
Systematic Software
Testing Techniques:
Combinatorial Testing

Dr. Renée Bryce

Associate Professor
University of North Texas

Renee.Bryce@unt.edu

1

Presentation outline

� Introductions

� Motivation

� Background on combinatorial testing
� Exercise – Create a combinatorial test suite on

paper

� Algorithms for combinatorial testing
� Exercise – Download and use the ACTS tool

� Prioritized Combinatorial Testing
2

Introductions

� Briefly share your experiences with Software
Testing

3

Motivation

� Costs of software defects
� Software defects cost ~$59 billion per year [1]

� One contributor to software defects
� Many system components are tested individually, but

often unexpected interactions between components
cause failures.

4

[1] National Institute of Standards and Technology, The Economic Impacts of
Inadequate Infrastructure for Software Testing, U.S. Department of Commerce, May
2002.

Combinatorial Test Example

5

Hardware Operating
System

Network
Connection

Memory

PC Windows XP Dial-up 64MB

Laptop Linux DSL 128MB

PDA FreeBSD Cable 256MB

64MBDial-upWindows XPPC1

MemoryNetwork
Connection

Operating
System

HardwareTest
No.

Four factors
(components)
have three levels
(options) each

1. (PC, Windows XP) 4. (Windows XP, Dial-up)

2. (PC, Dial-up) 5. (Windows XP, 64MB)

3. (PC, 64MB) 6. (Dial-up, 64MB)

Sample test

Pairs covered

Combinatorial Test Example

6

Hardware Operating
System

Network
Connection

Memory

PC Windows XP Dial-up 64MB

Laptop Linux DSL 128MB

PDA FreeBSD Cable 256MB

128MBDial-upFreeBSDPDA9

256MBCableFreeBSDPC8

256MBDSLWindows XPPDA7

128MBDSLLinuxPC6

256MBDial-upLinuxLaptop5

128MBCableWindows XPLaptop4
64MBCableLinuxPDA3
64MBDSLFreeBSDLaptop2

64MBDial-upWindows XPPC1

MemoryNetwork
Connection

Operating
System

HardwareTest
N
o.

Four factors
(components) have
three levels (options)
each

Exercise 1

7

1. List all of the 2way combinations (pairs) for
this input:

f0 	 f1	 f2 	 f3 	

0	 3	 6	 9	

1	 4	 7	 10	

2	 5	 8	 11	

	

2. Create a combinatorial test suite for the input above.
No credit will be given for an exhaustive test suite.

Hint: Example pairs are (0,3) (0,4) (0,5)…. (8,11)

Brief background

� Combinatorial testing has been used
in several fields:
� Agriculture
� Combinatorial chemistry
� Genomics
� Software/hardware testing

� Study of Mozilla web browser found 70% of defects with 2-way
coverage; ~90% with 3-way; and 95% with 4-way. [Kuhn et. al., 2002]

� Combinatorial testing of 109 software-controlled medical devices
recalled by US FDA uncovered 97% of flaws with 2-way coverage; and
only 3 required higher than 2. [Kuhn et. al., 2004]

8

Covering arrays

9

� Behind the scenes this combinatorial object is
constructed to represent interaction test suites

� No efficient exact method is known
� Mathematicians and Computer Scientists have

offered solutions from different view points. Their
solutions have been measured by time to generate
test suites and sizes of test suites.

A covering array, , is an N x k array. In every N x
t subarray, each t-tuple occurs at least λ times. In our
application, t is the strength of the coverage of interactions, k is
the number of components (factors), and v is the number of
options for each component (levels). In all of our discussions,
we treat only the case when λ = 1, (i.e. that every t-tuple must
be covered at least once).

),,;(vktNCAλ

Perceived benefits of greedy
algorithms

10

Mathematical Greedy Search

Size of test
suites

Accurate on
special cases; but
not as general as
needed

Reasonably
accurate

Most accurate (if
given enough
time)

Time to
generate
tests

Yes Yes Often time
consuming (for
good results)

Seeding/
Constraints

Difficult to
accommodate
seeds/constraints

Yes Yes

History of One-test-at-a-time Greedy
Algorithms

� Pros
� First tool to generate test suites (based on covering arrays)

� Cons
� Produces different test suites to the same inputs
� Slow

� Pros
� Deterministic
� Particularly good for mixed-level inputs
� Faster

� Cons
� Overly large test suites for fixed-level inputs

� Pros
� Deterministic
� Competitive results
� Logarithmic guarantee on the size of test suites

11

AETG

TCG

DDA

Sample sizes of test suites

12

[1] R. Bryce, C.J. Colbourn. A Density-Based Greedy Algorithm for Higher Strength
Covering Arrays, Journal of Software Testing, Verification, and Reliability, (March 2009),
19(1):37-53.

[2] R. Bryce, C.J. Colbourn. The Density Algorithm for Pairwise Interaction Testing,
Journal of Software Testing, Verification and Reliability, (August 2007), 17(3): 159-182.
*(Citeseer impact ranking of STVR: .36)

Framework of One-row-at-a-time
Greedy Methods
� Defines commonalities that all “one-row-at-a-

time” greedy algorithms have in common

� A process provides statistical feedback on the
impact of different decisions that can be made
in the framework

� Experiments explore several thousand
instantiations of the framework and provide a
requisite of knowledge

13

Framework for greedy methods

14

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

????4

256MBCableFreeBSDPC3

128MBDSLLinuxPC2

64MBDial-upWindows XPPC1

MemoryNetwork
Connection

Operating
System

HardwareTest No.Pairs left to

cover:

48

42

36

Framework for greedy methods

15

Factor 1 ? ? ?

PC Laptop PDA

Involved in no uncovered pairs

Involved in 9 uncovered pairs

Involved in 9 uncovered pairs

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

Framework for greedy methods

16

Laptop ? ? ?

PC Laptop PDA

Involved in no uncovered pairs

Involved in 9 uncovered pairs

Involved in 9 uncovered pairs

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

Framework for greedy methods

17

Laptop ? Factor 3 ?

Dial-up DSL Cable

Will cover 1 new pair

Will cover 1 new pair

Will cover 1 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

Framework for greedy methods

18

Laptop ? DSL ?

Dial-up DSL Cable

Will cover 1 new pair

Will cover 1 new pair

Will cover 1 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

Framework for greedy methods

19

Laptop Factor 2 DSL ?

WinXP Linux FreeBSD

Will cover 2 new pairs
Will cover 1 new pair

Will cover 2 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

Framework for greedy methods

20

Laptop WinXP DSL ?

WinXP Linux FreeBSD

Will cover 2 new pairs
Will cover 1 new pair

Will cover 2 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

Framework for greedy methods

21

Laptop WinXP DSL Factor 4

64MB 128MB 256MB

Will cover 3 new pairs
Will cover 2 new pair

Will cover 2 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

Framework for greedy methods

22

Laptop WinXP DSL 64MB

64MB 128MB 256MB

Will cover 3 new pairs
Will cover 2 new pair

Will cover 2 new pair

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates
� Layer three: factor ordering*
� Layer four: level selection*

Framework for greedy methods

23

Linux Cable 128MBPDA

Number of newly
covered pairs3 candidate rows

6

5

5

Win XP Cable 64MBPDA

Linux Cable 128MBPDA

Framework
� Layer one: test suite repetitions
� Layer two: multiple candidates*
� Layer three: factor ordering
� Layer four: level selection

Framework for greedy methods

24Select the smallest test suite generated.

Test suite A Test suite B Test suite C

Framework
� Layer one: test suite repetitions*
� Layer two: multiple candidates
� Layer three: factor ordering
� Layer four: level selection

Framework experiment - ANOVA
results for several inputs

25

[1] R.Bryce, C.J. Colbourn, M.B. Cohen. A Framework of Greedy Methods for
Constructing Interaction Tests. The 27th International Conference on Software
Engineering (ICSE), St. Louis, Missouri. (May 2005), pp. 146-155. (13% acceptance
rate)
*Citeseer impact ranking of ICSE: 2.05

ACTS – Free Download
� ACTS is a free tool to generate combinatorial test

suites

� Download at:
http://csrc.nist.gov/groups/SNS/acts/download/

� login ID is 'fireeye',

� password 'acts71362'

� Create a test suite for this input with 2way coverage
and then generate a 2nd test suite with 3way
coverage:

26

f0 	 f1	 f2 	 f3 	

0	 3	 6	 9	

1	 4	 7	 10	

2	 5	 8	 11	

	

Prioritized combinatorial testing

� What if parts of a system are more important
to test earlier?

� What if a tester learns during testing and
wants to regenerate a test suite with new
priorities?

� What if a tester has time to run pair-wise
coverage and time to run some three-way
tests?

27

A variation of the covering array

28

An ℓ-biased covering array is a covering array CA(N; 2, k, v)
in which the first rows form tests whose total benefit is as
large as possible. That is, no CA(N; 2, k, v) has rows that
provide larger total benefit.

Input
3 factors with varying
numbers of associated
levels (options) and
weights assigned to
each level

29

Algorithm Walkthrough
Input

3 factors with varying numbers of
associated levels (options) and
weights assigned to each level

Larger weight means higher priority
should be given to testing earlier!

Step 1 – Calculate Factor
Interaction Weights.

Factors will be assigned values
in order of “highest priority”

30

Algorithm Walkthrough
Input has been processed

Factor interaction weights have been
calculated (to determine order to assign
level values to factors).

∑ = 












max

1 max

*v

j

wf

w

w
ji ℓ

Step 2 – Calculate Factor-Level Interaction Weights to select the
level that covers the most uncovered weighted density.

Factor-Level Interaction Weight =

Input

For a factor, i, and a level, ℓℓℓℓ, that number of levels for a factor is called ,
and the factor interaction weight is called

maxv
maxw

9.)3.1/72(.)3.1/45(.

1.)3.1/08(.)3.1/05(.

1

0

2

2

=+=

=+=

v

v

f

f Remember, the factor
interaction weight was 1.3 for
factor 2.

31

Algorithm Walkthrough

� Step 2 (continued) - Calculate Factor-Level Interaction Weights to
select the level that covers the most uncovered weighted density.

9.)3.1/72(.)3.1/45(.

1.)3.1/08(.)3.1/05(.

1

0

2

2

=+=

=+=

v

v

f

f
∑ = 













max

1 max

*v

j

wf

w

w
ji ℓ

Factor-Level Interaction Weight =

For a factor, i, and a level, ℓℓℓℓ, that number of levels for a factor is called ,
and the factor interaction weight is called

maxv
maxw

38538.)9.*3(.)3.1/15(.

38538.)9.*3(.)3.1/15(.

2569.)9./2(.)3.1/1(.

2

1

0

1

1

1

=+=

=+=

=+=

v

v

v

f

f

f

12.)9.*1(.)3.*1(.

12.)9.*1(.)3.*1(.

12.)9.*1(.)3.*1(.

24.)9.*2(.)3.*2(.

3

2

1

0

0

0

0

0

=+=

=+=

=+=

=+=

v

v

v

v

f

f

f

f

9.)3.1/72(.)3.1/45(.

1.)3.1/08(.)3.1/05(.

1

0

2

2

=+=

=+=

v

v

f

f

Weight between two
levels divided by max
factor-interaction
weight

Weight between two levels divided
by max factor-interaction weight +
Weight of level multiplied by
weight of level (of fixed factor)

Weights of levels
between each
multiplied

Sample Results

32

Weight Covered using
Weighted and Non-Weighted Density Algorithms

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12

Test Number

C
u

m
u

la
ti

ve
 W

ei
g

h
t

C
o

ve
re

d

Weighted

Non-weighted

Output

Input

[1] R. Bryce, C.J. Colbourn. Prioritized Interaction Testing for Pairwise Coverage with
Seeding and Avoids, Information and Software Technology Journal (IST, Elsevier),
(October 2006), 48(10):960-970.
* Citeseer impact ranking of ICST: .19

Ongoing and future work

� Ultimate goal: to develop systematic testing
methodologies that are widely used to
improve software quality

� Reaching this goal:
� Testing methodology driven by practical concerns

of testers

� Algorithms (for testing tools)

� Empirical studies

33

