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Abstract

Traditional deep neural networks (NNs) have significantly
contributed to the state-of-the-art performance in the task of
classification under various application domains. However,
NNs have not considered inherent uncertainty in data associ-
ated with the class probabilities where misclassification under
uncertainty may easily introduce high risk in decision mak-
ing in real-world contexts (e.g., misclassification of objects
in roads leads to serious accidents). Unlike Bayesian NN that
indirectly infer uncertainty through weight uncertainties, evi-
dential NNs (ENNs) have been recently proposed to explicitly
model the uncertainty of class probabilities and use them for
classification tasks. An ENN offers the formulation of the pre-
dictions of NNs as subjective opinions and learns the function
by collecting an amount of evidence that can form the subjec-
tive opinions by a deterministic NN from data. However, the
ENN is trained as a black box without explicitly considering
inherent uncertainty in data with their different root causes,
such as vacuity (i.e., uncertainty due to a lack of evidence) or
dissonance (i.e., uncertainty due to conflicting evidence). By
considering the multidimensional uncertainty, we proposed
a novel uncertainty-aware evidential NN called WGAN-ENN
(WENN) for solving an out-of-distribution (OOD) detection
problem. We took a hybrid approach that combines Wasser-
stein Generative Adversarial Network (WGAN) with ENNs
to jointly train a model with prior knowledge of a certain
class, which has high vacuity for OOD samples. Via extensive
empirical experiments based on both synthetic and real-world
datasets, we demonstrated that the estimation of uncertainty
by WENN can significantly help distinguish OOD samples
from boundary samples. WENN outperformed in OOD de-
tection when compared with other competitive counterparts.

Introduction
Deep Learning (DL) models have recently gained tremen-
dous attention in the data science community. Despite their
superior performance in various decision making tasks, in-
herent uncertainty derived from data based on different root
causes has not been sufficiently explored. Predictive uncer-
tainty estimation using Bayesian neural networks (BNNs)
has been explored for classification prediction or regression
in computer vision applications (Kendall and Gal 2017).
They considered well-known uncertainty types, such as
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aleatoric uncertainty (AU) and epistemic uncertainty (EU),
where AU only considers data uncertainty caused by statis-
tical randomness (e.g., observation noises) while EU refers
to model uncertainty introduced by limited knowledge or
ignorance in collected data. On the other hand, in the be-
lief/evidence theory, Subjective Logic (SL) (Jøsang, Cho,
and Chen 2018) considered vacuity, which is caused by a
lack of evidence, as the key dimension of uncertainty. In ad-
dition to vacuity, they also defined other types of uncertainty,
such as dissonance (e.g., uncertainty due to conflicting evi-
dence) or vagueness (e.g., uncertainty due to multiple beliefs
on a same observation).

Although conventional deep NNs (DNNs) have been
commonly used to solve classification tasks, uncertainty as-
sociated with classification classes has been significantly
less considered in NNs even if the risk introduced by mis-
classification may bring disastrous consequence in real-
world situations, such as car crash due to the misclassifi-
cation of objects in roads. Recently, techniques using evi-
dential neural networks (ENNs) (Sensoy, Kaplan, and Kan-
demir 2018) have been proposed to explicitly model the un-
certainty of class probabilities. An ENN uses the predic-
tions of an NN as subjective opinions and learns a func-
tion that collects an amount of evidence to form the opin-
ions by a deterministic NN from data. However, the ENN
is trained as a black box without explicitly considering dif-
ferent types of uncertainty in the data (e.g., vacuity or dis-
sonance), which often results in overconfidence when tested
with out-of-distribution (OOD) samples. We measure the ex-
tent of confidence in a given classification decision based on
the high class probability of a given class (i.e., a belief in
SL). Overconfidence refers to a high class probability in an
incorrect class prediction. To mitigate the overconfidence is-
sue, regularization methods have proposed to hand-pick aux-
iliary OOD samples to train the model (Malinin and Gales
2018; Zhao et al. 2019). However, the regularization meth-
ods with prior knowledge require a large amount of OOD
samples to ensure the good generalization of a model be-
haviour to the whole data space.

In this work, we propose a model called WGAN-ENN
(WENN) that combines ENNs with Wasserstein GAN
(WGAN) (Arjovsky, Chintala, and Bottou 2017) to jointly
train a model with prior knowledge of a certain class (e.g.,
high vacuity OOD or high dissonance in-class boundary



samples) to reinforce and achieve high prediction confidence
only for in-distribution (ID) regions, high vacuity only for
OOD samples, and high dissonance only for ID boundary
samples.

To briefly demonstrate the performance of uncertainty
estimation by conventional NNs, ENNs, and our proposed
WENN model, we explain it with a simple three-class clas-
sification problem in Fig 1. We measure entropy (Shan-
non 1948) estimated on the predictive class probabilities
by three different approaches: (i) Fig 1 (a) shows the pre-
diction for boundary or OOD samples by traditional NNs
(i.e., BNN to indirectly infer uncertainty through weight un-
certainties) using the softmax and demonstrates overconfi-
dence; (ii) Fig 1 (b) shows the overconfidence in the predic-
tion of OOD samples by the ENN; and (iii) Fig 1 (c) shows
the high confidence in the prediction of the ID region by
WENN.

Fig 1: Uncertainty (entropy) estimation based on synthetic
data: (a) using standard NNs with softmax function; (b)
using ENNs; and (c) using WENN. Only (c) shows high
uncertainty in both boundary and OOD regions.

This work provides the following key contributions:

• We considered inherent uncertainties derived from differ-
ent root causes by taking a hybrid approach that lever-
ages both deep learning and belief model (i.e., Subjec-
tive Logic or SL). Although both fields have studied
uncertainty-aware approaches to tackle various kinds of
decision making problems, there has been lack of efforts
to leverage both of their merits. We believe this work
sheds light on the direction of incorporating both fields.

• We considered ENNs to quantify multidimensional un-
certainty types in data and learn subjective opinions. In
particular, the subjective opinions formulated by the SL
can be easily leveraged for the quantification of multidi-
mensional uncertainties where we measured vacuity and
dissonance based on SL.

• Our proposed WENN, combining WGAN and ENNs, can
generate a sufficient amount of auxiliary OOD samples
for training and use the Wasserstein distance to measure
the variety of those samples. Our proposed alternating al-
gorithm can leverage all the intermediate samples more
efficiently than other regularized methods.

• We demonstrated that WENN outperforms competitive
state-of-the-art counterparts in OOD detection, showing
7% better performance than the best of the counterparts
in the most difficult scenario CIFAR10 vs CIFAR100.

Related Work
Uncertainty Quantification in Bayesian Deep Learning
(BDL): Machine/deep learning (ML/DL) researchers
considered aleatoric uncertainty (AU) and epistemic
uncertainty (EU) based on Bayesian Neural Networks
(BNNs) for computer vision applications. AU consists of
homoscedastic uncertainty (i.e., constant errors for different
inputs) and heteroscedastic uncertainty (i.e., different errors
for different inputs) (Gal 2016). A BDL framework was
presented to estimate both AU and EU simultaneously in
regression settings (e.g., depth regression) and classification
settings (e.g., semantic segmentation) (Kendall and Gal
2017). Dropout variational inference (Gal and Ghahramani
2016) was proposed as one of key approximate inference
techniques in BNNs (Blundell et al. 2015; Pawlowski et al.
2017). Later distributional uncertainty is defined based on
distributional mismatch between the test and training data
distributions (Malinin and Gales 2018).

Uncertainty Quantification in Belief/Evidence Theory:
In belief/evidence theory, uncertainty reasoning has been
substantially explored in Fuzzy Logic (De Silva 2018),
Dempster-Shafer Theory (DST) (Sentz, Ferson et al.
2002), or Subjective Logic (SL) (Jøsang 2016). Unlike the
efforts in ML/DL above, belief/evidence theory focused on
reasoning of inherent uncertainty in information resulting
from unreliable, incomplete, deceptive, and/or conflicting
evidence. SL considered uncertainty in subjective opinions
in terms of vacuity (i.e., a lack of evidence) and vagueness
(i.e., failure of discriminating a belief state) (Jøsang 2016).
Recently, other dimensions of uncertainty have been stud-
ied, such as dissonance (due to conflicting evidence) and
consonance (due to evidence about composite subsets of
state values) (Jøsang, Cho, and Chen 2018). In DNNs, (Sen-
soy, Kaplan, and Kandemir 2018) proposed ENN models to
explicitly modeling uncertainty using SL. However, it only
considered predictive entropy to qualify uncertainty.

Out-of-Distribution Detection: Recent OOD detection ap-
proaches began to use NNs in a supervised fashion that out-
performed traditional models, such as kernel density estima-
tion and one-class support vector machine in handling com-
plex datasets (Hendrycks and Gimpel 2016). Many of these
models (Liang, Li, and Srikant 2017; Hendrycks, Mazeika,
and Dietterich 2018) integrated auxiliary datasets to adjust
the estimated scores derived from prediction probabilities.
These OOD detection models were specifically designed to
detect OOD samples. In addition, well-designed uncertainty
estimation models are leveraged for OOD detection. Re-
cently, uncertainty models (Sensoy et al. 2020) have shown
their preliminary results on OOD detection by conducting
performance comparison of various OOD detection models.

Preliminaries
This section provides the background knowledge to under-
stand this work, including: (1) subjective opinions in SL;
(2) uncertainty characteristics of subjective opinion; and (3)
ENNs to predict subjective opinions.



Subjective Opinions in SL
A multinomial opinion in a given proposition x is repre-
sented by ωY = (bY , uY ,aY ) where a domain is Y ≡
{1, · · · ,K}, a random variable Y takes value in Y and
K = |Y| ≥ 2. The additivity requirement of ωY is given
as
∑
y∈Y bY (y) + uY = 1. Each parameter indicates,

• bY : belief mass function over Y;
• uY : uncertainty mass representing vacuity of evidence;
• aY : base rate distribution over Y, with

∑
y aY (y) = 1.

The projected probability distribution of a multinomial
opinion is given by:

pY (y) = bY (y) + aY (y)uY , ∀y ∈ Y. (1)

Multinomial probability density over a domain of cardinality
K is represented by theK-dimensional Dirichlet PDF where
the special case with K = 2 is the Beta PDF as a binomial
opinion. Denote a domain of K mutually disjoint elements
in Y and αY the strength vector over y ∈ Y and pY the
probability distribution over Y. Dirichlet PDF with pY as
K-dimensional variables is defined by:

Dir(pY ;αY ) =
1

B(αY )

∏
y∈Y

pY (y)(αY (y)−1), (2)

where 1
B(αY ) = Γ

(∑
y∈YαY (y)

)
/
∏
y∈Y(αY (y)),

αY (y) ≥ 0, and pY (y) 6= 0 if αY (y) < 1.
We term evidence as a measure of the amount of support-

ing observations collected from data in favor of a sample to
be classified into a certain class. Let rY (y) ≥ 0 be the ev-
idence derived for the singleton y ∈ Y. The total strength
αY (y) for the belief of each singleton y ∈ Y is given by:

αY (y) = rY (y) + aY (y)W, (3)

where W is a non-informative weight representing the
amount of uncertain evidence and aY (y) is the base rate dis-
tribution. Given the Dirichlet PDF, the expected probability
distribution over Y is:

EY (y) =
αY (y)∑

yi∈YαY (yi)
=

rY (y) + aY (y)W

W +
∑
yi∈Y rY (yi)

,∀y ∈ Y.

(4)
The observed evidence in the Dirichlet PDF can be mapped
to the multinomial opinions by:

bY (y) =
r(y)

S
, uY =

W

S
, (5)

where S =
∑
yi∈YαY (yi). We set the base rate aY (y) =

1
K and the non-informative prior weight W = K, and hence
aY (y) ·W = 1 for each y ∈ Y, as these are default values
considered in subjective logic.

Uncertainty Characteristics of Subjective Opinions
The multidimensional uncertainty dimensions of a subjec-
tive opinion based on the formalism of SL are discussed in
(Jøsang, Cho, and Chen 2018). As we deal with a multi-
nomial opinion in this work, we discuss two main types of
uncertainty dimensions, which are vacuity and dissonance.

The main cause of vacuity (a.k.a. ignorance) is a lack of
evidence or knowledge, which corresponds to uncertainty
mass, uY , of an opinion in SL as:

Vac(αY ) =
W

S
. (6)

This type of uncertainty refers to uncertainty caused by in-
sufficient information or knowledge to understand or ana-
lyze a given opinion.

The dissonance of an opinion can happen when there is
an insufficient amount of evidence that can clearly support a
particular belief. For example, when a same amount of ev-
idence is supporting multiple extremes of beliefs, high dis-
sonance is observed. Hence, the dissonance is estimated by
the difference between singleton belief masses (e.g., class la-
bels), leading to ‘inconclusiveness’ in decision making sit-
uations. Given a multinomial opinion with non-zero belief
masses, the measure of dissonance can be obtained by:

Diss(αY ) =
∑
yi∈Y

bY (yi)
∑

yj∈Y\yi
bY (yj)Bal(yj , yi)∑

yj∈Y\yi
bY (yj)

 , (7)

where the relative mass balance between a pair of belief
masses bY (yj) and bY (yi) is expressed by:

Bal(yj , yi) =

{
1− |bY (yj)−bY (yi)|

bY (yj)+bY (yi)
, if bY (yj)bY (yi) 6= 0

0, otherwise.
(8)

Fig 2: Illustration of different vacuity and dissonance of
subjective opinions based on their evidence measures.

The above two uncertainty measures (i.e., vacuity and
dissonance) can be interpreted using class-level evidence
measures of subjective opinions. As in Fig. 2, given three
classes (1, 2, and 3), we have three subjective opinions
{α1,α2,α3}, represented by the three-class evidence mea-
sures as: α1 = (50, 1, 1) representing low uncertainty (en-
tropy, dissonance and vacuity) which implies high certainty
(often represented as high confidence in a decision mak-
ing context), α2 = (50, 50, 50) indicating high inconclu-
siveness due to high conflicting evidence which gives high
entropy and high dissonance, α3 = (1, 1, 1) showing the
case of high vacuity which is commonly observed in OOD
samples. Based on our observations from Fig 2 (b) and (c),
we found that entropy cannot distinguish uncertainty due to
vacuity or dissonance, which naturally results in inability
to distinguish boundary samples from OOD samples. How-
ever, vacuity can effectively detect OOD samples because
the cause of uncertainty is from a lack of evidence.



Evidential Neural Networks (ENNs)
ENNs (Sensoy, Kaplan, and Kandemir 2018) are similar to
classical NNs except that the softmax layer is replaced by an
activation layer (e.g., ReLU) to ascertain non-negative out-
put, which is taken as the evidence vector for the predicted
Dirichlet distribution. Given sample i, let f(xi|Θ) repre-
sents the evidence vector predicted by the network for the
classification, where xi ∈ RL is the input feature and Θ
is the network parameters. Then, the corresponding Dirich-
let distribution has parameters αi = f(xi|Θ) + 1. Let yi
be the ground-truth label, the Dirichlet density Dir(pi;α) is
the prior on the Multinomial distribution, Multi(yi|pi). The
following sum of squared loss is used to estimate the param-
eters αi based on the sample i:

L(f(xi|Θ),yi) =

∫
‖yi − pi‖22
B(αi)

K∏
j=1

p
(αij−1)
ij dpi

=

K∑
j=1

(y2
ij − 2yijE[pij ] + E[p2

ij ]). (9)

Eq. (9) is based on class labels of training samples. How-
ever, it does not directly measure the quality of the predicted
Dirichlet distributions such that the uncertainty estimates
may not be accurate.

Training ENNs with Wasserstein GAN
Given the various characteristics of uncertainty based on SL,
we propose a novel model that combines ENNs and WGAN
to quantify multiple types of uncertainty (i.e., vacuity and
dissonance) and solving classification tasks.

Regularized ENNs
Given a set of samples D = {(x1,y1), · · · , (xN ,yN )}, let
Pout(x,y) and Pin(x,y) be the distributions of the OOD
and ID samples respectively. We propose a training method
using a regularized ENN to minimize the following loss
function over the parameters Θ of the model’s function f :

L(Θ) = Ex,y∼Pin(x,y)[L(f(x|Θ),y)] (10)
−βEx̂∼Pout(x̂)[Vac(f(x̂|Θ))].

The first item (Eq. (9)) ensures a good estimation of the
class probabilities of the ID samples. Since it assigns large
confidence on training samples during the classification pro-
cess, it also contributes to reducing the vacuity of ID sam-
ples. The second item is to increase the vacuity estimation
from the model on OOD samples. β is the trade-off param-
eter. Therefore, minimizing Eq. (10) is to achieve high clas-
sification accuracy, low vacuity output for ID samples and
high vacuity output for OOD samples. To ensure the model’s
generalization to the whole data space, the choice of effec-
tive Pout is important. While some methods (Lee et al. 2017;
Hein, Andriushchenko, and Bitterwolf 2019; Sensoy et al.
2020) only use close or adversarial samples, we found that
both close and far-away samples are equally important. In-
stead of using hand-picked auxiliary dataset Pout which re-
quires a lot of tuning (Zhao et al. 2019), we used generative
models to provide sufficient various OOD samples.

Wasserstein Generators for OOD
We chose WGAN (Arjovsky, Chintala, and Bottou 2017) as
our generators because (i) it provides higher stability than
original GAN (Goodfellow et al. 2014); and (ii) it offers a
meaningful loss metric by leveraging the Wasserstein dis-
tance, which can measure the distance between the gener-
ated samples and the ID region.

WGAN consists of two main components: Discriminator
D and generator G. G maps input latent variable z into gen-
erator output G(z) where D represents the probability of
input sample x coming from ID. The objective function is
to recover Pin(x) from G. WGAN uses the Wasserstein dis-
tance instead of the original divergence in the GAN’s loss
function, which is considered as continuous and differen-
tiable for optimization. The Wasserstein distance dist(p, q)
between two distributions p and q is informally defined as
the minimum cost of transporting mass to transform q into p.
Under the Lipschitz constraint, the loss function of WGAN
can be written as:

min
G

max
D

Ex∼Pin(x)

[
D(x)

]
− Ex̂∼PG(z)

[
D(x̂)

]
, (11)

where Pin is the ID and PG is the the generated distri-
bution defined by x = G(z) and z ∼ p(z), which is
usually sampled from uniform or Gaussian noise distribu-
tion. WGAN employs weight clipping or gradient penalty
(WGAN-GP) (Gulrajani et al. 2017) to enforce a Lipschitz
constraint to keep the training stable. We can estimate the
Wasserstein distance dist at the step after D updates and
before G updates during the alternating training process:

Ex∼Pin(x)

[
D(x)

]
− Ex̂∼PG(z)

[
D(x̂)

]
. (12)

The estimated curve of dist during WGAN training
shows high correlation with high visual quality of the gener-
ated samples (Arjovsky, Chintala, and Bottou 2017). When
training WGAN from the scratch, the initial large distance
indicates that the generated samples has very low-quality,
showing far-away samples to the ID region. Through the
progress of the training, the distance decreases continuously,
which leads to higher sample quality. This implies that the
samples are getting close to the ID region. Therefore we
adopted dist to measure the variety of generated samples,
which are used as prior knowledge of our model.

However, original WGAN is designed to generate ID sam-
ples. To reinforce G recover OOD Pout, we propose the fol-
lowing new WGAN loss with uncertainty regularization.

min
G

max
D

Ex∼Pin(x)

[
D(x)

]
− Ex̂∼PG(z)

[
D(x̂)

]
(13)

−βEx̂∼PG(z)

[
Vac(f(x̂|Θ))

]
,

where β is a trade-off parameter and Vac(f(x̂|Θ)) is the un-
certainty estimation from a classifier trained on ID. This reg-
ularization item enforces the generated samples to have high
vacuity uncertainty.

Jointly Training ENNs and WGAN
To improve the OOD detection accuracy, we developed a
joint training algorithm which allows ENNs to utilize vari-



ous types of OOD samples generated from WGAN:

min
Θ,G

max
D

Ex,y∼Pin(x,y)

[
L(f(x|Θ),y)

]
(14)

−βEx̂∼PG(z)

[
Vac(f(x̂|Θ))

]
+Ex∼Pin(x)

[
D(x)

]
− Ex̂∼PG(z)

[
D(x̂)

]
),

where the sum of the first two items is the regularized ENN
loss (Eq. (10)) and the sum of the latter two represents
WGAN-GP with uncertainty regularization (Eq. (13)). We
ignore the gradient penalty item here for simplicity. We pre-
train the ENN classifier for a good classification accuracy
and then feed it into Algorithm 1 to accelerate the training.

Algorithm 1 Alternating minimization for WGAN and ENN
Require: Pretrained ENN with weights Θ, initial D’s weights ω,

initialG’s weights θ. nd, ne : The number of iterations ofD and
ENN per G iteration. β: the trade-off weight. m: the batch size.

1: repeat
2: for i = 1, ..., nd do
3: Sample {z(i)}mi=1∼Pz and {x̂(i)}mi=1∼PG(z)
4: Update D by descending its gradient (with penalty)

∇ω 1
m

m∑
i=1

[
Dω(x̂(i))−Dω(x(i)) + grad penalty

]
5: end for
6: Get the approximated Wasserstein distance

dist = 1
m

m∑
i=1

[
D(x(i))−D(x̂(i))

]
7: Update G once by ascending its gradient

∇θ 1
m

m∑
i=1

[
D(Gθ(z

(i))) + βVac(f(Gθ(z
(i))|Θ))

]
8: for i = 1, ..., ne do
9: Sample {x(i), y(i)}mi=1 ∼ Pin, {z(i)}mi=1 ∼ Pz ,
{x̂(i)}mi=1∼PG(z)

10: Update ENN by descending the gradient

∇Θ
1
m

m∑
i=1

[
L(f(x(i)|Θ), y(i))

]
11: Update ENN by ascending the gradient

∇Θ
β
m

N∑
i=1

[
Vac(f(x̂(i)|Θ))

]
12: end for
13: until dist convergence

Each batch of the OOD samples correspond to different
decreasing dist. This enables the ENN to utilize a wide
range of OOD samples. ENNs improves uncertainty estima-
tion based on OOD samples from PG, and G achieves a bet-
ter OOD quality due to uncertainty estimation from ENNs
simultaneously. We stop the training when dist converges
in case the ENN may forget the effect of previous far-away
OOD samples from ID regions. Fig 6 illustrates the change
of dist and output vacuity during the training process.

Experiments
We first illustrated the advantage of evidential uncertainty in
(1) a synthetic experiment. Then we compared our approach
with the recent uncertainty estimation models on (2) predic-
tive uncertainty estimation and (3) adversarial uncertainty
estimation. (4) We also investigated the effect of different
types of uncertainties on the OOD detection.

Fig 3: A synthetic experiment that shows the benefit of
using evidential uncertainties (vacuity, dissonance) over
entropy ranged in [0, 1]. Entropy cannot distinguish ID and
OOD samples at class boundaries.

Synthetic
Fig 3 shows three Gaussian distributed classes with equidis-
tant means and tied isotropic variance σ2 = 4 (a large degree
of class overlap). We used our proposed WENN method,
a small NN with 2 hidden layer of 500 neurons each was
trained on this data. Fig 3 demonstrates that entropy and two
evidential uncertainties, which are vacuity, dissonance, ex-
hibit distinctive behaviors. Entropy is high both in overlap-
ping and far-away regions from training data, which makes
it hard to distinguish ID and OOD samples at class bound-
aries. In contrast, vacuity is low over the whole region of
training data while vacuity is high for the outside of the re-
gion of training data. This allows the ID region to be clearly
distinguished from the OOD region. In addition, high disso-
nance is observed over decision boundary which indicates
high chances of misclassification.

Predictive Uncertainty Estimation
Comparing Schemes: We compared our model with the
following schemes: (i) L2 refers to the standard determinis-
tic NNs with softmax output and weight decay; (ii) DP uses
Dropout, the uncertainty estimation model (i.e., BNNs) (Gal
and Ghahramani 2016); (iii) DE refers to Deep Ensem-
bles (Lakshminarayanan, Pritzel, and Blundell 2017); (iv)
BBB refers to Bayes by Backprop (Blundell et al. 2015); (v)
BBH refers to Bayes by Hypernet (Pawlowski et al. 2017),
a Bayesian model based on implicit weight uncertainty; (vi)
MNF refers to the variational approximation based model
in (Louizos and Welling 2017); (vii) ENN uses evidential
DL model (Sensoy, Kaplan, and Kandemir 2018); (viii)
GEN combines ENNs and Adversarial Autoencoder (Sen-
soy et al. 2020); and (ix) Ent, Vac and Dis are the entropy,
vacuity and dissonance of our proposed model WENN.

Setup: We followed the same experiments in (Sensoy
et al. 2020) on MNIST (LeCun et al. 1998) and CI-
FAR10 (Krizhevsky, Hinton et al. 2009): (1) For the
MNIST dataset, we used the same LeNet-5 architecture
from (Sensoy et al. 2020). We trained the model on MNIST
training set and tested on MNIST testing set as ID samples
and notMNIST (Bulatov, Y. 2011) as OOD samples; and (2)
For the CIFAR10 dataset, we used ResNet-20 (He et al.
2016) as a classifier in all the models considered in this
work. We trained on the samples for the first five categories
{airplane, automobile, bird, cat, deer} in the CIFAR10



(a) MNIST: ID vs OOD (b) CIFAR10: ID vs OOD (c) CIFAR10: Successful vs Fail predictions

Fig 4: Boxplots of predictive uncertainty of different models on ID/OOD testing datasets: (a) MNIST test set (ID) vs
notMNIST (OOD); (b) Samples from the first five (ID) vs the last five (OOD) categories of CIFAR10 test set; (c) Successful
and failed predictions in CIFAR10 test set (ID). Our model uses entropy (Ent), vacuity (Vac), dissonance (Dis) as a measure of
uncertainty, while other models use entropy.

training set (i.e., ID), while using the other five categories
{ship, truck, dog, frog, horse} as testing OODs. We used
the source code of BBH and GEN, which also contained
implementations of other approaches. But we changed
all the classifiers to the same LeNet-5 and ResNet-20
respectively. All the baselines were fairly trained with their
default best parameters and we reported the average results.
For WENN, we set β = 0.1, nd = 2, ne = 1, m = 256,
learning rate = 1e−4 in Algorithm 1 in all the experi-
ments, which were fine-tuned considering the performance
of both the OOD detection and ID classification accuracy.
For more details refer to Appendix and our source code 1.

Metrics: Our proposed model used vacuity and dissonance
estimated based on Eq. (6) and Eq. (7). To be consistent with
other works that used entropy as a measure of uncertainty,
we also compared the predictive entropy over the range of
possible entropy [0, 1]. We used the boxplots to show the
distribution of predictive uncertainty.

Results: To evaluate OOD uncertainty qualification, Fig 4
(a) and (b) show the boxplots of the predictive uncertainty
under all models trained with MNIST and CIFAR10 and
tested on their corresponding ID and OOD datasets. The
ideal model is expected to have a low ID box and a high
OOD box, i.e., the model is certain about the ID inputs while
totally uncertain about the OOD inputs. To measure ID un-
certainty qualification, Fig 4 (c) shows the boxplots of dif-
ferent models’ predictive uncertainty for correct and mis-
classified examples in CIFAR10 ID testing set. The figure
indicates that a standard network is overconfident of any in-
puts. BBH performs the best among all the Bayesian models
on MNIST but fails to give a disparity between ID and OOD
on CIFAR10. ENN and GEN perform well on MNIST. How-
ever, Fig 4 (b) and (c) show that they force high uncertainty
for mis-classified ID samples the same as OOD samples on
CIFAR10. (Sensoy et al. 2020) admits that ENN and GEN
may classify the boundary ID samples as OOD because of
their high entropy. The above results all indicate the limita-
tion of entropy in uncertainty estimation.

WENN using entropy beats other counterparts in estimat-

1https://github.com/snowood1/wenn

ing OOD uncertainty because it benefits from our algorithm
using vacuity. However, WENN is more powerful when us-
ing vacuity and dissonance to measure OOD and ID uncer-
tainty respectively. For ID uncertainty, Fig 4 (c) illustrates
that high dissonance implies conflicting evidence, which can
result in mis-classification. For OOD uncertainty, Fig 4 (b)
and (c) show that all the ID samples, i.e., even the mis-
classified samples, have extreme low vacuity, compared to
the high vacuity of OOD samples. However, WENN still as-
signs medium entropy to boundary ID samples. This is con-
sistent with the synthetic experiment’s result, showing the
advantage of adopting vacuity in distinguishing boundary ID
and OOD samples.

Adversarial Uncertainty Estimation

We also evaluated these models on CIFAR10 using adversar-
ial examples generated by FGSM (Goodfellow, Shlens, and
Szegedy 2014) with different perturbation values ε∈ [0, 0.5].
DE is excluded because it is trained on adversarial samples.
Fig 5 shows that as ε increases, WENN’s accuracy imme-
diately drops to random and the uncertainty simultaneously
increases to maximum entropy, i.e., WENN will assign the
highest uncertainty with the inputs if it can’t make easy pre-
dictions. It knows what it doesn’t know and never becomes
overconfident. We observe the same behaviors for MNIST
dataset (in Appendix).

Fig 5: Accuracy (solid) vs entropy (dashed) as a function of
the adversarial perturbation ε on CIFAR10.



Out-of-Distribution Detection
Comparing Schemes: We compared with several recent
methods specifically designed for OOD detection, together
with uncertainty models ENN and GEN: (i) MSP refers to
maximum softmax probability, a baseline of OOD detection
in (Hendrycks and Gimpel 2016); (ii) CCC (Lee et al.
2017) uses GAN to generate boundary OOD samples as
regularizers; (iii) ODIN calibrates the estimated confidence
by scaling the logits before softmax layers (Liang, Li, and
Srikant 2017); (iv) ACET uses adversarial examples to
enhance the confidence (Hein, Andriushchenko, and Bitter-
wolf 2019); (v) OE refers to Outlier Exposure (Hendrycks,
Mazeika, and Dietterich 2018) that enforces uniform
confidence on 80 million Tiny ImageNet (Torralba, Fergus,
and Freeman 2008); (vi) CCU integrates Gaussian mixture
models in OOD detection DL models (Meinke and Hein
2019); and (vii) Ent and Vac refer to our WENN model
using entropy or vacuity as scores.

Setup: We used FashionMNIST (Xiao, Rasul, and Vollgraf
2017), notMNIST, CIFAR10, CIFAR100 (Krizhevsky,
Hinton et al. 2009), SVHN (Netzer et al. 2011), the class-
room class of LSUN (i.e., LSUN CR) (Yu et al. 2015) and
uniform noise as ID or OOD datasets. We used the source
code in (Meinke and Hein 2019) which contained imple-
mentations of other baselines, but we used ResNet-20 for
all the models except CCC. We used VGG-13 (Simonyan
and Zisserman 2014) for CCC because we couldn’t achieve
an acceptable accuracy using ResNet-20. And ODIN, OE
and CCU were directly trained or calibrated on the Tiny
ImageNet. Other settings were the same as the previous
uncertainty estimation experiments.

Metrics: Our model uses vacuity to distinguish between
ID and OOD samples. ENN and GEN use the entropy
of the predictive probabilities as recommended in their
papers. The other methods use their own OOD scores. We
use area under the ROC (AUROC) curves to evaluate the
performance of different type of uncertainty.

Results: Table 1 shows the AUROC curves performance of
different approaches. WENN’s vacuity beats all the other un-
certainty scores, including its own entropy. ENN and GEN
are not originally designed for OOD detection because they
assign the same high entropy to mis-classified ID samples as
OOD. CCC doesn’t generalize well and it lacks scalability
to recent deep architectures like ResNet to ensure a better
classification accuracy. The result of ACET proves that the
effect of using purely close adversarial examples is limited.
(Hein, Andriushchenko, and Bitterwolf 2019) admits that
ACET will yield high-confidence predictions far away from
the training data. ODIN, OE and CCU are directly trained or
tuned using a large auxiliary dataset which should contain
both far-away and close samples. The outperformance of
WENN indicates that our algorithm using vacuity can gen-
erate and utilize sufficient OOD samples more effectively.

To further explain how our model generates and utilizes
variable OOD samples, Fig 6 illustrates the alternating op-
timization process when the model is trained on CIFAR10

Table 1: AUROC for OOD detection.

ID OOD MSP ENN GEN CCC ODIN ACET OE CCU Ent Vac

FM
N

IS
T MNIST 96.9 90.1 96.2 99.9 99.2 95.6 92.0 96.2 100.0 100.0

notMNIST 87.5 87.8 93.6 96.4 90.2 92.4 93.0 96.7 99.9 100.0
Uniform 93.0 91.6 96.9 95.4 94.9 100.0 99.3 100.0 99.9 100.0

C
IF

A
R

10 CIFAR100 86.3 75.0 84.0 84.0 87.1 85.2 86.0 92.5 98.6 99.5
SVHN 88.9 78.6 85.4 80.5 85.1 89.6 92.1 98.9 100.0 100.0
LSUN CR 88.8 64.4 98.0 99.7 92.8 89.1 92.7 98.6 100.0 100.0
Uniform 93.8 84.6 82.4 82.4 99.3 100.0 100.0 100.0 100.0 100.0

SV
H

N CIFAR10 95.2 52.9 50.2 98.6 95.8 96.3 100.0 100.0 99.3 100.0
CIFAR100 94.9 51.8 51.0 98.2 95.3 95.6 100.0 100.0 99.3 100.0
LSUN CR 94.9 55.5 53.9 100.0 95.6 97.0 100.0 100.0 99.8 99.9
Uniform 95.8 53.9 53.2 100.0 96.6 100.0 100.0 100.0 99.8 100.0

* ID: In-distribution training sets, OOD: Out-of-distribution testing sets

training set. The initial ENN classifier is overconfident and
assigns arbitrary inputs with low vacuity 0.2. As the Wasser-
stein distance decreases gradually, implying that the gener-
ated samples keep moving from far-away to closer to the ID
region, the model learns to output low vacuity on ID sam-
ples from CIFAR10 testing set and high vacuity on OOD
samples from CIFAR100 and SVHN. The output vacuity of
CIFAR100 is lower than that of SVHN. This indicates vacu-
ity is a reasonable uncertainty metric because CIFAR100 is
often considered as near-distribution outliers of CIFAR10.
However, the medium vacuity of CIFAR100 is still good
enough for perfect classification.

Fig 6: The change of Wasserstein distance (Dist)
(normalized to [0, 1]) and the vacuity of ID samples from
CIFAR10 testing set and the vacuity of OOD samples from
CIFAR100 and SVHN datasets when the model is trained
on CIFAR10 training set.

Conclusion
We proposed a novel DL model, called WENN that com-
bines ENNs with WGAN, to jointly train a model with prior
knowledge of a certain class (i.e., high vacuity OOD sam-
ples). Via extensive experiments based on both synthetic
and real datasets, we proved that: (1) vacuity can distin-
guish boundary samples from OOD samples; (2) the pro-
posed model with vacuity regularization can produce and
utilize various types of OOD samples successfully. Our
model achieved the state of the art performance in both un-
certainty estimation and OOD detection benchmarks.
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