Take the example of [Abreu et al. 2009] where

— The authors use of th@chiai coefficient to compute suspiciousness.

— The coefficient is compared to several other coifitsempirically.

— Among others, it is compared to th@ccardandSorensen-Diceoefficients.
* We posit that this was unnecessary, as per the@aguce relation.

Jaccard Sorensen-Dice
_ Nee suspiciousnegs) s 2N
NCF + NUF + Ncs 2NCF + NUF + Ncs
* Via a set of order-preserving operations, bothlman

NCF
NUF + NCS

suspiciousnegs) s

reduced t0’suspiciousnegs) s Jaccarde Sorensen-Dice

R. Abreu, P. Zoeteweij, R. Golsteijn, and A. Jv&n Gemund, “A Practical Evaluation of Spectrumeuhg
Fault Localization,” Journal of Systems and Softw&2(11):1780-1792, November 2009
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Eliminating the Need for Case Stuzes (2)

* As it turns out the coefficieinderbergalso evaluates to the same form.
Ochiai was empirically compared to Anderberg.

| Jaccards Sorensen-Dice Anderberg |

* |n fact the authors also compared Ochiai toShapleMatchingand
Rogers and Tanimotmefficients, the both of which are also equivalent
to one another.

| SimpleMatchings Rogers and Tanimoto |

Such redundant comparisons could have been avbidethking
use of the fault localization equivalence relation.

Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 128




Making Computations More Efficient (1)

* As shown, if Jaccard were the chosen fault locabnaechnique, using
the suspiciousness function

.. N
suspiciousnegs)s ———F———
Nee + Ny + Nes

would give the same results as using

- N
suspiciousnegs) s ——<F—
UF + NCS

* We should go with the simplest computation as éxigected to be faster

e -
Software Fault Localization (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 129

Making Computations More Efficient (2)

* We performed an additional case study on the 7rprog of the Siemens
suite

* Observedhe relative time saveid computing suspiciousness for all the
statements in a faulty program, by using ¢heplified formof Jaccard
(J*) as opposed to theriginal (J).

— The quantity J-J*) represents the computational time that is saved.
—((3-J%13)x 100% represents the relative time saved, i.egieffty gained.

* 100 trials were performed per faulty version.

* Difference in times was computed to nanosecondgiogc
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Making Computations More Efficient (3)

Average

Programs Percentage Time
Saved

print_tokens 35.37%
print_tokens2 39.21%
schedule 44.62%
schedule2 49.74%
replace 41.65%
tcas | s5246% |
tot_info 47.68%

* The savings in terms of time are quite significant.

* Using the equivalence relation can thus, help redechniques to
simplified forms, thereby greatly increasing eficcy.
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Programs with Multiple Faults

* One bug at a time

* A good approach is to u%ﬁault—focused” clusterind
— Divide failed test cases into clusters that tadigérent faults
— Failed test cases in each fault-focused clustec@réined with the successful

tests for debugging a single fault.

I |
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* Motivation and Background
 Execution Dice-based Fault Localization
* Suspiciousness Ranking-based Fault Localization
— Program Spectra-based Fault Localization
— Code Coverage-based Fault Localization
— Statistical Analysis-based Fault Localization
— Neural Network-based Fault Localization
Similarity Coefficient-based Fault Localization
e Empirical Evaluation
* Theoretical Comparison: Equivalence
*Mutation-based Automatic Bug Fixing
* Conclusions
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Mutation-based Automatic Bug Fixing

V. Debroy and W. E. Wong, “Using Mutation to Autoncally Suggest
Fixes for Faulty Programs,” iRroceedings of the 3rd International
Conference on Software Testing, Verification antiddéion (ICST),
Paris, France, April 2010

Mutation as a Fault Generation Aid

* For research experiments, large comprehensivesdtdaare rarely
available

* Need faulty versions of programs to perform allddrof experiments on,
but don’t always have a way to get them

* Recently many researchers have relied on mutation
—’Mutants generated can represent realistic falhlts

— Experiments that use these mutants as faultyoressian yield trustworthy
results

— As opposed to seeding faults, mutant generatiantismatic

Jump to Slide 105
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Mutation as a Fault Fixing Aid?

If mutating a correct program can produce a realfatlt, can
mutating an incorrect program produce a realigtie f

* Supposing we wanted to write progr&m

* But we ended up writing a faulty progrd®h

— We knowP’ is faulty because at least one test case in ouséesesults in
failure when executed d®

* MutateP’ to getP”

 If P” = P... we automatically fixed the fault iR’
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Our Solution
Mutation Fault Localization
The Good Can result in The Good Can potentially
potential fixes for faulty identify the location of a fault
programs automatically. in a program.

The Bad We have no idea as toThe Bad Even if we locate the
where in a program a fault is, anfdult, we have no idea as to
so we do not know how to how to fix the fault. This is left
proceed. Randomly examining| solely as the responsibility of
mutants can be prohibitively | the programmers/debuggers.
expensive.

So...what if we combined the two[?

I -
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Conclusion

What We Have Discussed

* Existing and new fault localization techniques

— Many of them use the same information (statemevgrage and execution
results) to identify suspicious code likely to aintprogram bug(s)

* A strategy to automatically suggest fixes for fauttthat
—makes as few assumptions as possible about theasefbeing debugged
—is generally applicable to different types of saftevand programming
languages
— still manages to produce some useful informaticenewvhen it is unable
to fix faults automatically

Present a framework to automate the debugging psc¢

174
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