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Presentation outline

� Introductions

� Motivation

� Background on combinatorial testing
� Exercise – Create a combinatorial test suite on 

paper

� Algorithms for combinatorial testing
� Exercise – Download and use the ACTS tool

� Prioritized Combinatorial Testing
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Introductions

� Briefly share your experiences with Software 
Testing
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Motivation

� Costs of software defects
� Software defects cost ~$59 billion per year [1]

� One contributor to software defects
� Many system components are tested individually, but 

often unexpected interactions between components 
cause failures.
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[1] National Institute of Standards and Technology, The Economic Impacts of 
Inadequate Infrastructure for Software Testing, U.S. Department of Commerce, May 
2002.



Combinatorial Test Example
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Hardware Operating
System

Network
Connection

Memory

PC Windows XP Dial-up 64MB

Laptop Linux DSL 128MB

PDA FreeBSD Cable 256MB

64MBDial-upWindows XPPC1

MemoryNetwork
Connection

Operating 
System

HardwareTest 
No.

Four factors 
(components) 
have three levels 
(options) each

1. (PC, Windows XP) 4. (Windows XP, Dial-up)

2. (PC, Dial-up) 5. (Windows XP, 64MB)

3. (PC, 64MB) 6. (Dial-up, 64MB)

Sample test

Pairs covered 



Combinatorial Test Example
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Hardware Operating
System

Network
Connection

Memory

PC Windows XP Dial-up 64MB

Laptop Linux DSL 128MB

PDA FreeBSD Cable 256MB

128MBDial-upFreeBSDPDA9

256MBCableFreeBSDPC8

256MBDSLWindows XPPDA7

128MBDSLLinuxPC6

256MBDial-upLinuxLaptop5

128MBCableWindows XPLaptop4
64MBCableLinuxPDA3
64MBDSLFreeBSDLaptop2

64MBDial-upWindows XPPC1

MemoryNetwork
Connection

Operating 
System

HardwareTest 
N
o.

Four factors 
(components) have 
three levels (options) 
each



Exercise 1
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1. List all of the 2way combinations (pairs) for 
this input: 

f0 	 f1	 f2 	 f3 	

0	 3	 6	 9	

1	 4	 7	 10	

2	 5	 8	 11	

	

2. Create a combinatorial test suite for the input above. 
No credit will be given for an exhaustive test suite.

Hint: Example pairs are (0,3) (0,4) (0,5)…. (8,11)



Brief background

� Combinatorial testing has been used 
in several fields:
� Agriculture
� Combinatorial chemistry
� Genomics
� Software/hardware testing

� Study of Mozilla web browser found 70% of defects with 2-way 
coverage; ~90% with 3-way; and 95% with 4-way. [Kuhn et. al., 2002]

� Combinatorial testing of 109 software-controlled medical devices 
recalled by US FDA uncovered 97% of flaws with 2-way coverage; and 
only 3 required higher than 2. [Kuhn et. al., 2004]
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Covering arrays
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� Behind the scenes this combinatorial object is 
constructed to represent interaction test suites

� No efficient exact method is known
� Mathematicians and Computer Scientists have 

offered solutions from different view points.  Their 
solutions have been measured by time to generate 
test suites and sizes of test suites.

A covering array,                        , is an N x k array.  In every N x 
t subarray, each t-tuple occurs at least λ times. In our 
application, t is the strength of the coverage of interactions, k is 
the number of components (factors), and v is the number of 
options for each component (levels). In all of our discussions, 
we treat only the case when λ = 1, (i.e. that every t-tuple must 
be covered at least once).

),,;( vktNCAλ



Perceived benefits of greedy 
algorithms
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Mathematical Greedy Search

Size of test 
suites

Accurate on 
special cases; but 
not as general as 
needed

Reasonably 
accurate 

Most accurate (if 
given enough 
time)

Time to 
generate 
tests

Yes Yes Often time 
consuming (for 
good results)

Seeding/ 
Constraints

Difficult to 
accommodate 
seeds/constraints

Yes Yes



History of One-test-at-a-time Greedy 
Algorithms

� Pros
� First tool to generate test suites (based on covering arrays)

� Cons
� Produces different test suites to the same inputs
� Slow

� Pros
� Deterministic
� Particularly good for mixed-level inputs
� Faster

� Cons
� Overly large test suites for fixed-level inputs

� Pros
� Deterministic
� Competitive results
� Logarithmic guarantee on the size of test suites
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AETG

TCG

DDA



Sample sizes of test suites
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[1] R. Bryce, C.J. Colbourn. A Density-Based Greedy Algorithm for Higher Strength 
Covering Arrays, Journal of Software Testing, Verification, and Reliability, (March 2009), 
19(1):37-53. 

[2] R. Bryce, C.J. Colbourn. The Density Algorithm for Pairwise Interaction Testing, 
Journal of Software Testing, Verification and Reliability, (August 2007), 17(3): 159-182. 
*(Citeseer impact ranking of STVR: .36)



Framework of One-row-at-a-time 
Greedy Methods
� Defines commonalities that all “one-row-at-a-

time” greedy algorithms have in common

� A process provides statistical feedback on the 
impact of different decisions that can be made 
in the framework

� Experiments explore several thousand 
instantiations of the framework and provide a 
requisite of knowledge

13



Framework for greedy methods
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Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

????4

256MBCableFreeBSDPC3

128MBDSLLinuxPC2

64MBDial-upWindows XPPC1

MemoryNetwork
Connection

Operating
System

HardwareTest No.Pairs left to 

cover:

48

42

36



Framework for greedy methods
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Factor 1 ? ? ?

PC Laptop PDA

Involved in no uncovered pairs

Involved in 9 uncovered pairs

Involved in 9 uncovered pairs

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*



Framework for greedy methods
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Laptop ? ? ?

PC Laptop PDA

Involved in no uncovered pairs

Involved in 9 uncovered pairs

Involved in 9 uncovered pairs

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*



Framework for greedy methods
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Laptop ? Factor 3 ?

Dial-up DSL Cable

Will cover 1 new pair

Will cover 1 new pair

Will cover 1 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*



Framework for greedy methods
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Laptop ? DSL ?

Dial-up DSL Cable

Will cover 1 new pair

Will cover 1 new pair

Will cover 1 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*



Framework for greedy methods
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Laptop Factor 2 DSL ?

WinXP Linux FreeBSD

Will cover 2 new pairs
Will cover 1 new pair

Will cover 2 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*



Framework for greedy methods
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Laptop WinXP DSL ?

WinXP Linux FreeBSD

Will cover 2 new pairs
Will cover 1 new pair

Will cover 2 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*



Framework for greedy methods
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Laptop WinXP DSL Factor 4

64MB 128MB 256MB

Will cover 3 new pairs
Will cover 2 new pair

Will cover 2 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*



Framework for greedy methods
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Laptop WinXP DSL 64MB

64MB 128MB 256MB

Will cover 3 new pairs
Will cover 2 new pair

Will cover 2 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*



Framework for greedy methods
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Linux Cable 128MBPDA

Number of newly 
covered pairs3 candidate rows

6

5

5

Win XP Cable 64MBPDA

Linux Cable 128MBPDA

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates*
� Layer three: factor ordering
� Layer four: level selection



Framework for greedy methods

24Select the smallest test suite generated.

Test suite A Test suite B Test suite C

Framework
� Layer one: test suite repetitions*
� Layer two: multiple candidates
� Layer three: factor ordering
� Layer four: level selection



Framework experiment - ANOVA 
results for several inputs
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[1] R.Bryce, C.J. Colbourn, M.B. Cohen. A Framework of Greedy Methods for 
Constructing Interaction Tests. The 27th International Conference on Software 
Engineering (ICSE), St. Louis, Missouri. (May 2005), pp. 146-155. (13% acceptance 
rate) 
*Citeseer impact ranking of ICSE: 2.05



ACTS – Free Download 
� ACTS is a free tool to generate combinatorial test 

suites 

� Download at: 
http://csrc.nist.gov/groups/SNS/acts/download/

� login ID is 'fireeye',

� password 'acts71362' 

� Create a test suite for this input with 2way coverage 
and then generate a 2nd test suite with 3way 
coverage:
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f0 	 f1	 f2 	 f3 	

0	 3	 6	 9	

1	 4	 7	 10	

2	 5	 8	 11	

	



Prioritized combinatorial testing

� What if parts of a system are more important 
to test earlier?

� What if a tester learns during testing and 
wants to regenerate a test suite with new 
priorities?

� What if a tester has time to run pair-wise 
coverage and time to run some three-way 
tests?
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A variation of the covering array
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An ℓ-biased covering array is a covering array CA(N; 2, k, v) 
in which the first rows form tests whose total benefit is as 
large as possible. That is, no CA(N; 2, k, v) has rows that 
provide larger total benefit.

Input
3 factors with varying 
numbers of associated 
levels (options) and 
weights assigned to 
each level
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Algorithm Walkthrough
Input

3 factors with varying numbers of 
associated levels (options) and 
weights assigned to each level

Larger weight means higher priority 
should be given to testing earlier!

Step 1 – Calculate Factor 
Interaction Weights.

Factors will be assigned values 
in order of “highest priority”
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Algorithm Walkthrough
Input has been processed

Factor interaction weights have been 
calculated (to determine order to assign 
level values to factors).

∑ = 












max

1 max

*v

j

wf

w

w
ji ℓ

Step 2 – Calculate Factor-Level Interaction Weights to select the 
level that covers the most uncovered weighted density.

Factor-Level Interaction Weight =

Input

For a factor, i, and a level, ℓℓℓℓ, that number of levels for a factor is called            , 
and the factor interaction weight is called

maxv
maxw

9.)3.1/72(.)3.1/45(.

1.)3.1/08(.)3.1/05(.

1

0

2

2

=+=

=+=

v

v

f

f Remember, the factor 
interaction weight was 1.3 for 
factor 2.
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Algorithm Walkthrough

� Step 2 (continued) - Calculate Factor-Level Interaction Weights to 
select the level that covers the most uncovered weighted density.

9.)3.1/72(.)3.1/45(.

1.)3.1/08(.)3.1/05(.

1

0

2

2

=+=

=+=

v

v

f

f
∑ = 













max

1 max

*v

j

wf

w

w
ji ℓ

Factor-Level Interaction Weight =

For a factor, i, and a level, ℓℓℓℓ, that number of levels for a factor is called            , 
and the factor interaction weight is called

maxv
maxw

38538.)9.*3(.)3.1/15(.

38538.)9.*3(.)3.1/15(.

2569.)9./2(.)3.1/1(.

2

1

0

1

1

1

=+=

=+=

=+=

v

v

v

f

f

f

12.)9.*1(.)3.*1(.

12.)9.*1(.)3.*1(.

12.)9.*1(.)3.*1(.

24.)9.*2(.)3.*2(.

3

2

1

0

0

0

0

0

=+=

=+=

=+=

=+=

v

v

v

v

f

f

f

f

9.)3.1/72(.)3.1/45(.

1.)3.1/08(.)3.1/05(.

1

0

2

2

=+=

=+=

v

v

f

f

Weight between two 
levels divided by max 
factor-interaction 
weight

Weight between two levels divided 
by max factor-interaction weight + 
Weight of level multiplied by 
weight of level (of fixed factor)

Weights of levels 
between each 
multiplied



Sample Results
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Weight Covered using 
Weighted and Non-Weighted Density Algorithms

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12

Test Number

C
u

m
u

la
ti

ve
 W

ei
g

h
t 

C
o

ve
re

d

Weighted

Non-weighted

Output

Input

[1] R. Bryce, C.J. Colbourn. Prioritized Interaction Testing for Pairwise Coverage with 
Seeding and Avoids, Information and Software Technology Journal (IST, Elsevier), 
(October 2006), 48(10):960-970. 
* Citeseer impact ranking of ICST: .19



Ongoing and future work 

� Ultimate goal: to develop systematic testing 
methodologies that are widely used to 
improve software quality

� Reaching this goal:
� Testing methodology driven by practical concerns 

of testers 

� Algorithms (for testing tools)

� Empirical studies
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