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Abstract

Video demonstrations are a rich source of information about the procedural knowl-
edge required to execute a task. In this work, we introduce the problem of identify-
ing a common procedure underlying video demonstrations of a task, without using
any supervision. The procedure corresponds to a sequence of primitive behaviors
that must be executed to complete the task. Procedure identification is useful
for a variety of applications including intelligent tutoring systems, representation
learning, transfer learning and video understanding. We connect this procedure
identification problem to that of temporal clustering and latent variable modeling,
and develop a general pipeline for procedure extraction. We also identify issues
with evaluation criteria used for temporal clustering, and propose new metrics that
address them. Our methods and metrics are evaluated on a dataset of YouTube
videos demonstrating Bach’s Prelude in C-major.

1 Introduction

In the cognitive sciences, procedural knowledge is defined as knowledge that aids in the production of
behaviors in order to accomplish some goal [1]. Along with declarative knowledge, it forms the two
main types of knowledge, and is the one primarily responsible for the successful completion of tasks
and goals. One of the building blocks for the acquisition of procedural knowledge is observation,
especially of expert demonstrations [1]. Research from cognitive apprenticeship [2, 3] suggests
that observing and assimilating information from expert demonstrations is a key step in building a
conceptual model for the task to be performed. Concretely, demonstrations can be used to extract
useful procedural information about how to accomplish a task such as the objects/behaviors required
to be learned and the sequence of steps to be executed.

Traditionally, procedural knowledge acquisition has been guided by expert humans, who identify
the primitives in the task being learned and then demonstrate them – e.g. a human math teacher
describing the steps required to solve a system of linear equations. Intelligent tutoring systems have
made a systematic effort to automate the knowledge acquisition process, with models of knowledge
acquisition such as the Bayesian Knowledge Tracing model [4] being used to automatically teach a
learner. However, these models and systems continue to leverage human-designed curricula to teach
procedural knowledge.

More recently, the popularity of Massive Open Online Courses (MOOCs) has made videos a widely
used resource in ‘flipped’ classroom settings. Studies [5, 6] suggest that videos can be an effective
way to teach procedural knowledge, as long as the content being taught is appropriately chunked.
Beyond the context of education, videos remain a rich source of data to model, understand and
learn from human behavior. Websites such as YouTube have a vast collection of videos of humans
participating in and demonstrating a multitude of activities. Datasets leveraging these video sources
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have recently been used in computer vision problems such as activity recognition and localization [7]
and video understanding [8].

In this work we examine whether it is possible to generate procedural abstractions automatically from
real-world video demonstrations, without additional human supervision. We identify the problem
of automatically learning a procedural abstraction from a set of video demonstrations, and provide
methods to learn this procedure. Outside of the demonstrations themselves, we eschew other forms
of labeled supervision since it can be expensive to label and collect such data.

From a computational perspective, one of the main goals of Artificial Intelligence (AI) is the creation
of conceptual representations that are useful for making decisions. Goal-directed intelligent agents
must have an abstract understanding of the behaviors that they execute and the world around them, to
allow decision making based on predicates rather than pixels. Finding rich, distributed representations
for predictive tasks has been central to the success of neural networks [9]. However, creating
interpretable and useful abstractions for decision-making agents remains an open and active area of
research.

Automatic generation of the procedure encapsulated in a set of video demonstrations gives us the
ability to create a succinct representation of the task. This low-dimensional task representation can
be used to determine how different tasks relate to each other and what primitives are necessary
for a task. Recent work has explored the possibility of learning agent policies directly from video
demonstrations [10–12] using reinforcement learning. Learning a succinct task representation can
aid these efforts in quickly establishing the viability of transfer learning between tasks, by comparing
their task representations. This can further lead to more sample-efficient learning for cases where
tasks are found to be related e.g. by learning a hierarchical policy over the task primitives, as done in
[13].

Formally, given a set of video demonstrations of a task, our goal is to identify a procedure that can
be used to decompose each video into a sequence of steps. The procedure can be thought of as a
sequence of tokens, each token representing a primitive behavior or building block for the task. Aside
from the lack of supervision in the form of labeled data, this problem is challenging due to several
reasons. There exist several possible ‘correct’ procedures for any task, differing only in what they
consider primitives. If the task is to play a musical piece, one procedure may consider individual
notes as steps, while another may divide the piece up into groups of notes. This problem is closely
related to past work in latent variable modeling [14–16] and temporal clustering [17, 18] and inherits
their complexity.

What makes our setting more challenging is that we use high-dimensional video data, while most
time-series work has operated on low-dimensional sequences [19]. Each video may be shot in a
visually distinctive setting, with variations in the surroundings, viewpoint, lighting and even the
objects used for the task. These demonstrations will almost certainly not be aligned in time, so
different demonstrations may spend different amounts of time on the same behavior primitives. A
simple example is of videos of two pianists playing the same piece – they will prefer different tempi
and may utilize different amounts of rubato. One may be a concert pianist playing on a large Steinway
grand piano in a concert hall, while the other an amateur on a small upright piano in their apartment.
Some tasks may also contain ‘repeated structure’, where even within a video, behavior primitives are
repeated in different contexts. Identifying this repeated structure can be very useful, since it yields a
simpler program where a single primitive is reused multiple times over the course of the task.

We address some of these issues in this work and lay out the challenges that need to be overcome for
those issues that remain unresolved. Our contributions are,

• We introduce the problem of learning a procedure from a set of video demonstrations
without supervision and provide a general pipeline to solve this problem for video data. This
problem has important applications in tutoring systems, representation learning, transfer
learning and video understanding.

• We identify a gap in the evaluation criteria used for methods in temporal clustering, namely
that they ignore temporal structure, and propose new metrics that address this.

• We evaluate our methods on a new dataset of videos collected from YouTube, for the
task of learning Bach’s Prelude in C-major. The evaluation verifies our new metrics and
demonstrates that our methods can identify high-quality coarse procedures.
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Figure 1: Illustration of definitions in Section 2. A temporal clustering and its corresponding
procedure are shown for an example video.

2 Definitions

A video Vi = (vi1,v
i
2, . . . ,v

i
Hi

) is a sequence of RGB frames vit ∈ Rh×w×3 of height h, width w
and total number of frames Hi. The dataset of videos is D = {V1, . . . ,Vn} where n ≥ 1.

We will represent each video as a time-indexed feature trajectory Xi = (xi1,x
i
2, . . . ,x

i
Hi

) with
xit ∈ Rd. How this representation is derived from Vi will be discussed in the next section.

Temporal Clustering. A temporal clustering C = (c1, . . . , cH) is a sequence of cluster labels where
ct ∈ Γ, where Γ is a set of cluster labels. Temporal clusterings map each item in the feature trajectory
X to a cluster label in Γ.

We will use Ci as shorthand to denote the temporal clustering generated by some method for trajectory
Xi. The ground truth temporal clustering for Xi will be denoted by Gi. For simplicity, we will define
Ca:b = (ca, ca+1, . . . , cb) where 1 ≤ a ≤ b ≤ H are time indices.

Lastly, for α ∈ Γ we let C[α] = {t|ct = α, 1 ≤ t ≤ H} be the set of time indices in C whose cluster
labels equal α. C[α] is the cluster (in the traditional sense) corresponding to α.

Procedure. Let P be a function that removes running duplicates from a sequence of labels, yielding a
sequence of tokens. For instance, P(A,A,A,B,B,B,C,C,C,A,A,B) = (A,B,C,A,B) yielding
5 tokens. For a temporal clustering C, we define its corresponding procedure to be P(C). The
procedure captures the cluster labels (as tokens) present in the temporal clustering and the sequence
in which they occur.

Every token in the procedure signifies a primitive behavior required to carry out the task. We say that
the procedure exhibits repeated structure if atleast one cluster label is reused in the procedure i.e.
|P(C)| > |Γ| (the number of tokens exceeds the number of clusters). The example in the previous
paragraph contains repeated structure since both cluster label A and cluster label B are reused in the
procedure.

Segment. Each token in the procedure P(C) is associated with a segment in C – denoting the time
boundaries of the token in the temporal clustering. We represent each segment as a pair of time
indices (a, b), where a represents the start time-index of the segment while b the end time-index.

We let S(C, α) = {(a, b)|Ca:b = (ca = α, ca+1 = α, . . . , cb = α), 1 ≤ a ≤ b ≤ H} be a function
that maps a temporal clustering C and cluster label α ∈ Γ to the set of segments associated with α in
C.

Figure 1 shows an example that illustrates these ideas. In the example, the temporal clustering is
defined over the label set Γ = {A,B,C,D}. It associates each time step in the trajectory with a
cluster label. The procedure extracted from this temporal clustering is shown below it. The arrows
demonstrate how the purple D cluster labels are coalesced into a single token of the procedure. The
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segment corresponding to this token (D) is then simply (H − 2, H). Notice that the procedure
exhibits repeated structure since the blue B label has atleast 2 tokens/segments corresponding to it.

In our setting, we assume that a common procedure underlies each video demonstration. We
characterize this more precisely below, before describing our problem statement,

Common Underlying Procedure. Each video Vi ∈ D has an associated underlying procedure Pi
such that P1 = P2 = · · · = Pn. This implies that each video is a demonstration that realizes a
common underlying procedure.

Satisfying this assumption requires us to curate a dataset for which the above holds. This is typically
referred to as a trimmed video dataset in the computer vision community. In practice, for large n
(∼ 10) this requirement is less stringent, and we can allow videos that are less precisely trimmed.
Relaxing this assumption completely would permit the possibility that no two videos in the dataset
share a procedure – this moves closer in spirit to work on temporal clustering for sequences. However,
this body of work instead makes strong assumptions about how the sequences themselves are
generated or relate to each other, which we avoid. We can now define our problem statement,

Problem Statement. Given a dataset of n video demonstrations, identify a temporal clustering Ci
for each video, such that P(C1) = P(C2) = · · · = P(Cn) i.e. these temporal clusterings share a
single procedure.

Our goal is thus to identify the common procedure that underlies each of the demonstrations in the
dataset, as well as a temporal clustering for each demonstration that respects the procedure. One
of the advantages of extracting a procedure is that each token represents a small step that must be
accomplished to do the task, and identifying the procedure gives us a recipe for the task. Each token
will represent a behavior primitive or share some other commonality, which can be identified and
associated with a semantic meaning if so desired.

Identifying the temporal clustering in addition to the procedure gives us an easy way to evaluate the
quality of the identified procedure, by comparing to a ground truth temporal clustering for each video.
It is also generally advantageous as the temporal clustering allows us to access the segments in each
video corresponding to a token in the procedure. This is useful for building models to identify the
token behavior in other settings.

Depending on how coarse or fine we want the procedure to be, we could end up with very different
answers to this problem. This reflects the fact that the same task can be described in several ways, an
inherent uncertainty in the problem that cannot be overcome without having additional information.

As an example, consider the case of experts demonstrating how to play a single bar of a piano piece.
We could recover 2 distinct procedures, P̃1 = (1), P̃2 = (1, 2, 3, 1) such that,

P̃1

1: Play the bar.

P̃2

1: Play notes CECGE in the right hand.
2: Play notes CFDFG in the right hand.
3: Play notes CDEFG in the right hand.

Both procedures are correct, but P̃1 is clearly very coarse and contains no new information about
the task, whereas P̃2 is more fine-grained and exhibits some repeated structure. While P̃2 is clearly
the superior choice here, choosing between competing procedures (or temporal clusterings) without
access to a ground truth is a difficult problem, and will not be the focus of this work.1 There are some
general principles that we could follow, such as (i) prioritizing procedures that exhibit more repeated
structure; (ii) preferring procedures whose segments are not too uneven in length; (iii) preferring
procedures that don’t have too many tokens. Making these notions precise is left to future work.

1A metric that is often used for this purpose in the standard clustering setting is the silhouette score, which
measures the tightness of clusterings to decide the best one.
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3 A General Pipeline

There are several problems that must be addressed by any method that does procedure extraction.
Stated quite generally these are,

• Feature extraction or finding a good feature representation for the videos
• Time warping or aligning the videos to facilitate aggregation of information
• Procedure identification or finding a procedure common to the videos

We address each of these in turn.

3.1 Feature Extraction

The first step in our pipeline is to extract a lower dimensional representation of the video. Using the
video directly is difficult, since each frame is extremely high dimensional. Video frames are also not
translation/rotation invariant feature spaces and are generally considered unsuitable for use directly
[20].

Since our pipeline is completely unsupervised, we opt to use a VGG-19 model [21] pre-trained
on ImageNet as a feature extractor. Each frame vit of video Vi is mapped to a 4096-dimensional
representation xit using the VGG-19 model’s fc6 layer.

Note that it is possible to substitute other methods for feature extraction, including feature extractors
that are sensitive to the motion in the video. However, there is no widely accepted feature extractor
for video data, so we opted to extract features on a frame-by-frame basis instead.

3.2 Time Warping & Alignment

An important challenge that we must address is how to aggregate information across the feature
trajectories Xi that we extracted for the videos in our dataset. This aggregation is non-trivial since
each video may carry out the demonstration at very different rates. E.g. two pianists playing the same
piece at different tempi. One of the ways we can do this alignment is by time warping each feature
trajectory to a common length, so that they all align.

Time warping is a general method to align two (or more) sequences, such that an alignment cost is
minimized. There are several variants of time warping such as dynamic time warping [22], canonical
time warping [23, 24], etc. However, these methods have generally been used on low-dimensional
time-series data, and we found their performance to be poor when used to align the Xis. Given this
challenge, we will restrict ourselves to video datasets that we expect will approximately respect the
following assumption.

Uniform Time Warping Assumption. We assume that each video has an underlying temporal
clustering Gi such that for any pair i, j of videos, Git = Gjt′ where t′ = t · HjHi . This implies that all
the trajectories can be aligned by simply uniformly stretching or shrinking them to the same length.
In practice, it is sufficient for this assumption to hold approximately.

We let τ(·, L) be the uniform time warping function, which takes an arbitrary sequence as its first
argument and stretches/shrinks it uniformly to length L. τ can be used on feature trajectories Xi and
temporal clusterings Ci or Gi.

3.3 Procedure Identification

We now outline 2 general methods for procedure identification. The first, local temporal clustering
and aggregation finds a temporal clustering for each Xi separately before aggregating these temporal
clusterings to extract a procedure. The second, global procedure extraction, first constructs a single
trajectory that aggregates information from all the videos, before directly extracting a procedure.

We assume access to some temporal clustering algorithm A, which takes as input a feature trajectory
X, number of clusters k and outputs a temporal clustering C = A(X, k). Ahamming will be used to
denote that the temporal clustering method uses the Hamming distance metric; otherwise we assume
Euclidean distance is the default.
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Algorithm 1 Local Temporal Clustering and Aggregation

Require: Temporal clustering method A, feature trajectory dataset X1, . . . ,Xn, warp length L,
number of clusters k

1: function LTCA(A,X1, . . . ,Xn, L, k)
2: for all i ∈ [n] do
3: Ci ← τ(A(Xi, k), L) . Local temporal clustering and warping
4: end for
5: T ← S(C1, . . . , Cn) . Meta-trajectory construction
6: C ← Ahamming(T , k) . Temporal clustering of meta-trajectory with Hamming distance
7: for all i ∈ [n] do
8: C̃i ← τ(C, Hi) . Warp back for each temporal clustering
9: end for

10: return procedure P(C), temporal clusterings C̃1, . . . , C̃n
11: end function

Both methods also require us to introduce the notion of a meta-trajectory, which we do first. We then
go on to describe each method in turn.

Meta-Trajectory. Let Zi = (zi1, z
i
2, . . . , z

i
L) be n trajectories of length L with zit ∈ Rp. Define the

meta-feature at 1 ≤ t ≤ L as,
st = (z1

t , z
2
t , . . . , z

n
t )

where st ∈ Rnp. The meta-feature at t concatenates features from all trajectories at time point t. The
meta-trajectory S over (Z1, . . . ,Zn) is then defined as,

S(Z1, . . . ,Zn) = (s1, . . . , sL)

3.3.1 Local Temporal Clustering and Aggregation (LTCA)

Our first method is outlined in Algorithm 1. First, a temporal clustering is performed on each feature
trajectory Xi using A. Then this clustering A(Xi, k) is uniformly warped using τ to a fixed length
L, yielding a temporal clustering Ci of length L (lines 2− 4). Notice that it is not necessary here that
P(C1) = P(C2) = · · · = P(Cn). In fact, it will almost certainly not be the case that this happens.
This is due to a couple of reasons: (i) each video demonstration Vi is a noisy realization of the
underlying procedure, with varied viewpoint, background and setting; (ii) the feature trajectories Xi

determine the quality of the temporal clusterings extracted. In some cases, the features may not be
informative enough to recognize repeated structure in the demonstration or to correctly delineate
different parts of the procedure.

By aggregating over the temporal clusterings Ci, we can reduce the noise that would be present if we
were to pick any one of them. In the classical clustering literature, this is referred to as consensus
clustering or clustering aggregation [25], and is used to aggregate multiple clusterings of the same
dataset. In our setting, we instead have n separate temporal clusterings that we have aligned to
aggregate.

We take all the temporal clusterings Ci and construct a single meta-trajectory T from them (line
5). We then perform a temporal clustering of this meta-trajectory C = Ahamming(T , k) under the
Hamming distance metric (line 6). Using the Hamming distance allows us to measure the number
of disagreements between any two meta-features i.e. how many temporal clusterings put them in
different clusters. A similar method for standard non-temporal clusterings was described in [25].

Having found a single consensus clustering C, we can now proceed to apply C to each video by
simply warping it back to yield C̃i = τ(C, Hi) (lines 7− 9). C̃i is the identified temporal clustering
for the ith video. The overall procedure extracted is simply P(C).

3.3.2 Global Procedure Extraction (GPE)

Our second method GPE is outlined in Algorithm 2. The main difference from LTCA is that GPE
directly creates a single feature trajectory and then clusters it. This avoids the consensus clustering
step of LTCA.
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Algorithm 2 Global Procedure Extraction

Require: Temporal clustering method A, feature trajectory dataset X1, . . . ,Xn, warp length L,
number of clusters k

1: function GPE(A,X1, . . . ,Xn, L, k)
2: for all i ∈ [n] do
3: X̃i ← τ(Xi, L) . Warping feature trajectories
4: end for
5: T ← S(X̃1, . . . , X̃n) . Meta-trajectory construction
6: C ← A(T , k) . Temporal clustering of meta-trajectory
7: for all i ∈ [n] do
8: C̃i ← τ(C, Hi) . Warp back for each temporal clustering
9: end for

10: return procedure P(C), temporal clusterings C̃1, . . . , C̃n
11: end function

For GPE, we first uniformly warp each feature trajectory Xi to a common length L to yield X̃i =
τ(Xi, L) (lines 2− 4). Then we directly construct a meta-trajectory T using all the warped feature
trajectories X̃i (line 5) and find a temporal clustering C = A(T , k) for T (line 6). A consequence
of directly clustering this feature meta-trajectory is that the Euclidean distance between any pair of
items sa, sb ∈ T can be written as,

‖sa − sb‖22 =

n∑
i=1

‖xia − xib‖22

This makes the temporal clustering of the meta-trajectory T sensitive to distances in the individual
Xi’s for GPE. In LTCA on the other hand, the consensus clustering performed on the meta-trajectory
was indifferent to distances in the individual Xi’s. For GPE, it is important to ensure that the distance
terms ‖xia − xib‖22 are similarly scaled so that no term dominates. Due to this, we standardize each
Xi separately before running GPE.

Now, the last step is similar to LTCA – we apply C to each video by simply warping it back to yield
C̃i = τ(C, Hi) (lines 7− 9). C̃i is the identified temporal clustering for the ith video and the overall
procedure extracted is P(C).

3.3.3 Choosing A

Since A is a general method for finding a temporal clustering, it can be chosen arbitrarily. In fact,
it is possible to use any discrete latent variable model for time-series data, such as autoregressive
models, hidden markov models, switching linear dynamic systems, etc as well.

For the purpose of this paper, we experiment with two choices for A: (i) Hierarchical Clustering
(HC) with the Ward linkage criterion. While hierarchical clustering is a standard non-temporal
clustering method, we can directly apply it to the feature trajectories to yield a temporal clustering;
(ii) Gaussian Mixture Models (GMM) which fit a mixture of Gaussians to the feature trajectories. We
make a small modification to the feature trajectories Xi – instead we use Yi = (yi1, . . . ,y

i
Hi

) where
yit = (xit−2,x

i
t−1,x

i
t,x

i
t+1,x

i
t+2) is a stack of 5 time-steps. This is similar to the method of [14]

and makes the GMM equivalent to fitting a switching linear dynamic system.

4 Evaluation of Temporal Clustering

An important problem to address is the evaluation of the identified procedure. In this work, we
evaluate a procedure by comparing the temporal clustering C generated under it with respect to a
ground truth temporal clustering G. In particular, for any metricM we calculate 1

n

∑
iM(Gi, Ci) to

evaluate the temporal clusterings usingM over the dataset of videos.

Using traditional clustering metrics for evaluation is the prevalent approach in temporal clustering
[18, 17]. Unfortunately, as we will demonstrate shortly, traditional clustering metrics are ill-suited for
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the evaluation. The lack of attention to temporal structure means that these metrics often give counter-
intuitive results. To remedy this, we introduce 2 new metrics for temporal clustering, temporal purity
and temporal completeness. We also introduce a new combined metric, the temporal clustering score,
which can be used as a standalone metric to evaluate any temporal clustering.

4.1 Traditional Clustering Metrics

For a temporal clustering C the widely used purity2[26] metric penalizes the presence of items from
different ground truth labels in the same cluster. This is a desirable property that any good clustering
evaluation criterion should consider. Purity is defined as,

Purity =
1

H

∑
α∈ΓC

max
β∈ΓG

|G[β] ∩ C[α]|

A related metric is homogeneity [26], which captures the same idea in a different way,

Homogeneity = 1− H(ΓG |ΓC)
H(ΓG)

where H(ΓG) is the entropy of the clustering G, H(ΓG |ΓC) is the conditional entropy of G given C.
Intuitively the conditional entropy term peeks inside every cluster in C, and checks the entropy of the
items inside in terms of the ground truth labels. The conditional entropy term will be low if every
cluster in C is pure and contains items of only a single ground truth label. This in turn makes the
homogeneity high (close to 1.0).

Another important clustering metric is completeness [26], which prefers clusterings where all items
from a ground-truth label lie in the same cluster i.e. the ground truth label is not split across clusters.
It is defined as,

Completeness = 1− H(ΓC |ΓG)

H(ΓC)

Both completeness and homogeneity are considered important criteria for clustering. Maximizing
either at the expense of the other is bad – high homogeneity and low completeness imply a clustering
that is too fine-grained (e.g. every item in its own cluster is perfectly pure and homogeneous), while
low homogeneity and high completeness imply a clustering that is too coarse (e.g. a single cluster
containing all items is perfectly complete). Therefore, several metrics that combine these 2 criterion
have been proposed. The normalized mutual information (NMI) is a widely used metric, calculated as
the geometric mean of homogeneity and completeness [27]. Another popular metric is the V-measure,
which is calculated as the harmonic mean of homogeneity and completeness instead [26]. These
criteria balance homogeneity and completeness for evaluating clusterings.

Issues. These metrics can give counter-intuitive results when used for evaluating temporal clusterings.
The main issue that distinguishes the temporal clustering case is the presence of repeated structure –
ground truth labels that are split across several segments in the trajectory. We desire in the temporal
case that repeated segments from the same ground truth label are identified correctly. For instance, in
Fig 2, identifying that the dark-green segments A0:2,A4:6 share the same label A is essential.

To illustrate what would happen if we used the metrics that we outlined above, we provide some
examples in Fig 2. Fig 2a contains examples of possible temporal clusterings for a 6-step trajectory,
as well as the ground truth. Fig 2b converts these temporal clusterings to their standard non-temporal
clustering counterparts.

Firstly, notice that all three temporal clusterings C1, C2, C3 in Fig 2 are assigned a perfect purity or
homogeneity of 1.0. The reason is apparent from Fig 2b; no cluster in any of the three clusterings
contains items from more than one ground truth label.

However, while C1 perfectly matches the ground truth there are problems with both C2 and C3. C2
misses the repeated structure in A, splitting the items in A into 2 separate clusters C2[X] and C2[Z]
instead. C3 also splits the items in A into 2 separate clusters C3[X] and C3[Z]. However, C3 captures all
the repeated structure in A, with C3[X0:1Z1:2] corresponding to A0:2 and C3[X4:5Z5:6] corresponding
to A4:6.

2While we will define the traditional metrics for the temporal clustering case, they were originally intended
for use with standard non-temporal clusterings.
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(a) G is the ground truth temporal clustering and
C1, C2, C3 are possible temporal clusterings.

(b) C1, C2, C3 when converted to standard non-
temporal clusterings for use with traditional metrics.

Figure 2: Problematic cases for traditional metrics, on a simple 6-step trajectory. C1 is equivalent
to ground truth and preferable to both C2 and C3 but all three receive a perfect score on purity and
homogeneity. C2 and C3 have an identical completeness score but C3 captures repeated structure and
should be preferable to C2. All traditional clustering metrics based on a contingency matrix rely on
the representation in (b) and give C2 and C3 an equal score.

While homogeneity failed to distinguish this case, the problem is that completeness also does not
help. Both C2 and C3 have an identical completeness score, since the clusters in both have exactly
the same composition as seen in Fig 2b (in fact no traditional metric such as NMI or V-Measure can
distinguish these cases). However, the temporal clusterings for C2 and C3 contain useful information
which should allow us to pick C3 over C2.

The technical problem with all of these metrics is that they rely on proportions, and can be computed
using only a contingency matrix. This loses the temporal structure that is important to accurately
assess the temporal clusterings. There are several other metrics which we did not discuss here,
including the Rand index, the Adjusted Rand index [28], and so on, but they all suffer from the same
problem.

We now describe metrics that alleviate these problems in a natural fashion.

4.2 Temporal Purity (TP)

We propose temporal purity, a metric that generalizes purity to temporal clusterings by being sensitive
to the correct identification of repeated segments. Temporal purity neatly reduces to purity when no
ground truth label occurs in multiple segments i.e. there is no repeated structure. Similar to purity,
temporal purity is a normalized metric that lies in (0, 1].

We give a few definitions before describing how to compute temporal purity. LetW be a function that
counts the number of running duplicates in a sequence e.g. W(A,A,A,B,B,B,C,C,C,A,A,B) =
(3, 3, 3, 2, 1). Notice that W computes the weight of the segment corresponding to each cluster
label in the sequence. Recall that P maps a sequence to its procedure, and for the case above,
P(A,A,A,B,B,B,C,C,C,A,A,B) = (A,B,C,A,B). Thus, W is a weighing function which
computes the length of each token in the procedure. Also recall that for any α ∈ Γ and a temporal
clustering C, S(C, α) is the set of segments corresponding to the label α in C.

Let H(P1,P2,W1,W2) be a program that solves the heaviest common sub-sequence problem
[29] – it returns the total weight of the heaviest common sub-sequence in P1 and P2 (which have
associated weightsW1 andW2 respectively). H can be computed efficiently using a dynamic program
in O(|P1||P2|). For instance, H((A,B,C,A), (E,B,C,E), (1, 1, 1, 1), (2, 2, 2, 2)) identifies the
heaviest sub-sequence (B,C) and returns a total weight of 1 + 1 + 2 + 2 = 6.

The computation of temporal purity is outlined in Algorithm 3. There are 2 steps in the computation
of the metric – a preprocessing step and a scoring step. We will describe the scoring step first, since it
is the main step in the computation. We will use Fig 3 as an aid in the next few paragraphs as we lay
out intuition on what temporal purity is trying to achieve.

For scoring, we first consider a ground truth label β (line 5) – say A in G in Fig 3. We then pick a
pair of segments (a1, b1) and (a2, b2) from S(G, β) (lines 11, 12) – in Fig 3, we could pick the pair
of segments (0, 2) and (4, 7). These segments can be picked since G0:2 and G4:7 both contain only
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(a)

(b) A pair of segments being compared and scored. The segments correspond to C0:2 and C4:7. First
find P(C0:2) = (X),W(C0:2) = (2) and P(C4:7) = (X,Z),W(C4:7) = (1, 2). Then, running
H((X), (X,Z), (2), (1, 2)) yields the heaviest common subsequence (X) and a score of 3. The dotted
lines around C5:7 show that it does not contribute to the score.

Figure 3: An example to illustrate the computation of temporal purity. (a) demonstrates how the
proposed temporal clustering C is adjusted to purify each cluster (lines 2-10 in Algorithm 3). (b)
shows how a pair of segments is compared (lines 11-16 in Algorithm 3).

β = A i.e. G0:2,G4:7 ⊆ G[A]. Notice that this pair of segments in G exhibits repeated structure – in
fact any pair we would have picked using this method would exhibit repeated structure in G.

We now look at what these identified segments look like in C i.e. we find Ca1:b1 and Ca2:b2 . In Fig 3
this corresponds to C0:2 = (X,X) and C4:7 = (X,Z,Z).

At this point, we pause and recap what we have done so far: (i) picked a pair of segments that exhibits
repeated structure in G; (ii) identified this pair of segments in C. The main idea will now be to
score how faithfully the pair of segments in C capture the repeated structure in G. To do this, we
run the heaviest common sub-sequence problem on this pair (line 14). Fig 3b shows details of this
computation for our running example – we runH((X), (X,Z), (2), (1, 2)) and it returns a score of 3.

By using the heaviest common sub-sequence function to score the segment pair in C, we can determine
whether the repeated structure in G was discovered by C and if so, to what extent. At one extreme,
if no common sub-sequence is found byH, then there are no overlapping tokens in the procedures
corresponding to Ca1:b1 and Ca2:b2 . This directly implies that C has failed to identify repeated structure
in the two segments, and the score awarded for this segment pair is 0. At the other extreme, if both
segments being compared are identical, they will overlap perfectly according toH. This implies that
C was able to identify the repeated structure perfectly for these segments and will get the maximum
possible score for this segment pair. For segment pairs that lie in-between these extremes,H finds
the best possible overlap to score the segment. This method can now be repeatedly applied for every
possible segment pair in C that exhibits repeated structure in G (lines 5, 12, 13, 14 handle this).

The other important step in the algorithm is a preprocessing step that trims each cluster based on its
purity. Fig 3a demonstrates how this is carried out. C is first viewed as a standard, non-temporal
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Algorithm 3 Calculation of Temporal Purity

Require: Ground truth G and temporal clustering C

1: function TEMPORALPURITY(G, C)
2: for all α ∈ ΓC do . for every cluster label α
3: β∗α ← arg maxβ∈ΓG |G[β] ∩ C[α]| . find ground truth label β∗α which most overlaps α
4: end for
5: for all β ∈ ΓG do . for every ground truth label β
6: for all (a, b) ∈ S(G, β) do . for every segment corresponding to β in G
7: P(Ca:b) := (p1, p2, . . . , pr) . find procedure for this segment
8: W(Ca:b) := (w1, w2, . . . , wr) . find weights for this segment in C
9: w̃i ← wi × I[β = β∗pi ] . trim weights based on purity

10: W̃(Ca:b)← (w̃1, w̃2, . . . , w̃r) . construct new weights
11: end for
12: for all (a1, b1) ∈ S(G, β) do
13: for all (a2, b2) ∈ S(G, β) do
14: h(a1, b1, a2, b2)← H(P(Ca1:b1),P(Ca2:b2), W̃(Ca1:b1), W̃(Ca2:b2))
15: . compute score for every pair of segments with ground truth label β
16: end for
17: end for
18: end for
19: score←

∑
β∈ΓG

∑
(a1,b1)∈S(G,β)

∑
(a2,b2)∈S(G,β) h(a1, b1, a2, b2) . sum up scores

20: max_score← 2
∑
β∈ΓG

|S(G, β)|
∑

(a,b)∈S(G,β)(b− a+ 1) . | · | is cardinality
21: temporal purity← score

max_score

22: return temporal purity
23: end function

clustering. Each cluster C[α] is purified by marking out impure items. These are items that do not
belong to the majority ground truth label β∗α that constitutes the cluster C[α]. In Fig 3 only the C[X]
cluster contains a single item that is impure. The impure items are then identified in the original
temporal clustering and given 0 weight in all subsequent calculations. This preprocessing step ensures
two things: (i) C is penalized for constructing impure clusters which put items from different ground
truth labels together; and (ii) temporal purity reduces to purity in the standard clustering case.

4.3 Temporal Completeness (TC)

Similar to the issue with purity, temporal purity cannot penalize temporal clusterings which contain
clusters that are too fine-grained (e.g. every item in its own cluster). Just as with completeness,
we would like a metric that can identify when the temporal clustering is too fine-grained, and
over-segments the trajectory.

When is a temporal clustering C not over-segmented? We contend that C is complete when the
items in each segment (rather than for each ground truth label) of G are clustered together. By using
segments rather than entire labels in the definition of completeness for temporal clustering, we avoid
the problems laid out in Fig 2. Stated differently, the best granularity for C is when its set of transition
points between segments align perfectly with those in G.

A major issue in using the standard definition of completeness is that if the repeated structure of
some ground truth label is not identified by C, completeness penalizes it, even if the granularity
of the clustering is correct. For instance, C2 in Fig 2 is penalized as much as C3 even though it
is less fine-grained (in fact C2’s transition points perfectly align with G so it is just right). This is
undesirable since (i) we already have a precise metric in temporal purity for penalizing a lack of
identified repeated structure in C. Using completeness together with temporal purity would lead
to a ‘double’ penalty in these cases; and (ii) temporal clusterings where transition points between
segments align with the ground truth should have maximum score.
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To remedy this, we consider the conditional entropyH
(

ΓC |
⋃
β∈ΓG

S(G, β)
)

– the conditioning here
is over the set of all segments

⋃
β∈ΓG

S(G, β) rather than the set of ground truth labels ΓG , as was
the case in completeness. However, normalizing this quantity by H(ΓC) (as done in completeness) is
a problem since H(ΓC) is sensitive to the number of clusters |ΓC |, even if the transition points remain
unchanged.

Instead, we normalize the conditional entropy in each segment by the maximum possible entropy
of that segment. For a particular segment (a, b) ∈

⋃
β∈ΓG

S(G, β), the conditional entropy of that
segment is simply H(ΓC |(a, b)). The maximum possible entropy in (a, b) is log(b − a + 1), and
occurs when each item in the segment lies in a different cluster. The normalized conditional entropy
becomes H(ΓC|(a,b))

log(b−a+1) . This normalization is independent of the choice of temporal clustering and
depends only on G, and specifically on the size of segments in G.

Thus, we have

Temporal Completeness = 1−
∑

(a,b)∈
⋃
β∈ΓG

S(G,β)

(
b− a+ 1

H

)
· H(ΓC |(a, b))

log(b− a+ 1)

In practice, the temporal completeness tends to take high values between 0.8 − 1.0. Since the
normalized conditional entropy H(ΓC|(a,b))

log(b−a+1) is normalized with respect to the maximum possible
entropy, it skews close to small values, and thus the metric takes high values. This is not an issue, but
it means that small changes in the metric are generally significant in practice.

4.4 Temporal Clustering Score (TCS)

Given the two new metrics, temporal purity and temporal completeness, we now define a single
combined metric – the temporal clustering score. It is defined as,

Temporal Clustering Score =
(1 + β) · TC · TP

(β · TP) + TC

Similar to the V-Measure in standard clustering, the temporal clustering score balances its two
constitutent criteria using a weighted harmonic mean. In practice, we use a value of β = 0.1 since
the temporal completeness tends to skew to high values.

5 Experiments

We carry out experiments on a dataset that we collected from YouTube. The dataset consists of 17
videos of pianists playing Bach’s Prelude in C major. Videos were picked only if they were captured
from a camera that had a top-down view (approximately) of the piano and the pianist’s hands. Each
video was trimmed to only contain the first 4 bars of the piece, and was manually annotated with two
ground truth temporal clusterings – a fine-grained temporal clustering Gifine consisting of 7 clusters
and 17 segments (Fig 4b lower) and a coarse temporal clustering Gicoarse consisting of 4 clusters and
5 segments (Fig 4a lower). We will attempt to discover these using our methods.

(a) Upper: C̃1, the temporal clustering extracted using LTCA (HC) for the coarse 4 cluster case on video 1.
Lower: G1

coarse, the ground truth temporal clustering for video 1.

(b) Upper: C̃1, the temporal clustering extracted using LTCA (HC) for the fine 7 cluster case on video 1.
Lower: G1

fine, the ground truth temporal clustering for video 1.

Figure 4: Examples of temporal clusterings identified for video 1 (170 time steps) compared to
ground truth for (a) the coarse 4 cluster case and (b) the fine 7cluster case.
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LTCA (HC) GPE (HC) LTCA (GMM) GPE (GMM) Individual Canonical

NMI 0.77 0.64 0.65 0.39 0.48 0.70
TCS 0.89 0.78 0.61 0.46 0.66 0.89

Table 1: Performance compared to Gcoarse when extracting a coarse 4 primitive procedure.

How different are the videos? As a sanity check of sorts, we show what happens when all n feature
trajectories Xi are clustered together in one go. All time-steps across all feature trajectories xit
are gathered into a single dataset and then clustered using hierarchical clustering (ward linkage).
Our hope is that even across demonstrations, the same primitives will have very similar feature
representations.

We find that each video is contained inside its own cluster. This indicates that the features extracted
have very little commonality across videos – each video demonstration’s feature trajectory Xi lies
on a different manifold in feature space. This is not surprising – frames within a video share strong
visual similarity, and are quite dissimilar to those from another video. However, it seems that using
common feature extractors does not remedy this issue.

Experiments with LTCA and GPE. We run LTCA and GPE with both hierarchical clustering (HC)
and Gaussian mixture models (GMM) in two separate runs. Python implementations from the package
sklearn were used for both. The two runs set the number of clusters at k = 4 (coarse) and k = 7
(fine) respectively. We compare to 2 baselines,

Individual. For each Xi, we compute its temporal clustering A(Xi, k) and directly compare it to the
ground truth temporal clustering Gi. Note that this baseline cannot extract a procedure but allows us
to verify if aggregating using LTCA or GPE helps.

Canonical. For a single canonical Xi we find its temporal clustering A(Xi, k). We then uniformly
warp this canonical temporal clustering to apply it to all other videos. To apply it to the jth video,
we find τ(A(Xi, k), Hj) and then compare this to the ground truth temporal clustering Gj . For
determining which video to pick as the canonical, we simply pick the one which gives the best
evaluation on the TCS metric.

The results of all methods are shown in Table 1 and Table 2. For the coarse procedure extraction, we
get high quality results that perform favorably compared to the baselines. Fig 4a shows an example
of a temporal clustering extracted by LTCA (HC) for video 1. Our identified temporal clustering is
quite close to the ground truth qualitatively, and this is reflected in the high value of the TCS metric
in Table 1.

However, for the fine procedure extraction, results are poor for all competing methods. While the
canonical baseline performs best, no method is able to identify the fine-grained repeated structure
in the ground truth. Our hypothesis is that the feature representation used is unable to identify
important features that can be used to identify the repeated structure. Identifying a good, general
feature representation for video demonstrations is an important direction for future work.

Performance of TCS metric. The TCS metric is able to do a much better job of distinguishing the
performance of various methods. A good example is the difference in performance of GPE (HC) and
LTCA (GMM) in Table 1. While NMI considers LTCA (GMM) to be similar to GPE (HC) (0.65 v/s
0.64), TCS prefers GPE (HC) by a wide margin. The main reason is that LTCA (GMM) is unable to
identify any repeated structure, while GPE (HC) does identify repeated structure. This verifies the
issues with traditional metrics laid out earlier.

LTCA (HC) GPE (HC) LTCA (GMM) GPE (GMM) Individual Canonical

NMI 0.59 0.61 0.61 0.57 0.52 0.56
TCS 0.36 0.40 0.38 0.32 0.43 0.46

Table 2: Performance compared to Gfine when extracting a fine 7 primitive procedure.
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6 Related Work

Our work is related to several areas of research spanning unsupervised learning, computer vision and
reinforcement learning.

Temporal clustering. Our work is closely related to research in temporal clustering. Recent work
[18, 17] proposed the aligned cluster analysis algorithm, extending kernel k-means and spectral
clustering to find temporal clusterings of time-series data. [30] propose a method for temporal
clustering that relies on assuming data points lie in an a union of low-dimensional subspaces. Other
work from changepoint detection [31, 32] can also be used to generate temporal segmentations, but
not find the assignment of segments to clusters. Classical clustering methods [33] can also be used to
generate temporal clusterings.

Prior work in temporal clustering has focused on low-dimensional time series such as the bee dances
dataset [34] and the CMU motion-capture dataset [19]. The Weizmann dataset [35] is one of the few
video datasets used, but it contains extremely simple scenes with a person walking or running against
a static background. In contrast, our work focuses on the setting where videos may be extremely
varied, complex and noisy.

Latent variable models. A related line of work is in learning latent variable models which model
time-series as switching between a set of linear dynamics models. These include switching linear
dynamical systems (SLDSs), hidden Markov models (HMMs) [36] and vector autoregressive models
(VARs) [37].

Several papers [16, 15] address the challenge of learning SLDSs with a variable number of switching
modes by using non-parametric Bayesian methods such as a hierarchical Dirichlet process prior [15]
or beta process prior [16]. Recent work [14] used a Dirichlet process Gaussian mixture model as
an SLDS to find transition points in surgical video data. Other work includes the infinite Hidden
Markov Model [38] which extends the basic HMM model using a Dirichlet process to define an
infinite number of hidden components. Other variants of SLDSs [39, 40] introduce recurrence or
time-delayed transitions.

Closest to our setting is work on the beta process autoregressive HMM (BP-AR-HMM) [15, 16],
which learns models for multiple time-series that share a set of dynamical behaviors. However,
similar to work in temporal clustering, they operate on low-dimensional motion capture data. While
our setting (n demonstrations realizing a common underlying procedure) is a specific instance of the
general problem considered in this work, the complexity of our dataset makes it a non-trivial problem
to solve.

Activity recognition and localization. Papers from computer vision in activity recognition typically
operate on complex video datasets such as the Bach dataset collected by us. However, they typically
rely on supervision in the form of activity labels to learn a classification model for activities. Work
in action detection identifies a single action present in a video clip [41–44] after learning a model
on training data. A more complex setting is where videos may contain multiple actions which must
be identified and temporally segmented [45–48, 7, 49], given a densely annotated training set of
localized actions.

There is also some work in semi-supervised and unsupervised action localization such as [50–52].
[50] use information about the actions but not their localization, [51] focus on activities where it
is possible to do skeletal modeling of human actions while [52] propose a pipeline for building an
unsupervised dictionary of actions.

Learning from demonstration. Learning from demonstration in the reinforcement learning setting
involves mimicking a demonstrator’s policy using expert trajectories collected from them [53, 54].
The setting bears some similarity to ours since trajectories often correspond to performing the same
procedure. However, access to both control inputs and the state of the demonstrator are assumed
which is not true in our case.

7 Conclusion

In this work, we introduced the problem of identifying the common procedure underlying a dataset
of task video demonstrations without any supervision. This problem has important applications in
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learning task representations and creating general tutoring systems. We identified the main challenges
that need to be addressed in order to solve the problem, and described two general-purpose methods
for learning a common procedure.

We also identify a gap in the set of evaluation criteria used by work in temporal clustering and activity
recognition. We instead propose several metrics that remedy these gaps and can be used for general
purpose evaluation. Lastly, we validate our methods and evaluation criteria on a dataset of YouTube
video demonstrations of a piano piece.
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