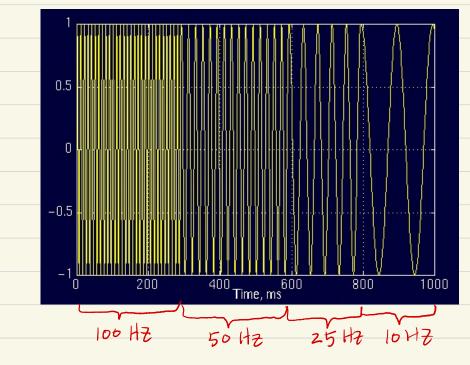
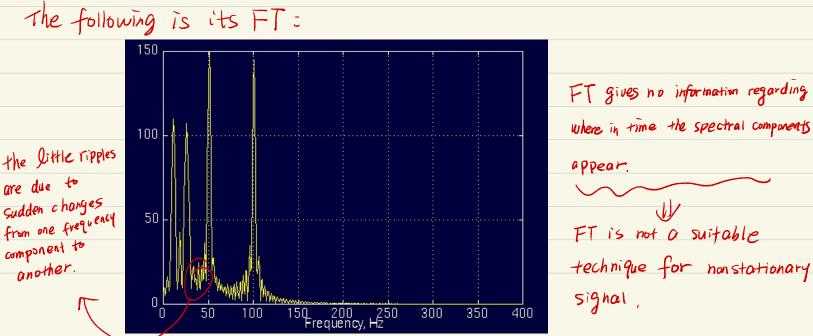
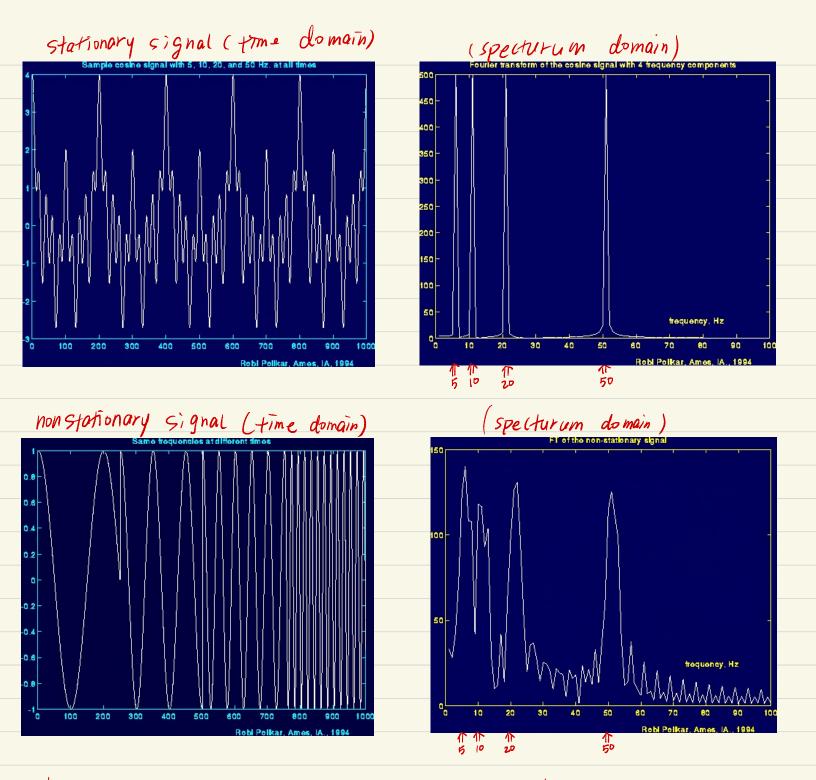


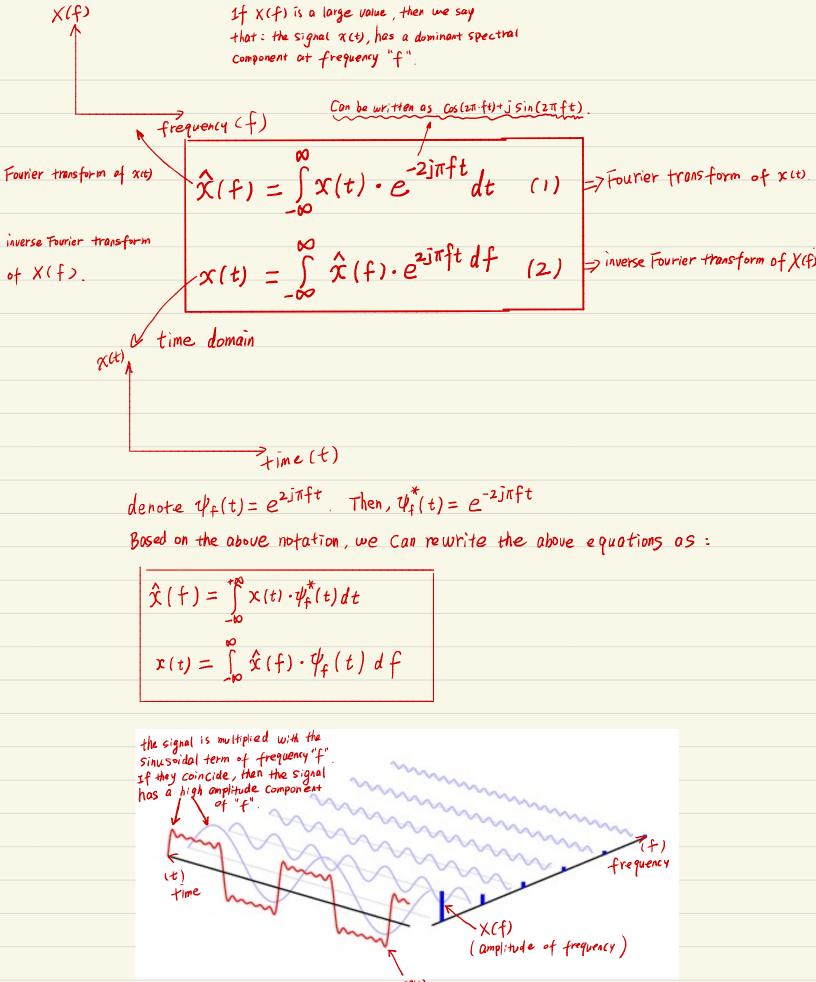
another example:





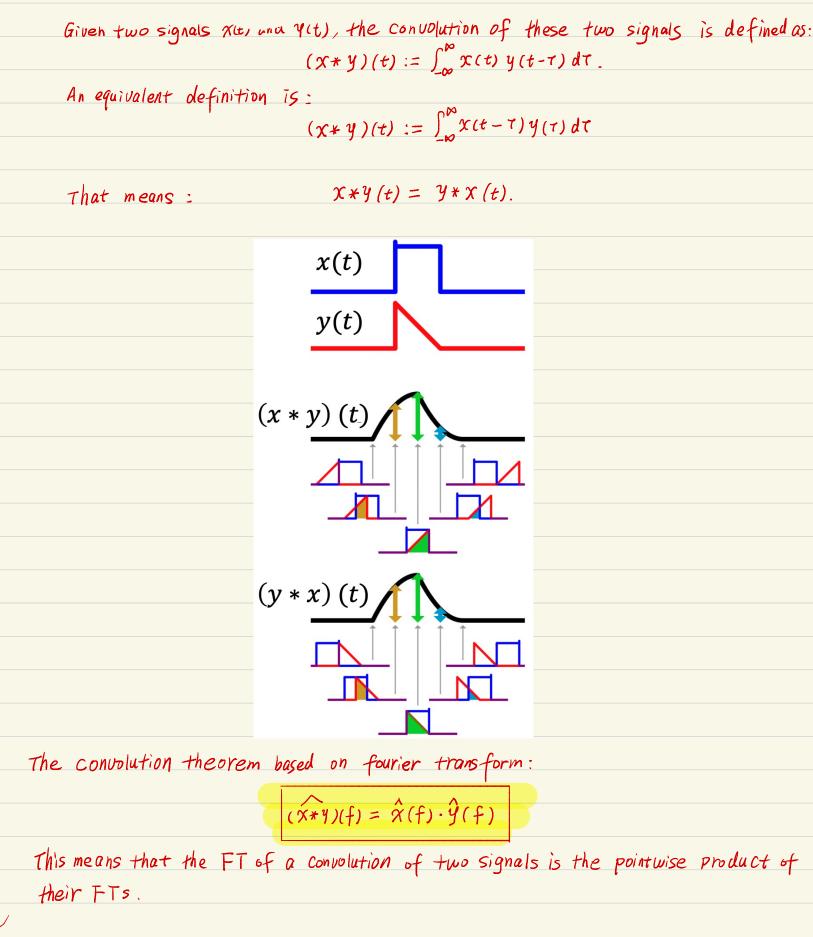


The above two different signals Constitude the same frequency components. That means FT can not distinguish the two signals very well.



(amplitude of time)

Convolution theorem



Scaling property of FT

If you horizontally "Stretch" a signal (X(t)) by the factor C in the time domain, you "sequence" its FT by the same factor in the frequency domain.

 $\begin{aligned} x_{c}(t) &= x(ct) \\ \hat{x}_{c}(f) &= \hat{x}(f) \\ \end{bmatrix} \\ \begin{aligned} x_{c}(f) &= \hat{x}(f) \\ \end{bmatrix} \\ \begin{aligned} x_{c}(f) &= \hat{x}(f) \\ \end{bmatrix} \\ \begin{aligned} x_{c}(f) &= \hat{x}(f) \\ \end{bmatrix} \\ \end{aligned}$ "sequenze" its FT by the same factor in the frequency domain.

The Continuous Novelet Transform

In FT, the fourier function is denoted as: $\psi_{f}(t)$, which is dependent only on the frequency (f). In Wavelet transform (WT), the wavelet function is denoted as: $\psi_{s,\tau}(t)$, which is dependent on both frequency (f=1/s) and time location (T).

$$CWT_{x}^{\psi}(\tau,s) = \Psi_{x}^{\psi}(\tau,s) = \frac{1}{\sqrt{|s|}} \int \underbrace{x(t)\psi^{*}\left(\frac{t-\tau}{s}\right)}_{\text{signal}} \frac{dt}{scale} \text{ scale}$$

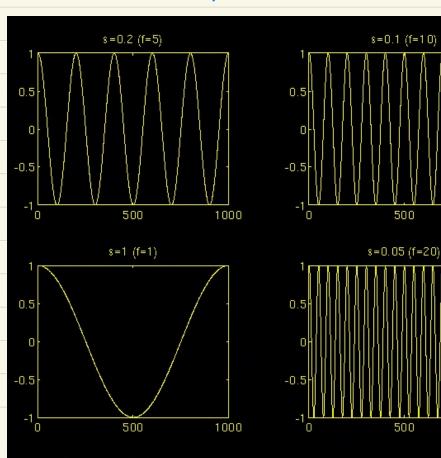
$$\frac{denote \ \psi_{s,\tau}(t) = \int \psi\left(\frac{t-\tau}{s}\right)}_{\text{Wavelet function}} \frac{\psi(t)dt = 0}{\text{Scale}} \frac{\psi(t)dt = 0}{\text{Scale}}$$

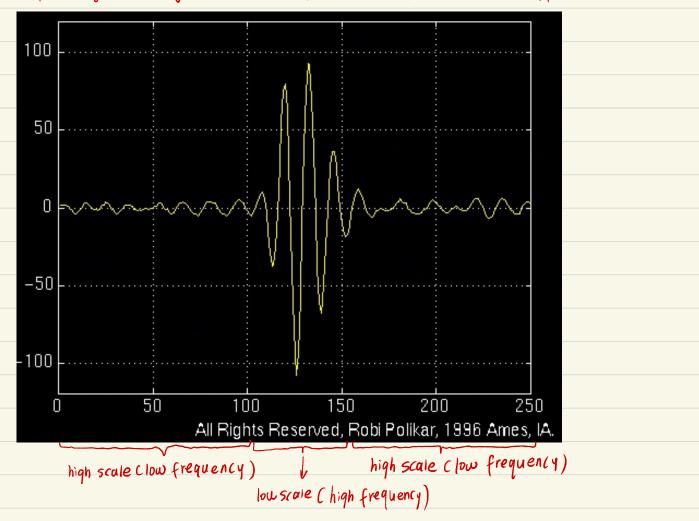
$$CWT_{x}^{\psi}(\tau,s) = \Psi_{x}^{\psi}(\tau,s) = \int x(t) \cdot \psi_{\tau,s}^{*}(t) dt$$

1000

1 0 0 0

The following are four Cosine signals with different scales (frequencies) stationary signals





$$\Psi_{x}^{\phi}(\tau,s) = \int x(t) \psi_{\tau,s}(t) dt$$

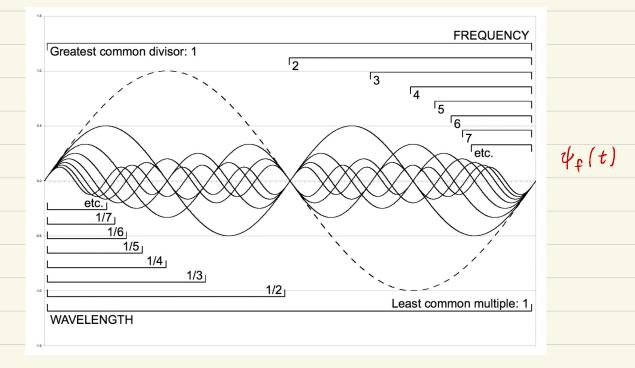
$$\chi(t) = \frac{1}{c_{\psi}^{\phi}} \int_{s} \int_{\tau} \Psi_{x}^{\phi}(\tau,s) \frac{1}{s} \psi_{\tau,s}(t) d\tau ds$$
inverse wavelet transformation.

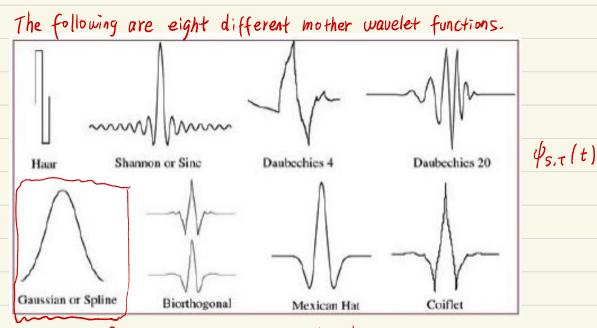
$$c_{\psi} = \left\{ 2\pi \int_{-\infty}^{\infty} \frac{|\hat{\psi}(\xi)|^2}{|\xi|} d\xi
ight\}^{1/2} < \infty$$

the admissibility constant.

Fourier basis function us, wavelet basis function.

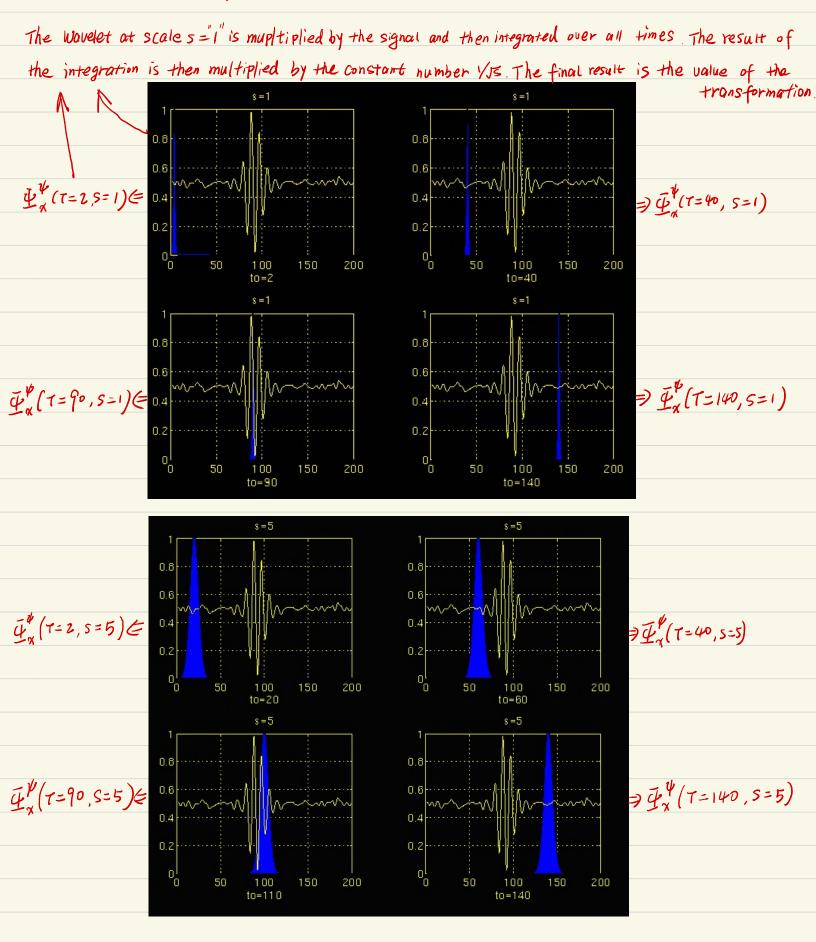
The following is an example of fourier functions with different frequencies:

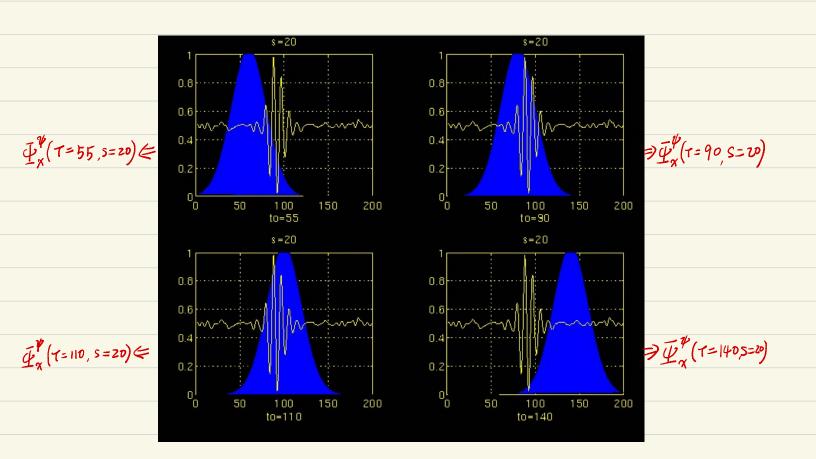




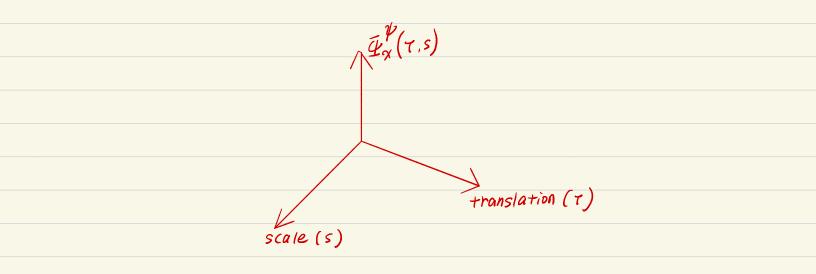
We will use Gaussion wavelet function in the following examples:

In the following example, we show step by step how to calculat $\bar{\Psi}_{x}^{\psi}(\tau,s)$ for $\tau = 2,40,90,140$ and s = 1,5,0. We use Gaussian Wavelet function:



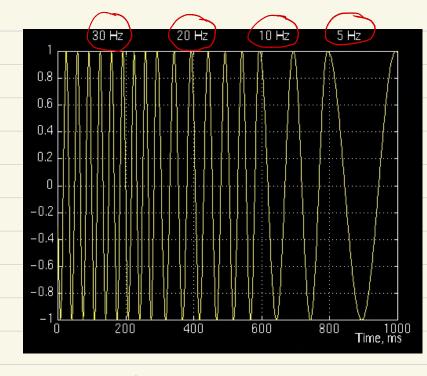


as shown in this example, the transformation value for each combination of (τ, s) can be calculated. We can draw the continuous wavelet transform (CWT) of this signal in a three dimension-al space: Scale(s) us. Translation (T) us. amplitude $(\overline{q}_{x}^{\psi}(\tau, s))$.



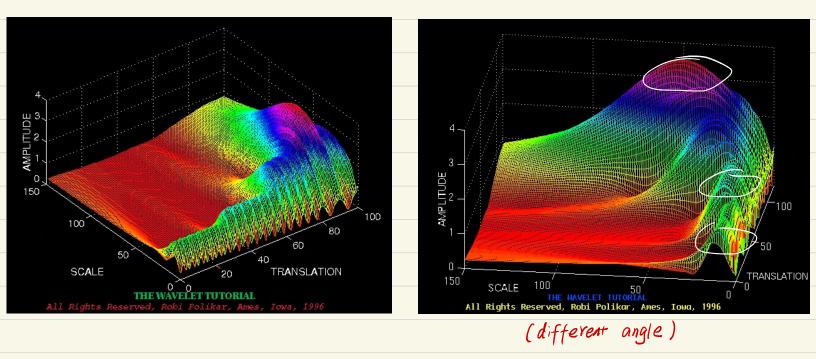
Visualization of CWT of a signal

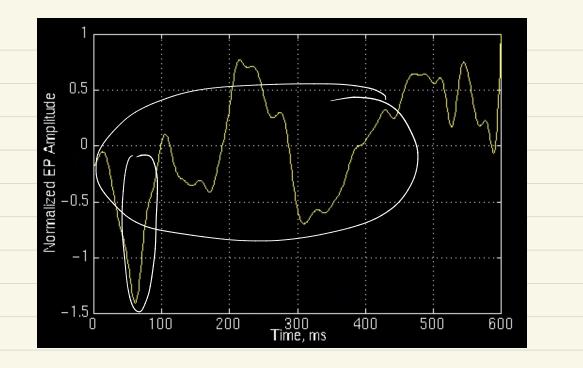
Consider the following non-stationary signal: The signal is composed of four frequency components at 30Hz, 20Hz, 10Hz, and 5Hz.

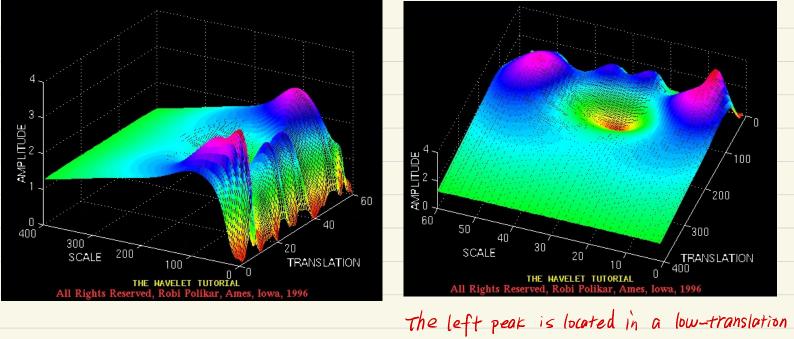


this signal has 30 Hz (highest frequency) components that appear at the lowest scale at a translation of 0 to 30. Then comes at the 20Hz component, Second highest frequency, and so on. Then 5 Hz component appears at the end of the translation axis (as expected), and at higher scales (lowest frequencies) again as expected.

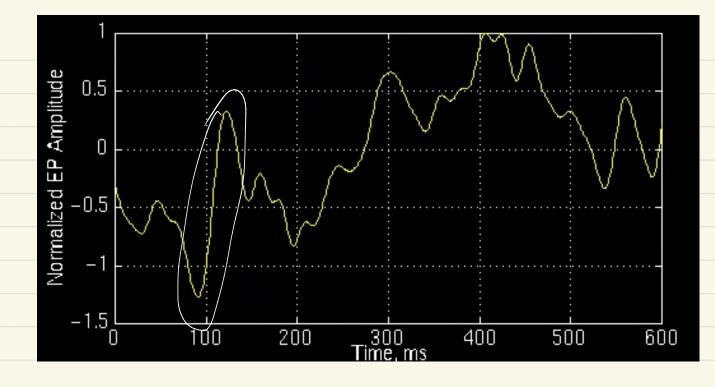
The following is the CWT of this signal:

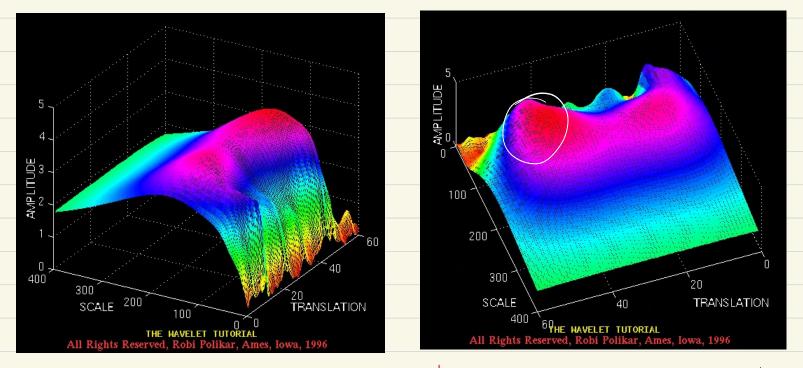






and high-scale region. The right peak is located in a low-translation and low-scale region.





The peak has low-scale and low-translation.

Summary of continuous wavelet transform (CWT) mother wovelet function $\psi_{\tau,s}(t) = \int_{\overline{s}}^{t} \psi(\frac{t-\tau}{s})$ wavelet function (wavelet transform) $\underline{\mathcal{F}}_{q}^{\phi}(\tau,s) = \int \chi(t) \, \psi_{\tau,s}^{\star}(t) \, dt$ spectrum domain (T,S) time domain (t) $\bar{\Psi}_{x}^{\nu}(\tau,s)$ $\chi(t)$ $\mathcal{X}(t) = \frac{1}{C_{t}^{2}} \int_{S} \int_{T} \overline{\mathcal{L}}_{x}^{\mu}(\tau, s) \cdot \frac{1}{S} \psi_{\tau, s}(t) d\tau ds$ (inverse wavelet transform) $\psi_{f}(t) = e^{2j\pi ft}$ (Fourier transform) $\chi(f) = \int \chi(t) \cdot \psi_{f}(t) \, dt$ time domain (t) spectrum domain (f) $\hat{x}(f)$ $\mathcal{X}(t)$ $\chi(t) = \int \chi(f) \cdot \psi_{f}(t) df$ (inverse fourier transform)