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Using unreliable information sources generating conflicting evidence may lead to a large uncertainty which

significantly hurts decision making process. Recently many approaches have been taken to integrate conflicting

data from multiple sources and/or fusing conflicting opinions from different entities. To explicitly deal with

uncertainty, a belief model called Subjective Logic (SL), as a variant of Dumpster-Shafer Theory (DST), has been

proposed to represent subjective opinions and to merge multiple opinions by offering a rich volume of fusing

operators, which have been used to solve many opinion inference problems in trust networks. However, the

operators of SL are known to be lack of scalability in inferring unknown opinions from large network data as

a result of the sequential procedures of merging multiple opinions. In addition, SL does not consider deriving

opinions in the presence of conflicting evidence. In this work, we propose a hybrid inference method that

combines SL and Probabilistic Soft Logic (PSL), namely Collective Subjective Plus, CSL+, which is resistible to

highly conflicting evidence or a lack of evidence. PSL can reason a belief in a collective manner to deal with

large-scale network data, allowing high scalability based on relationships between opinions. However, PSL

does not consider an uncertainty dimension in a subjective opinion. To take benefits from both SL and PSL,

we proposed a hybrid approach called CSL+ for achieving high scalability and high prediction accuracy for

unknown opinions with uncertainty derived from a lack of evidence and/or conflicting evidence. Through

the extensive experiments on four semi-synthetic and two real-world datasets, we showed that the CSL+

outperforms the state-of-the-art belief model (i.e., SL), probabilistic inference models (i.e., PSL, CSL) and deep

learning model (i.e., GCN-VAE-opinion) in terms of prediction accuracy, computational complexity, and real

running time.

CCS Concepts: • Computing methodologies → Learning in probabilistic graphical models; Reason-
ing about belief and knowledge; Logical and relational learning; Learning latent representations;

Additional Key Words and Phrases: uncertainty, subjective opinion, vacuity, conflicting evidence, opinion

inference

1 INTRODUCTION
Effective decision making is closely related to how to manage uncertainty. Uncertainty is one of

key causes generating biases which may mislead a decision making. Uncertainty in data and/or

information is often originated from different aspects of its quality such as incomplete, missing,

corrupted, or modified/forged information caused by either unreliable medium (e.g., wireless

medium) or malicious actions (e.g., attacks) by adversarial entities. In addition, inherent cognitive,

computational limitations by entities (either machines or humans) can introduce uncertainty being

a serious hurdle in proper information processing. In addition, machine learning and/or data mining

research has studied how to deal with uncertain data in the areas of collective classification [10],

ontology alignment [9], personalized medicine [6], opinion diffusion [1], trust inference in social

networks [12], and graph summarization [20].

Since the 1960’s, belief models have been studied to solve dynamic decision making problems,

such as Dempster-Shafer Theory (DST) [24], Fuzzy Logic (FL) [28], Transferable Belief Model

(TBM) [26], Dezert-Smarandache Theory (DSmT) [25] and Subjective Logic (SL) [13]. In particular,

in 1990’s, SL is proposed to explicitly consider a uncertainty dimension in a subjective opinion.
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Uncertainty in SL mainly refers to vacuity (or ignorance) caused by a lack of evidence. SL offers a

rich set of operators for binomial, multinomial, and hyper opinions to combine different opinions

based on structural relationships between them. However, combining multiple opinions in SL is

limited based on dyadic relationships and needs to be performed sequentially, there is a scalability

issue for a large-scale network data. In addition, although SL’s capability in predicting unknown

opinions is highly effective with a small-scale network data, SL has its inherent issue in scalability

due to its nature in computing two opinions at a time to derive a fused opinion. Further, the

uncertainty in SL is only limited to dealing with vacuity, not uncertainty introduced by conflicting

evidence. For example, in a binomial opinion in SL, even if there exists a same amount of evidence

supporting two extremes (e.g., pro. vs. con.), uncertainty can be close to 0. In this situation, the

information a decision maker has is not really useful for his/her decision making. The scalability

issue for large-scale network data can be relaxed by a probabilistic model, called Probabilistic soft

logic (PSL). PSL is proposed to resolve intractable, complexity issues of previous opinion inference

problems (e.g., Markov logic networks, or MLNs) based on logic rules which allows collective

inference of unknown opinions for high scalability. However, PSL does not deal with uncertainty

in subjective opinions.

To consider uncertainty in an opinion based on SL as well as scalability via collective inference

process in PSL, we previously proposed an opinion inference algorithm, called Collective Subjective
Logic (CSL) [31], by combining PSL and SL. However, uncertainty considered in CSL is still limited

to vacuity, not considering uncertainty caused by conflicting evidence. Hence, in this work, we

further enhanced CSL whose opinion inference performance is highly resilient against vacuity

and conflicting evidence. We name it Collective Subjective Logic Plus, CSL+. CSL+ is an enhanced

version of CSL [31] that achieves high resilience against multidimensional uncertainty in vacuity

and conflicting evidence, leading to high prediction accuracy in opinion inference with highly

uncertain opinions.

We made the following key contributions in this work:

(1) Providing a scalable solution for opinion inference under uncertainty: The proposed
CSL+ is a hybrid approach taking the merits of both PSL and SL as an enhanced version of

CSL [31] that deals with uncertain opinions based on SL while achieving high scalability

for a large-scale network data using the collective process of opinions in PSL. We leverage

a technique called posterior regularization (PR) providing the ability to collectively predict

opinions of multiple variables based on known opinions of other variables and their structural

relationships following the logic rules in PSL.

(2) Maximizing prediction accuracy of opinion inference undermultidimensional uncer-
tainty: CSL+ deals with multiple root causes of uncertainty (i.e., lack of evidence and/or con-

flicting evidence) that can significantly hinders effective decision making. To this end, the

proposed CSL+ leverages the learning from known opinions (i.e., training nodes) for maximizing

prediction accuracy.

(3) Validation of CSL+ via extensive experiments based on six datasets: CSL+ is validated

based on four semi-synthetic dataset and two real world datasets with three different tasks:

(1) the trust inference task (i.e., trusted vs. not trusted to determine who trusts who) using

Epinions (a semi-synthetic) datasets; (2) the traffic congestion inference task (i.e., congested vs.

non-congested in road traffic) using District of Columbia (D.C.) and Pennsylvania (PA) road

traffic datasets; and (3) the Sybils attack inference task (e.g., Sybil vs. benign node in a network)

using Facebook, Enron and Slashdot social network datasets.

(4) Proving the outperformance of CSL+ over other competitive counterparts: We con-

ducted extensive experiments to ensure the outperformance of CSL+ over other state-of-the-art
counterparts, including SL, PSL, CSL, and a GCN-VAE-opinion model (i.e., a deep learning model
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Fig. 1. A scenario of conflicting evidence and the prediction of congestion on Washington D.C. road network.

A∼F are road sections, ‘red’ indicates congested road, ‘green’ is for non-congested. A, B, C, E, and F have

observations collected from traffic sensors. The status of D is unknown, the sensor of A is broken and the

observed status is non-congested which conflicts with the observed status of A’s upstreamwhere road sections

B and C are congested.

using graphical convolutional neural networks with variational autoencoder) based on all six

datasets (i.e., four semi-synthetic dataset and two real world datasets) in terms of prediction

accuracy of unknown opinions, computational algorithmic complexity, and real running time.

The rest of this paper is structured as follows. Section 2 provides the overview of related work

including probability models, belief models, and other advanced inference models. Section 3 gives

background on SL and PSL, which are mainly leveraged to develop CSL+. Section 4 describes an

example scenario and the problem statement. Section 5 provides the details of the proposed CSL+.
Section 6 describes the experimental setting and datasets and discusses the observed trends of

experimental results. Section 7 concludes the paper and suggests the future research directions.

2 RELATEDWORK
In this section, we provide the overview of the related approaches for opinion inference under

uncertainty, including probability models, belief models, and machine/deep learning models.

2.1 Probabilistic Models
Inference problems with lack of information in structured network data have been studied based

on a joint probability distribution where each node represents a random variable in the network.

To be specific, Markov random fields (MRFs) [21] uses potential functions of cliques to obtain

structural relationships that models the joint distribution over a set of variables. A Markov logic

network (MLN) [23] models Boolean MRFs via first-order logic. The MLN can be obtained by

attaching weights to the clauses (or formulas) in a first-order knowledge base, and can be seen as a

constructing template of a simple Markov network. In spite of its high interpretability, inferring

opinions from MLNs is computationally intractable. On the other hand, existing approximation

counterparts generate high computational complexity with low accuracy. To resolve the high

complexity of MLNs, a probabilistic soft logic, namely PSL [12, 18], is introduced to define how

truth probabilities are related to each other in binary variables. PSL uses ‘Hinge-Loss Markov

Random Fields’ (HL-MRFs) [5] to define logic rules, on the basis of graphical models with ‘log-

concave density functions,’ which enables better efficiency and scalability than MLNs. Nevertheless,

PSL does not deal with relations of truth probabilities when opinions are uncertain.

2.2 Belief Theory
Since the 1960’s, belief theories have been studied to solve decision making problems under

uncertainty. The examples include Dempster-Shafer Theory (DST) [24], Fuzzy Logic (FL) [28],

Transferable Belief Model (TBM) [26], Dezert-Smarandache Theory (DSmT)[25] and Subjective
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Logic (SL) [13]. Fuzzy Logic [28] evaluates imprecise information considering its vagueness which

can be one of the root causes introducing uncertainty. DST is the most well-known belief model

but is well-known for its counter-intuitive outcome with input of conflicting evidence. To resolve

this issue in DST [24], TBM [26] and DSmT [25] are proposed; but they failed to properly consider

conflicting evidence. SL dealing with vacuity as the uncertainty dimension considered in a subjective

opinion is substantially used to develop trust networks or security mechanisms by leveraging

various types of operators to solve fusion problems [15]. However, most SL operators combine

two opinions sequentially which hinders scalability and requires high complexity for the opinion

inference of a large-scale network data. In this work, by fully leveraging the merits of PSL and

SL, we propose a scalable opinion inference algorithm considering the multidimensional causes of

uncertainty.

2.3 Other Advanced Inference Models
Collective Subjective Logic (CSL) [31] is an uncertainty opinion reasoning method used for the

cases where all the node level subjective opinions in a network have different levels of beliefs (i.e.,

belief and disbelief) with a same level of uncertainty. Our proposed CSL+ combines SL and PSL

as CSL [31], but considers conflicting evidence for the opinion inference. Graph convolutional

neural networks (GCNs) are used to infer opinions along with variational autoencoder (VAE) [34].

GCN-VAE-opinion (GCN-VAE) method is proposed by formulating an opinion based on SL to

explicitly deal with uncertainty (vacuity) while GCN and VAE are used to achieve low complexity

of opinion inference for large-scale network data.

Beta ProbLog [40] was recently proposed, a probabilistic logical programming approach that

reasons in presence of uncertain probabilities represented as Beta-distributed random variables. [41]

estimates approximate credible intervals or “Bayesian error bars” around the model outputs. [42]

generalized belief propagation to infer opinions over binary propositions in a singly connected

graph.

Inference and/or prediction with conflicting information is highly challenging and has been

studied in various domains including the data mining, machine learning, and database systems,

especially the data integration in the database system. Resolving conflict data from multiple data

sources are studied in data mining or webmining, including logic-based methods on data integration

tasks [37] and investigation of dependencies between data sources to find the true values from

conflicting information [36]. These works [36, 37] above mainly focus on resolving conflict values

from different data sources (i.e. data from different database tables, or websites) via probabilistic

or logic-based methods to choose the truth value from one of the data source; however, they do

not resolve uncertainty caused by conflicting evidence upon all evidence considered from multiple

sources. DSmT [25] is more efficient in combining conflicting evidence than the DST [24], but it

has shortcomings when it comes to combining the rules, has high computational complexity [39].

SL offers a number of operators that combine two subjective opinions based on a transitive trust or

consensus where the opinions are independent to each other [15, 35].

3 BACKGROUND
In this section, we provide the brief overview of SL and PSL which are mainly leveraged to develop

CSL+ in this work.

3.1 Subjective Logic
SL provides ways to define three types of subjective opinions: binomial, multinomial, and hyper

opinions [15]. In this work, we consider the binomial opinion to help decision making in given

proposition. A binomial opinion ω is defined by [15]:

ω = (b,d,u,a) (1)
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Fig. 2. Prediction of voters intuition based on the opinions of twitter users.

where b indicates belief (e.g., agree), d indicates to disbelief (e.g., disagree), u refers uncertainty

(i.e., vacuity or ignorance), and a is a base rate supporting b (or (1 − a) supporting d), representing
a prior knowledge upon no commitment (e.g., neither true nor false), where b + d + u = 1 for

(b,d,u,a) ∈ [0, 1]4. When a belief is multinomial, multiple beliefs exist with a belief mass distribution
b over the states of the variable and an uncertainty mass. A base rate (a) can be seen as a domain

prior knowledge related to the given proposition or a human entity’s judgmental capability or bias,

where a can be interpreted in either way. When an agent’s prior domain knowledge is not used,

we will omit a and denote an opinion as ω = (b,d,u).
A binomial subjective opinion corresponds to a Beta PDF (probability density function) via a

bijective mapping, denoted by Beta(p;α , β), and is given by:

Beta(p;α , β) =
Γ(α + β)pα−1(1 − p)β−1

Γ(α)Γ(β)
. (2)

where 0 ≤ p ≤ 1,α > 0, β > 0, and the α and β is obtained based on the base rate a, the amount

of positive evidence r and the amount of negative evidence s: α = r + aW and β = s + (1 − α)W .

Based on the mapping rule in SL [14], the vector of an opinion, ω = (b,d,u), is given by:

b =
r

r + s +W
, d =

s

r + s +W
, u =

W

r + s +W
. (3)

whereW is the default non-informative prior weight, and usually setW = 2 supposing that there

is a complete uncertainty when α = 1 and β = 1 at the very beginning of opinion update, resulting

in u = 1. The base rate a is set to the default value 0.5 referring to a neutral position. As time

elapses, more positive/negative evidence is gathered with more new evidence α and β , leading to
decreasing uncertainty u. An subjective opinion ω can be expressed based on the amount of new

evidence received as:

ω = (α , β) (4)

This can bemapped toω ′ = (b,d,u,a) as in Eq. (3) where the base ratea is given as a constant derived
from a historical record. In SL, the transitive trust [17] is estimated based on a discounting operator,

⊗. We denote i’s trust in j by ωi
j = (bij ,d

i
j ,u

i
j ,a

i
j ). j’s trust in k is expressed by ω j

k = (b jk ,d
j
k ,u

j
k ,a

j
k ).

Thus, i’s trust in k , denoted by ωi :j
k := (bi :jk ,d

i :j
k ,u

i :j
k ,a

i :j
k ) = ωi

j ⊗ ω j
k , is:

bi :jk = b
i
jb

j
k , di :jk = b

i
jd

j
k , ui :jk = d

i
j + u

i
j + b

i
ju

j
k , ai :jk = ajk . (5)

To combine two opinions, a consensus operator, ⊕, is used as follows [17]. After two trust

opinions towards a same entity are combined, the combined opinion is represented by ωi⋄j
k :=

(bi⋄jk ,d
i⋄j
k ,u

i⋄j
k ,a

i⋄j
k ) = ωi

k ⊕ ω j
k with:

bi⋄jk =
biku

j
k + b

j
ku

i
k

ζ
, di⋄jk =

diku
j
k + d

j
ku

i
k

ζ
(6)

ui⋄jk =
uiku

j
k

ζ
, ai⋄jk = aik .
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Table 1. An illustration of SL-based Unknown Relation Inference. The relationships are Friend, Spouse, and

VoteFor where related entities include David (D), Tom (T ), Mary (M), and Republican party (Rep).

Observed opinions Given/Inferred opinions

y1 ≡ Friend(D,T ) ωy1 = (1, 0, 0, 0.5)
y2 ≡ Spouse(D,M) ωy2 = (1, 0, 0, 0.5)
y3 ≡ VoteFor(T ,Rep) ωy3 = (0.6, 0.1, 0.3, 0.5)
y4 ≡ VoteFor(M,Rep) ωy4 = (0.8, 0.1, 0.1, 0.5)
y5 ≡ y1 : y3 ωy5 = ωy1 ⊗ ωy3 = (0.6, 0.1, 0.3, 0.5)
y6 ≡ y2 : y4 ωy6 = ωy2 ⊗ ωy4 = (0.8, 0.1, 0.1, 0.5)

Unknown opinion Inferred opinion

x ≡ VoteFor(D,Rep) ωx = ωy5 ⊕ ωy6 = (0.81, 0.11, 0.08, 0.5)

where ζ = uij + u
j
k − uiju

j
k > 0. When ζ = 0, ωi

k ⊕ ω j
k is defined by:

bi⋄jk =
ψbik + b

j
k

ψ + 1
, di⋄jk =

ψdik + d
j
k

ψ + 1
, ui⋄jk = 0, ai⋄jk = ak .

whereψ = lim(u jk/u
i
k ). SL provides discounting “ ⊗”, and consensus “⊕”, operators to estimate

trust relationships following a trust chain of subjective trust opinions [17].

In Fig. 2, we show an example for predicting people’s voting intentions via a social network

with two kinds of relations, “Friend” and “Spouse”, when a set of observed/given opinions y =
{y1, · · · ,yM } and a set of unknown opinions x = {x1, · · · ,xN } are given. These opinions are

represented by a set of random opinion variables where the format of each opinion follows Eq. (1)

(i.e., ωxi for i = 1 · · ·n and ωyj for j = 1 · · ·m).

Given the following rule holds,

Friend(D,T ) ∧ VoteFor(T ,Rep) → VoteFor(D,Rep), (7)

This rule implies that if David (D) and Tom (T ) are friends and T voted for the Republican (Rep)
party, T may vote for Rep. Similarly, we assume holding the following rule,

Spouse(D,M) ∧ VoteFor(M,Rep) → VoteFor(D,Rep). (8)

In this rule, if D’s spouse is Mary (M) and M voted for Rep, then D may vote for Rep. Heads of
rule (8) and (9) imply the same opinion for VoteFor(D,Rep), D may vote for Rep. In order to infer

the the target opinion for VoteFor(D,Rep), we first identify two independent transitive paths in

the network. We can use discounting operator to compute these two transitive paths (different

relationships and voting intention opinions) y5 and y6 separately, then and combine these two

opinions for VoteFor(D,Rep) using consensus operator. In Table 1,y1 ∼ y6 denotes the trust relations
of entities with subjective opinions in a certain proposition. We infer a unknown relation, x , based
on known relationships, y1 ∼ y6, by using the consensus (⊕) and discounting (⊗) operators in SL.

The opinionsy1−y4 are given whiley5 andy6 are derived separately using ⊗ and ⊕:ωy5 = ωy1 ⊗ωy3
and ωy6 = ωy2 ⊗ ωy4 . Lastly, the unknown opinion, x , is evaluated by ωx = ωy5 ⊕ ωy6 .

3.2 Probabilistic Soft Logic
PSL is a ‘statistical relational learning’ (SRL) [38] technique applying logics to formulated SRL

problems. PSL offers a formulation tool providing a user friendly language interface for collective,

probabilistic reasoning point-valued unknown probabilities under known probabilities. In PSL,

the key instances are ‘truth probabilities of binary random variables’ (i.e., Boolean). PSL employs

‘weighted first-order logic rules with conjunctive bodies and single literal heads’ that considers the
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structural relationships between the random variables. Each logic rule is assigned with non-negative

weights with a real value in [0, 1], where the weight indicates the importance of a logic rule. To

compare PSL with SL, we present the same example in Section 3.1 showing the prediction of a voter

intuition based on the two types of relations, Friend in Rule (7) and Spouse in Rule (8).

PSL defines a non-negative rule weight per rule representing the confidence (i.e., importance) on

the logic rule. For instance, given the weight of Rule (7) is 0.3 and the weight of Rule (8) is 0.8, we

interpret that the spouse relation is stronger than the friend relation, implying that a same vote

can be observed in a stronger relation such as a spouse relation than a friend relation. PSL has its

syntax rule basis on the first order logic and uses a real number representing soft truth probabilities
in [0, 1], instead of a binary decision 0 or 1. We call probability pxi an atom for a random variable xi
that refers to a certain relation. px = [px1 , · · · ,pxN ]

T ∈ [0, 1]n means a vector of unknown atoms.

In the above voter example, Rule (8) is weighed more than than Rule (7), which means in a spouse

relationship, one more tends to vote for what his/her voted for than what his/her friend voted for.

To assess how well the ground logic rule works, PSL adopts the Lukasiewicz t-norm and co-norm as

the relaxation of the logical operators ∧ (conjunction or logical AND), ∨ (disjunction or logical

OR), and ¬ (negation or logical NOT) [19], respectively, by:

px1 ∧ px2 = max[px1 + px2 − 1, 0], px1 ∨ px2 = min[px1 + px2 , 1], ¬px1 = 1 − px1 . (9)

These operators coincide with the Boolean logic operators for integer inputs; but it also offers a

consistent mapping for intermediate values between integers. A grounding PSL logic rule, rk , is
represented by: ∧

i ∈I−
pxi →

∨
i ∈I+

pxi , (10)

where I− ⊂ {1, · · · ,N } refers to a set of indices in the body of the rule rk and I+ ⊂ {1, · · · ,N } \ I−

indicates a set of indices in the head of the rule rk . rk (px) captures the degree of rule k-th being

satisfied and is given by:

r (px) = min

[ ∑
i ∈I+

pxi +
∑
i ∈I−

(1 − pxi ), 1
]
. (11)

For example, considering the realization of the atom,

px1 ≡ Spouse(B,A) = 1.0, px2 ≡ VotesFor(A, P) = 0.8, and px3 ≡ VotesFor(B, P) = 0.1.

Let rk be the corresponding grounding instance of Rule (8). We get that r (px) = min[0.1 + ((1 −
1)+ (1− 0.8)), 1] = 0.3. Instead of soft values in [0, 1], if all the atoms are Boolean (binary) variables

(True ‘1’ or False ‘0’), Eq. (11) is similar to:( ∨
i ∈I+

pxi

) ∨ ( ∨
i ∈I−

¬pxi

)
, (12)

where the satisfaction of this rule (i.e., 1 or 0) is same as that in a standard first-order logic.

Overall PSL uses first-order logic syntax to define constraints and potential functions in a

graphical model over the truth values of logical atoms to infer unknown truth values. More detailed

information is provided in [5, 6].

4 EXAMPLE SCENARIO AND PROBLEM STATEMENT
In this section, we describe an example realistic scenario and a problem formulation.
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4.1 Example Scenario
Let us take an example real-world application scenario aiming to predict the traffic congestion in a

road network where a node refers to an intersection of road links and an edge is a road link. On

the commuting roads, we may encounter traffic congestion. To check the road conditions, we often

listen to the radio and/or may use GPS or online maps. The prediction of road congestion is expected

to be presented with a certain probability. Although a rich, diverse traffic related applications are

available, unexpected traffic congestion caused by the latest accidents may occur without any

chance of knowing it. Hence, it is highly challenging to predict unknown traffic conditions when

some partial updates and/or observations are available. Note that the road traffic prediction is one

of examples we can apply our CSL+ and we discuss our experimental results using six different

semi-synthetic and real datasets to prove the outperformance of the CSL+ in Section 6.

4.2 Problem Statement
Given a structured network, denoted by G = (V,E, f ) where V = {1, 2, · · · , l} is a set of vertices
representing intersections of road links and E ⊆ V × V is a set of edges indicating road links, we

define the mapping function f : E→ {0, 1} with a Boolean variable f (ei ) for each edge ei , with
‘0’ indicating a non-congested road and ‘1’ meaning a congested road at a current time. Suppose

there is a subset of edges Ey = {e1, · · · , eM } ⊆ E with traffic sensors (e.g., cameras, speed radar)

installed at these edges representing known opinions. For the edges without traffic sensors, we

treat them unknown opinions, denoted by Ex = {o1, · · · ,oN }, and E = Ey ∪ Ex . In addition, we

consider a set of unknown traffic sensors that report unreliable observations providing conflicting

observations to the true traffic observations (labels) of their corresponding edges.

Suppose we have a vector of observations on road congestion status at a current time on

Ey which shows known opinions y = [f (e1), · · · , f (eM )] ∈ {0, 1}M based on observations, and

the beliefs towards the states of these variables derived based on their historical data on the

observations. Given Ey , our goal is to predict the beliefs of the states on the congestion variables

at the edges without sensors (i.e., intersections without any camera or speed sensors), denoted as

x = [f (o1), · · · , f (oN )] ∈ {0, 1}N . A belief over the states of a road congestion variable xi (oryj ) can
be represented as a subjective opinion, defined asωxi = (bxi ,dxi ,uxi ,axi ),ωyj = (byj ,dyj ,uyj ,ayj ) in
Eq. (1), or following a Beta distribution with given parameter evidence (αxi , βxi ), Beta(pxi ;αxi , βxi )
(see Eq. (2)). ωxi is also obtained by SL’s mapping rule in Eq. (3). For edge ei ∈ Ey with historical

observations

∑T
t=1 f (e

t
i ) where ry and sy are the counts of 0’s (i.e., no traffic congestion) and 1’s

(i.e., have traffic congestion ) in these observations, respectively. Beta(pyj ;αyj , βyj ) is given by:

αyj = ryj + ayjW , βyj = syj + (1 − ayj )W . (13)

where ryj and syj are the volumes of positive and negative evidence, W is a predefined non-

informative prior weight representing an amount of uncertain evidence, and ayj is the base rate on
propositionyj , predefined probability of prior general knowledge onyj used to interpretW . Because

the edges in Ex do not have historical observations, we cannot directly infer their beliefs. However,

we can infer the unknown beliefs towards the edges in Ex based on the structural relationships

between the known beliefs on the edges in Ey . We also consider untrustworthy known sources

(i.e., edge sensors) providing conflicting evidence.

As the identification of conflicting sources and the prediction of unknown opinions are equally

important because of their inter-dependency, we formulate a statistical model for predicting

unknown opinions and learning the conflicting sources simultaneously as follows:

Problem 1 (Uncertainty-based opinion prediction against the conflicting evidence in network data):
The key notations are:
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• Let y = (y1, · · · ,yM ) be a vector of given input binary variables whose opinions are denoted by ωy =
(ωy1 , · · · ,ωyM ), Beta(pyi ;ωyi ) refers to the PDF of the truth probability pyi of the variable yi .

• Let x = (x1, · · · ,xN ) be a vector of target binary variables whose opinions are represented byωx = (ωx1 ,
· · · ,ωxN ) to be predicted. Beta(pxi ;ωxi ) is the PDF of the truth probability pxi of the variable xi .

• Let px = (px1 , · · · ,pxN ), py = (py1 , · · · ,pyM ), and px,y = (px, py).
• by = (by1 , · · · ,byM ) is a vector of binary variables, in which each byi ∈ {0, 1} indicates whether yi is a
source providing conflicting evidence or not.

Given
• y ∈ {0, 1}M , ωyi is the subjective opinion on yi , and
• R = {rk , ρk }

K
k=1, a set of PSL logic rules, in which rk is the k-th rule over px,y and by , and ρk is the

weight of rk . A logic rule rk is defined as:

rk :=
∧

i ∈I−x,k

pxi

∧
i ∈I−y,k

(
pyi ∧ (1 − byi )

)
→

∨
i ∈I+x,k

pxi

∨
i ∈I+y,k

(
pyi ∨ byi

)
, (14)

where I−x,k and I−y,k indicate the indices of variables in x and y occurring in the body of the logic rule rk ,

separately; and I+x,k and I+y,k are the indices of variables in x and y occurring in the head of the logic rule
rk .

Predictωx, the unknown opinion on a vector of target variables x and A conflicting evidence indicator vector, by.

Without concerning the constraints based on PSL logic rules, the joint PDF of the input and

output variables has the following form:

Prob(px,y, by, x, y;ωx,ωy,ω0) =

M∏
i=1

{ (
Beta(pyi ;ωyi )

)
1−byi

(
Beta(pyi ;ω0)

)byi
(15)

·Bin(yi ;pyi )Bin(byi ;p0)
} N∏
l=1

Bin(xl ;pxl )Beta(pxl ;ωxl ),

where Bin(·) and Beta(·) refer to the PDF functions of a Binomial distribution and a Beta distribution,

respectively. If yi is a source providing conflicting evidence, then its opinion ωyi set to the base rate
opinion ω0 = (1, 1), and the probability pyi = 0.5, which indicate the totally uncertain opinion and

probability. The aim is to find the target unknown opinion vectorωx and the conflicting-source

indicator vector by, which maximize the likelihood Prob(y;ωx,ωy,ω0) subject to the constraints

defined by the set of PSL rules R. We adopt a generally employed strategy that enforces the PSL

logic rule constraints on Prob(px,y, by |y;ωx,ωy,ω0) through an expectation operator. In particular,

for each rule rk and each of its related variables px,y, by, we expect

EProb(px,y,by |y;ωx,ωy,ω0)[rk (px,y, by)] = 1,

with a confidence evaluated by the non-negative weight ρk . By imposing the constraints based on

PSL logic rules, our key problem of predicting unknown opinions in the presence of conflicting

evidence is defined as a maximization problem based on a constrained log-likelihood, L(ωx) by:

argmax

ωx,ξ ≥0
L(ωx) = argmax

ωx,ξ ≥0
log Prob(y;ωx,ωy,ω0) (16)

s .t . ρkEProb(px,y,by |y;ωx,ωy,ω0)

[
1 − rk (px,y, by)

]
≤ ξk ,

∥ξ ∥β ≤ ϵ,k = [1 : K],

where ξk indicates a slack variable, ∥ · ∥β represents a norm. We basically allow slight violations

with slack variables ξk on the PSL logic rules, the norm of ξ is bounded by ϵ ≥ 0. Since our
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Table 2. Key notations and their meanings.

Notations Description
y = [y1, · · · ,yM ],

py = [py1 , · · · ,pyM ],
ωy = [ωy1 , · · · ,ωyM ],
by = [by1 , · · · ,byM ]

y is a vector of M input (observed) binary random variables whose

opinions are given. py and ωy are the corresponding vectors of truth

probabilities and opinions of y, respectively. by is a vector of M binary

random variables indicating the conflicting sources.

x = [x1, · · · ,xN ],
px = [px1 , · · · ,pxN ],
ωx = [ωx1 , · · · ,ωxN ]

x is a vector of N output binary random variables whose opinions are

predicted. px andωx are the corresponding vectors of truth probabilities

and opinions of x, respectively.

ωx = (bx ,dx ,ux ,ax ) A binomial opinion of a binary random variable x as defined in Eq. (1)

[1 : K] 1, · · · ,K

ω ′
x = (αx , βx ) Evidence parameters of Beta(px |αx , βx ) that corresponds to an opinion

ωx in Eq. (3).

px,y,ωx,y px,y = (px, py),ωx,y = (ωx,ωy)

R = {rk , ρk }
K
k=1 A set of PSL logic rules as defined in Eq. (14), in which rk is the k-th

rule over px, py, and by, and ρk is the non-negative weight of rk .

q(px,y, by) A simpler new PDF function that fits the PSL rules as in R as well as

meets the minimal Kullback-Leibler (KL)-divergence distance to the

posterior Prob(px,y, by |y;ωx) (See Eq. (17)).

maximization problem is analytically intractable, we introduce an efficient robust approximation

inference algorithm, CSL+, to address this problem in Section 5.

5 CSL+ FOR OPINION PREDICTION
Predicting unknown opinions in the presence of conflicting evidence is defined as a problem in

Eq. (16). This problem has two challenging issues, in terms of high computational complexity and

low scalability: (1) The expectation operator EProb(px,y,by |y;ωx,ωy)[1− rk (px,y, by)] is computationally

intractable; and (2) the dimensionality of unknown opinionsωx is often high, aligned with network

density (i.e., a number of edges) in the network data. We describe CSL+ in two-fold: (1) prediction of

unknown opinions in the presence of conflicting evidence (Eq. (16)) in Section 5.1; and (2) estimation

of the expectation components as the part of CSL+ and conflicting evidence inference in Section 5.2.

5.1 Prediction of Unknown Opinions in CSL+

To solve the maximization problem in Eq. (16) and obtain a computationally tractable solution, we

adopt posterior regularization (PR) [11], a probabilistic approach for the structural relational learning.
PR is a technique for regularizing relational learning models by encoding prior knowledge in con-

straints on model posteriors. Via applying PR, CSL+ learns a new simpler density function q(px,y, by)
that fits the PSL logic rules while staying close to the posterior PDF (i.e. Prob(px,y, by |y;ωx)) con-

currently, where we do not explicitly show the parametersωy,ω0 and p0 that are assumed known as

input. For each weighted PSL logic rule, rk , we expect that Eq(px,y,by) [rk (px,y, by)] = 1, with a weight

ρk , where rk (px,y, by) is the level of the satisfaction of the PSL logic rule rk as defined in Eq. (11). All

the constraints by the PSL logic rules in R construct a rule-restraint space of all valid distributions.

To guarantee the closeness between the posterior PDF and q(px,y, by) and Prob(px,y, by |y;ωx), we

minimize the closeness using KL-divergence [8], a measure of the closeness of two distributions.

Summing up the above two main considerations and further allowing the slight slackness for each
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constraint, we formalize the following equivalent optimization problem:

min

q∈Q
KL

(
q(px,y, by), Prob(px,y, by |y;ωx)

)
, (17)

where Q, the domain of q, denotes the constrained posterior (with slacks) space of PDF as defined

by the PSL logic rules, R, and is defined as:

Q :=
{
q(px,y, by) : ∃ξ > 0, ρkEq(px,y,by)[1 − rk (px,y, by)] ≤ ξk ; ∥ξ ∥β ≤ ε

}
. (18)

The intent of the above optimization problem is to project the posterior PDF into the structural

constrained posterior space, Q. This optimization can be effectively and efficiently solved in its

dual problem with analytical closed-form solutions that are provided by the PR framework. Due to

the space limit, we show the detailed derivation steps in Appendix A in our supplement material

and directly show the following final solution:

q(px,y, by) ∝ Prob(px,y, by |y;ωx,ωy) · exp
{
−
∑K

k=1
ρk

(
1 − rk (px,y, by)

)}
. (19)

Apparently, from above Eq. (19), we can observe that a stronger PSL logic rule with large weight

ρk leads to lower probabilities, px,y, that result in failing to meet the constraints.

For a givenωx, a new desired density function, q(px,y, by), that fits the structural constraints of
PSL logic rules while concurrently being close to our model posterior, can be estimated via given

analytical form in Eq. (19). For a given approximated q(px,y, by), by Jensen’s inequality [8], we

construct an evidence lower bound F (q,ωx) of the log likelihood function L(ωx) = log Prob(y;ωx)

by:

L(ωx) = log

∑
px,y,by

q(px,y, by)
Prob(px,y, by, y;ωx)

q(px,y, by)
(20)

≥
∑

px,y,by

q(px,y, by) log
Prob(px,y, by, y;ωx)

q(px,y, by)
= F (q,ωx). (21)

F (q,ωx) can be reformulated as:

F (q,ωx) =
∑

px,y,by

q(px,y, by) log
(
Prob(px,y, by |y;ωx)Prob(y;ωx)

)
−

∑
px,y,by

q(px,y, by) logq(px,y, by)

= L(ωx) − KL

(
q(px,y, by), Prob(px,y, by |y;ωx)

)
, (22)

where

∑
px,y,by q(px,y, by) = 1 and L(ωx) = log Prob(y;ωx) = log

∑
px,y,by Prob(px,y, by, y;ωx)).

According to the above interpretation, we design a modified Expectation Maximization (EM)

inference algorithm to solve the unknown opinion prediction under conflicting evidence problem

in Eq. (16). As shown in Fig. 3, beginning from an initial parameter estimate ωl
x (or θ l ) at step

l = 0 in the first starting iteration, our algorithm iterates two block-coordinate ascent, and has the

following E′
and M steps:

• E′ − Step, a modified E-step that includes the constraints defined by the PSL rules R:

ql+1 = argmaxq∈Q F (q,ωl
x) = argmin

q∈Q
KL

(
q(px,y, by), Prob(px,y, by |y;ωx)

)
, (23)

whereQ is the PSL logic rule constrained space of the PDF as defined in Eq. (18), and the analytical

solution of ql+1 is given in Eq. (19).

• M − Step:

ωl+1
x = argmaxωx F (q

l+1,ωx) = argmax

ωx
Eql+1 [log Prob(px,y, by, y;ωx,ωy,ω0)]. (24)
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Fig. 3. Modified EM for the unknown opinion prediction under conflicting evidence problem in Eq. (16) in

CSL+.

From the joint PDF in Eq. (15), the objective function of E-Step in Eq. (24) can be rewritten as:

ωl+1
x = argmax

ωx

{ N∑
i=1

Eql+1 [logBeta(pxi ;ωxi )] +

M∑
i=1

Eql+1
[
(1 − byi ) logBeta(pyi ;ωyi )

+ byi logBeta(pyi ;ω0)

]
+

M∑
i=1

Eql+1 logBin(byi ;p0) +
M∑
i=1

Eql+1 [logBin(yi ;pyi )]
}

= argmax

ωx

N∑
i=1

Eql+1 [logBeta(pxi ;ωxi )] + const .

The above point-wise summation equation implies that the opinions in ωx, including {ωx1 , · · · ,
ωxN }, can be optimized separately. The opinion ωxi can be computed by treating the other opinions

in Eq. (24) as constants, where ω ′
xi = (αxi , βxi ) as we defined in Eq. (4). Ultimately, the main goal of

M-step is solving the following optimization point-wise sub-problem:

max

αxi >0,βxi >0
Eql+1

[
logBeta(pxi |αxi , βxi )

]
+ const . = (25)

max

αxi >0,βxi >0
log Γ(αxi + βxi ) − log Γ(αxi ) − Γ(βxi ) + (αxi − 1)Eql+1 [logpxi ] (26)

+ (βxi − 1)Eql+1 [log(1 − pxi )],

where const . represents the additive terms

( ∑
j,i Eql+1 [logBeta(px j ;ωx j )] +

∑M
i=1 logBeta(pyi ;ωyi )

+
∑M

i=1 logBin(yi ;pyi )
)
that are constants w.r.t. αxi and βxi ; and the equality can be achieved by

replacing the analytical form of Beta(pxi |αxi , βxi ) in Eq. (2); and Γ(x) = (x − 1)!, x ∈ R. The above
problem formulation is similar to a Maximum Likelihood Estimation (MLE) problem of a standard

Beta distribution. Only differences are that the negative constants “logpxi ” and “log(1 − pxi )” are
substituted by their expectation on ql+1: Eql+1 [logpxi ] and Eql+1 [log(1 − pxi )], respectively. Thus,
we can directly apply the numerical methods in [4, 7] for the MLE estimation of a Beta distribution

to solve Problem (25).

5.2 Approximate Expectation Estimation
In this section, we present an efficient approximate expectation estimation algorithm to reduce

the computational complexity of {Eql+1 [logpxi ],Eql+1 [log(1 − pxi )] | i = 1, · · · ,N }. Because the

computation of these expectation terms is impossible and leads to intractable inference, we adopt a

commonly used approximation approach: p∗x,y and b∗y represent the values at the “most probable”

setting of px,y and by with the current inferred opinionωt
x. The expectation terms Eql+1 [logpxi ]

and Eql+1 [log(1 −pxi )] can be approximated as log p∗xi and log(1 − p∗xi ), respectively. We can obtain

the “most probable” values p∗x,y and b∗y by solving the following optimization problem (by replacing
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the analytical solution in Eq. (19)):

p∗x,y, b
∗
y = arg min

px,y,by
− logq(px,y, by)

= arg min

px,y,by
− log Prob(px,y, by |y) +

∑K

k=1
ρk

(
1 − rk (px,y, by)

)
, (27)

where the parametersω0,p0,ωx andωy are not shown in the Prob(·) function for simplicity. The

definition of PSL logic rule rk (px,y, by) ∈ R is given in Eq. (14), and according to the definition of

the distance to satisfaction of a given rule rk in Eq. (11), rk (px,y, by) is defined by :

rk (px,y, by) = min

{
1,

∑
i ∈I+x,k

pxi +
∑
i ∈I+y,k

(pyi + byi ) +
∑
i ∈I−x,k

(1 − pxi ) +
∑
i ∈I−y,k

(1 − pyi + byi )
}
, (28)

where I+k , I
−
k ⊆ V and I+k ∧I

−
k = ∅. Let px,y,k ≡ (px,k , py,k ). Then, we can reformulate the optimization

problem in Eq. (27) as follows:

arg min

px,y,by
− log Prob(px,y, by |y) +

K∑
k=1

ρk max

{
ℓk (px,y,k , by,k ), 0

}
,

where ℓk (px,y,k , by,k ) = 1 −
∑
i ∈I+x,k

pxi −
∑
i ∈I+y,k

(pyi + byi ) −
∑
i ∈I−x,k

(1 − pxi ) −
∑
i ∈I−y,k

(1 − pyi + byi ).

In the above objective function, the first term (joint probability of input and output variables)

is a convex function and the second term (logical rule constraints) is a hinge-loss function that

is convex but non-smooth. Thus, the optimization problem in Eq. (27) is a non-smooth convex

optimization problem.

To tackle the various of convex/non-smooth convex optimization problems, many state-of-the-

art and off-the-shelf methods are proposed, such as gradient descent (GD) based methods and

interior-point methods (IPMs). But these methods are inefficient to solve the optimization problem

in Eq. (27) with a large number of variables N +2M , where N is the total number of target unknown

variables and M is the total number of given variables. In our paper, we propose a robust and

efficient algorithm, uses consensus optimization via adopting Alternating Direction Method of

Multipliers (ADMM) [27], to solve this problem. The adopted ADMM based consensus maximum-a-

posteriori (MAP) inference process has the following three main steps: (1) forming and initialing
local copies of the variables in each PSL logic rule by constraining the local copies to be equal to

the original global variables; (2) decomposing the problem into independent sub-problems; and (3)

block-wise updating until converging to a consensus on the optimum. Let p̂x,k , p̂y,k , and b̂y,k be the

local copies of the global variables px,k , py,k , and by,k in the PSL logic rule (rk , ρk ) ∈ R, separately.

Finally, our main problem based on the ADMM framework is formulated as follows:

min

{p̂x,y,k , b̂y,k }Kk=1,px,y,by

{
− log Prob(px,y, by |y) +

K∑
k=1

ρk max{ℓk (p̂x,y,k , b̂y,k ), 0}
}
,

s .t . p̂x,y,k = px,y,k , b̂y,k = by,k ,k = [1 : K]. (29)

Then these constraints are transformed into and augmented Lagrangianwith penaltyκ and Lagrange
multipliers λ and γ :

L({p̂x,y,k , b̂y,k ,λx,y,k ,γy,k }
K
k=1, px,y, by) = − log Prob(px,y, by |y) (30)

+

K∑
k=1

(
ρk max{ℓk (p̂x,y,k , b̂y,k ), 0} +

1

2κ
∥p̂x,y,k − px,y,k + κλx,y,k ∥

2

2
+

1

2κ
∥b̂y,k − by,k + κγy,k ∥

2

2

)
,
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where κ > 0 represents the step-size (penalty) of ADMM. ADMM aims to find a saddle point of

L(px,y, p̂x,y,λx,y,γy) via updating the four blocks of variables at each iteration t :

For k = [1 : K] :

λtx,y,k = λt−1x,y,k +
1

κ
(p̂t−1x,y,k − pt−1x,y,k ) (31)

γ t
y,k = γ

t−1
y,k +

1

κ
(b̂t−1y,k − bt−1y,k ) (32)

p̂tx,y,k , b̂
t
y,k = arg min

p̂x,y,k , b̂y,k
ρk max

{
ℓk (p̂t−1x,y,k , b̂

t−1
y,k ), 0

}
+

1

2κ
∥p̂t−1x,y,k − pt−1x,y,kth + κλ

t
x,y,k ∥

2

2
+

1

2κ
∥b̂t−1y,k − bt−1y,k + κγ

t
y,k ∥

2

2
(33)

ptx,y, b
t
y = arg min

px,y,by
L(p̂tx,y, p

t−1
x,y , b̂

t
y, b

t−1
y ,λ

t
x,y,γ

t
y) (34)

where the rule indices are k = 1, · · · ,K . The block-wise ADMM updates make sure that px,y and by
converge to the global optimums p⋆x,y and b⋆y , assuming that there exists a feasible assignment to

px,y and by. Updating of the Lagrange multipliers λx,y,k ,γy,k is a basic step in the gradient direction

in Eq. (31) and (32). The local variables related problem in Eq. (33) can be efficiently solved via a

customized algorithm proposed in [5]. After solving the sub-problems in Eq. (31) ∼ (33), we can

treat the local variables p̂x,k , p̂y,k , and b̂y,k as constants and substitute the local variables in Eq. (30).

We can use the same technique in Eq. (25), via grouping the constants and variable terms. The

problem related to global variables in Eq. (34) has an analytical solution ensuring that the gradient

of the objective function is 0.

Fig. 4 shows the main architecture of the consensus MAP inference algorithm. We decompose the

problem into independent subproblems and optimize each potential ℓk functions independently (can
be done in parallel). We let each subproblem to vote to the optimal solution until all the independent

distances to satisfaction. Our problem is a convex problem; so it guarantees to converge global

optimum. Auxiliary variables ensure consensus reached across subproblems.

5.3 Complexity Analysis
Algorithm 1 is pseudo-code of our purposed CSL+ and it summarizes the key steps of CSL+. CSL+

has two main loops: The outer loop (Lines 3 to 19) is related to the modified EM inference. The

modified E
′−Step is implemented in Line 4. The M−Step is implemented by Lines 5 through 17.

Especially, Lines 5 through 15 (including the inner loop) show the ADMM steps for estimating the

“most probable” values p∗x,y and b∗y by solving the optimization problem in Eq. (27). The calculated

Fig. 4. An illustration of the consensus algorithm.
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Algorithm 1: CSL+ on the Opinion Prediction

Input:ωy, y,R,ω0,p0
Output:ωx

1 Initialize l = 1 ,ωl
x;

2 repeat
3 Update ql (px,y, by) via Eq. (19);
4 Initialize t = 1 , px,y, by;
5 Initialize p̂tx,y,k and b̂ty,k as copies of the probability variables, ptx,y,k and bty,k , that occur in the k-th

rule in R, respectively, k = [1 : K];

6 Initialize Lagrange multipliers λx,k , λy,k and γy,k corresponding to variable copies p̂x,k and p̂y,k ,
respectively, k = [1 : K];

7 repeat
8 t = t + 1

9 Update Lagrange multiplier λtx,y,k via Eq. (31), k = [1 : K];

10 Update Lagrange multiplier γ tx,y,k via Eq. (32), k = [1 : K];

11 Update local copies p̂tx,y,k and b̂ty,k via solving the problem in Eq. (33), k = [1 : K];

12 Update global variables ptx,y, bty via solving the problem in Eq. (34);

13 until convergence
14 l = l + 1;

15 for i = [1 : N ] do
16 Update opinion ωlxi via solving the problem in Eq. (25);

17 until convergence
18 returnωl

x

most probable values p∗x,y are used to approximate Eql+1 [logpxi ] and Eql+1 [log(1 − pxi ) as logp
∗
xi

and log(1 − p∗xi ), separately, which are then applied to implement the M−Step in Lines 17-18. The

computational complexity and time consumption of Algorithm 1 are shown in Lines 13 , 14, and 18.

Line 13 requires to solve K sub-problems in Eq. (33) that can be solved by applying the algorithm

in [5] with O(KP), where P is the maximum number of variables occurred in the PSL logic rules, R.

Line 14 requires to solve the optimization of global variables in Eq. (34), and needs to update all

global variables and the analytical solutions can be obtained in O(N + 2M). Lines 17-18 require to

solve the optimization problem in Eq. (25) which is similar to the MLE problem of a Beta distribution

and can be solved applying the method of moments [4] in O(1). T1 and T2 represents the numbers

of iterations of the outer and inner loops, separately. Summing up above, the overall computation

complexity of CSL+ (Algorithm 1) is O(T1 · T2 · (K + 2M + N + KP)). As K sub-problems in Line

13 can be calculated via parallel processing, if we have enough processors with count C such that

O(K/C) ≈ O(1). Finally, the computational complexity is O(T1 ·T2 · (K + 2M + N + P)), which is

linear w.r.t. toM , N , and K . This analysis indicates that our proposed CSL+ is scalable to large-scale
network data. Compared to CSL, CSL+ via doubling the variable size and not increasing the time

complexity too much, achieves better performance on different scale of datasets. We further prove

the scalability via extensive empirical evaluations in Section 6.

6 EXPERIMENTAL RESULTS & ANALYSIS
6.1 Datasets and Experimental Set-Up
In the experiments, we validate our proposed CSL+ method on four semi-synthetic dataset and two

real-world datasets on three different tasks under the conflicting evidence scenarios: Epinions
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Table 3. Dataset statistics

Dataset # Nodes # Edges # Weeks # Snapshots in total (hours)

Philadelphia (PA) 603 708 43 3440

Washington, D.C. 1,383 1,878 43 3440

Facebook 8,078 372,936 - -

Epinions 47,676 477,468 - -

Enron 67,392 743,244 - -

Slashdot 164,336 2,018,920 - -

(semi-synthetic) datasets on the trust inference task, DC and PA road traffic datasets on the

congestion inference task and Facebook, Enron and Slashdot social network datasets on the

Sybils attack inference task (also semi-synthetic). Dataset statistics are summarized in Table 3.

6.1.1 Epinions. Epinions 1
is who-trust-who network data that were crawled in 2003 [22]. The

used Epinions dataset is a directed network, and has 47,676 users (i.e., nodes) and 467,468 trust

relations (i.e., edges). As there are lack of ground truth trust information for Epinions dataset, we

infer the actual trust relations between the users according to the trust inference method applied

in [17, 31] by proceeding the following main steps:

Initialization Step: randomly select 20% of the edges (relationships) and set the trust of the edges

to ‘1’s indicatesUseri trustsUserj (but not necessarilyUserj trustsUseri , and ‘0’ indicates distrust)

where Useri and Userj are users in the given Epinions network.

Exploration Step: 10,000 exploration steps are taken to update trust relationships based on the

following trust PSL logic rule:

Trusts(A,B) ∧ Trusts(B,C) → Trusts(A,C). (35)

To generate synthetic trust observation, we select an edge ei randomly, identify the rule instances

(neighborhood edges of ei ) related to ei , and generate an observation for ei (trust ‘1’ or distrust ‘0’)
based on the probability of the rule instances. Through the above steps, we obtain 1st realization
of trust relationships on the edges in the Epinions network. Now each edge has a single trust

observation. We obtain the 2nd realization based on the previous one by randomly choosing 5%

of the edges and flip their observations from ‘1’ to ‘0’ or ‘0’ to ‘1’, and then iteratively repeating

10,000 exploration steps to make the generated observations consistent with the above trust rule.

Following this process, we obtain 3rd , · · · , and T -th realizations.

Performance Evaluation Step: After generating T realizations, then each edge has T trust rela-

tionship observations in total to estimate the opinion of this link. To validate the performances

of proposed CSL+ and the baselines on the networks of different sizes, we randomly generate

induced sub-networks size with NG ∈ {1000, 5000, 10000} from the original Epinions trust network.

From all the edges we randomly select the testing edges with the percentages (or test ratios (TR):=

N
N+M × 100%) ∈ {10%, 20%, 30%, 40%, 50%}, and from the rest of edges we select the conflict edges
randomly with percentage (or conflict ratios (CR)) ∈ {0%, 10%, 20%, 30%, 40%}; and we flip a half of

the observations of the conflict edges. The opinions of testing edges (target edges) are predicted

based on the given opinions of the other edges (maybe have conflicting evidences) which are

training edges.
6.1.2 Road traffic datasets. We crawled live traffic data from June 1, 2013 to March 31, 2014

across two major cities from INRIX [2] website, Washington D.C. and Philadelphia (PA), as given

the summarization in Table 3. The original raw INRIX data provides traffic speed and reference

1
http://www.trustlet.org/downloaded_epinions.html
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Fig. 5. Illustration of Benign and Sybil region, and the attack edges.

speed information for each road section (link) per hour interval. The reference speed of each road

link indicates the “non-congested free flow speed” [3], and is set based on the 60-th percentile of

the recorded speed for all time periods over several years, where the reference speed work as a

golden threshold labeling into two traffic states, congested vs. non-congested. We collect for each

of these two cities 43 weeks of traffic information in total. An hour is denoted by a tuple (h,d,w),

i.e., (hour,day,week), where the hour (h ∈ {8, · · · , 22}), the day (weekday) (d ∈ {1, 2, 3, 4, 5}), and
the week (w ∈ {1, 2, · · · , 43}): (h,d,w). We only consider weekdays from Monday (d = 1) to Friday

(d = 5) and hours from 8 AM (h = 8) to 9 PM (h = 21).

Ground truth opinions of the training and testing edges in the traffic datasets. For
DC and PA traffic datasets, the opinion of a specific (training/testing) road link i at an hour

(h,d,w) is calculated based on the historical observations of the same hour in previous T weeks

{xi,h,d,w ,xi,h,d,w−1, ...,xi,h,d,w−T+1} as the evidence, where xi,h,d,w refers to the congestion ob-

servation (‘0’ or ‘1’) of the link i at hour (h,d,w) and T indicates a predefined time window size.

Especially, the belief, disbelief, and uncertainty mass variables bxi , dxi , and uxi of a specific road
link i are estimated as:

bxi =
∑T−1

t=0
xi,h,d,w−t /(T +W )

dxi =
(
T −

∑T−1

t=0
xi,h,d,w−t

)
/(T +W )

uxi = W /(T +W ), (36)

where we set the amount of uncertain evidenceW = 2 and the specific base rate (i.e., prior

knowledge) axi = 0.5 for all road links. For the semi-synthetic dataset, the opinion of each train-

ing / testing edge is estimated based on the T observations similar to the above. Similar to the

Epinions, we try the same test ratios (TR) ∈ {10%, 20%, 30%, 40%, 50%}, and conflict ratios (CR)

∈ {0%, 10%, 20%, 30%, 40%}.

6.1.3 Social networks dataset with synthesized Sybils attack. We utilize three social net-

works used in [29, 30], i.e., Facebook, Enron, and Slashdot (see Table 3 for basic statistics) to

represent vary application scenarios. These datasets are publicly available at SNAP
2
. (1) Facebook:

a node represents a user on Facebook and an edge between two nodes indicates they are friends.

(2) Enron: an email address is denoted by a node, and an edge between two nodes implies at least

one email was exchanged between these two. (3) Slashdot: a technology-related news website

where a node represents a user and an edge between two users indicates a friend relationship. We

also follow the method in [29, 30] to synthesize the Sybil attack in different scenarios. That is, in

the above social networks, a single user (i.e., a node in a network) can pretend to have multiple

2
SNAP: http://snap.stanford.edu/data/index.html
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identities, performing Sybil attack, with its unknown identity. Our main goal is to infer the identity

of the unknown users performing Sybil attack. We set a real social network graph as the Benign

region while synthesizing the Sybil region and between the Benign and Sybil regions uniformly

at random add attack edges (see Fig. 5). For each social network graph, we use it as the Benign

region and replicate it as a Sybil region. We labeled the observation of the nodes in the Sybil

region to “1” at time stamp t = 1, “0” to the nodes in the Benign region. In Exploration step, we

duplicate the observations of each node and process T realizations, and then we randomly swap

observations of 1% of nodes each realization. We randomly select % of nodes (or test ratio (TR))

∈ {10%, 20%, 30%, 40%, 50%} (where we randomly select the same amount of nodes from the Benign

and Sybil region) as the test nodes. Except for the test nodes, we select from the remaining nodes

with the percentage (or conflict ratio (CR)) ∈ {0%, 10%, 20%, 30%, 40%} as the conflict nodes, for
each conflict node we flip (set ‘0’ to ‘1’, or ‘1’ to ‘0’) the observation of the half of the realization.

We also try different numbers of attacking edges between the Benign region and Sybil region,

{1000, 5000, 10000, 15000, 20000} which make our conflicting inference and prediction task more

challenging.

6.1.4 Parameter settings. In our experiment, the main parameters of our datasets are CR
(Conflict Ratio), TR (the percentage of testing edges/nodes or Test Ratio) and T (time window size).

The values of CR are set as {0%, 10%, 20%, 30%, 40%} and TR are set as {10%, 20%, 30%, 40%, 50%}.
The values of T are set as T ∈ {8, 9, 10, 11}. The corresponding uncertainty mass values, u of

these T values can be obtained based on Eq. (36), {20%, 18%, 16%, 15%}. Epinions dataset has three
parameters: The parameter NG (network size) ∈ {1000, 5000, 10000}, the positive trust ratio ( the

percentage of randomly selected edges) is 20% in the initialization phase and the percentage of

edges in the exploration phase (5%) whose observations were flipped between ‘0’ and ‘1.’ In the

experimental results, the patterns observed are consistent or similar with the results of other

parameter settings. The numbers of attack edges between the Benign and Sybil region are set as

{1000, 5000, 10000, 15000, 20000}. We set ω0 = (1, 1) and p0 = 0.5, indicating complete uncertainty.

p0 is a hyperparmeter that represents the expected percentage of conflicting observed opinions. If

p0 matches the conflict ratio (CR), the CSL+ would exhibit the best performance. However in our

experiments, any prior information about the CR is assumed unknown, leading to setting p0 = 0.5.
6.1.5 Performance metrics. The uncertainty mass uxi of each edge (training and testing

edges) can be calculated based on Eq. (36). For a predefined the window size T , uxi is a known and

constant value, without the actual observations. Because ofuxi is fixed, our empirical analysis of the

experiments on all the datasets is focused on the comparison between the proposed CSL+ and other
baselines based on the two metrics: (1) Expected truth probability MAE (denoted as Probability

MAE or EP-MAE) and running time complexity (sec.). Based on the definition of expected belief

probability Eb = bx + aux and Table 2, EP-MAE is defined as:

EP-MAE(ωx) =
1

N

∑N

i=1

��� αxi
αxi + βxi

−
α⋆
xi

α⋆
xi + β

⋆
xi

��� (37)

where ωxi = (αxi , βxi ) and ω
⋆
xi = (α⋆

xi , β
⋆
xi ) represent the predicted and true opinions of a target

variable xi , separately, and
αxi

αxi +βxi
refers to the predicted expected truth probability (or the expected

belief) of the opinion ωxi . Expected probability MAE is calculated as the mean absolute difference

between the estimated expected belief and the true expected belief on all testing links; and (2)

Average running time comparison between CSL+ and other methods on the real-world dataset

experiments.

6.1.6 Baseline methods. We compare the proposed CSL+ (Section 5) with the comparable

counterpart methods, including SL [13] (Section 3.1), PSL [5] (Section 3.2), CSL [31] and the deep
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learning based GCN-VAE-opinion (for short GCN-VAE) method [34]. GCN-VAE is a DL-based

opinion inference model while node-level opinions are still formalized based on SL. Followed the

authors recommendation, we use the returned result that give the minimum belief and uncertainty

MAE among all epochs as the final results of GCN-VAE. As PSL is proposed to predict the truth

probability of the testing edges, but not their subjective opinions. We extend PSL
3
as follows:

suppose the truth probability of a testing edge xi predicted by PSL is denoted as pxi . For a given
uncertainty mass u, an subjective opinion ofwxi based on the probability pxi can be calculated as:

ωxi = (pxi · (1 − u), (1 − pxi )(1 − u),u) (38)

6.1.7 Parameter tuning. SL has only one parameter that is the maximum length of its inde-

pendent paths. We try different settings {3, 4, · · · , 20} where for each dataset, we keep the settings

returning the best result. Thus, we set the maximum length to 10 for Epinions, PA and DC, set 3 to

Facebook, Enron and Slashdot datasets. For GCN-VAE [34], we used the recommended settings

from original paper in our experiments: λ = 0.01 (the trade-off parameter), η = 0.001 (the learning
rate), K = 16 (the mini-batch size), and P = 16 (the dimensionality of the latent encoded vectors),

and dropout rate = 0.1. CSL+, CSL and PSL require additional input as logic rules for reasoning. In
our experiments, we used the trust rules from [32], for Epinions dataset:

Trusts(A,B) ∧ Trusts(B,C) → Trusts(A,C)

¬Trusts(A,B) ∧ Trusts(B,C) → ¬Trusts(A,C)

Trusts(A,B) ∧ ¬Trusts(B,C) → ¬Trusts(A,C), (39)

where A, B and C are users, Trust (·, ·) indicates their trust relationship. The logical rules from [29],

for Sybil attack dataset:

Homogeneous(U ,V ) ∧ Benign(U ) → Benign(V )

Homogeneous(U ,V ) ∧ ¬Benign(U ) → ¬Benign(V )

Heterogeneous(U ,V ) ∧ Benign(U ) → ¬Benign(V )

Heterogeneous(U ,V ) ∧ ¬Benign(U ) → Benign(V ), (40)

where these rules indicate that two linked network entities share the same label with a high

probability. A single rule from [33], for the traffic datasets:

Neighbor(E1,E2) ∧ Congested(E1) → Congested(E2), (41)

where E1 is a congested road section and E2 is its upper stream neighbor, then E2 is likely congested.
As rule weights are applied to model the relative importance of different rules. In our experiments,

we set the rule weights to 1.0, where we see all the rules equally important.

6.2 Experimental Results on Semi-Synthetic Dataset
6.2.1 Parameter sensitivity study. In this section, we vary Uncertainty Mass (u), Test Ratio

(TR), and Conflict Ratio (CR) to investigate their impact on the performance of CSL+ and its

counterparts. To evaluate how changes to the parameterization of CSL+ and the synthetic dataset

affects its performance on the uncertainty learning, we conducted experiments on the Epinions semi-

synthetic dataset and compared with the baseline methods. Fig. 6 demonstrates the performance

of our CSL+ method and the four baseline methods on the probability MAE of the semi-synthetic

dataset based on Epinions.

Fig. 6 (a) shows that the performance of CSL+ exceeds all the baselines on the truth probability

MAE with respect to different uncertainty masses, u. With fixed conflict ratios and test ratios, on

3
PSL Code:https://github.com/linqs/psl-examples
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(a) Effect of u under TR = 40% and

CR = 20%.

(b) Effect of TR under CR = 20% and

u = 18%.

(c) Effect of CR under TR = 20% and

u = 18%.

Fig. 6. Probability MAE results on the semi-synthetic network based on Epinions dataset (NG = 5000, Test

Ratio (TR), Conflict Ratio (CR), and Uncertainty Mass (u))

Fig. 7. Uncertainty probability, Belief, Disbelief and Uncertainty MAE and the corresponding simplex plot of

Epinions dataset with N = 5000 ,TR = 10%,CR = 20%

varying uncertainty masses u, CSL+ shows significantly better performance among the baselines.

Compared with the best baseline GCN-VAE, CSL+ decreases the probability MAE 13% ∼ 15%.

Fig. 6 (b) demonstrates the sensitivity of testing (or training) ratio on the probability MAE of all

the baseline methods. Apparently, CSL+ achieves best performance among all the baseline methods

while GCN-VAE demonstrates the second best performance in terms of probability MAE. More or

less, all the baselines and CSL+ show sensitivity with respect to the test ratio (i.e., a smaller test

ratio implies more training data used while a large test ratio implies to less training data used).

Compared with the best baseline GCN-VAE, CSL+ decreases the probability MAE 10% ∼ 17%.

Fig. 6 (c) shows the effect of conflicting evidence ratios on the probability MAE of all methods.

All the methods show higher sensitivity with respect to the ratio of conflicting evidence; when

the conflicting evidence ratio increases, the probability MAE also increases. It is obvious that

CSL+ outperforms among all the methods. Compared with the other baselines, CSL+ decreases the
probability MAE up to 26%.

Overall, for all these different settings of parameters and the variety of datasets with conflict-

ing evidence, CSL+ outperforms all the other baseline methods even with high uncertainty and

conflicting evidence.
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6.2.2 Opinion prediction. In Fig. 7, we show the simplex opinion plots, where the binomial

opinion point is represented by a subjective opinion tuples (belief, disbelief, uncertainty). We

visualize the ground truth and the inferred (or predicted) opinion points on the simplex plots to

study the opinion prediction performance of CSL+ and other counterparts on the Epinions testing

data. Fig. 7 (a) shows the expected belief probability, belief, disbelief, and uncertainty MAE of the

predicted opinions with conflicting evidence. Fig. 7 (b)∼(f) are the corresponding opinion simplex

plots of the results showed in Fig. 7 (a) for CSL+ and the baseline methods, respectively.

From Fig. 7 (a), we can observe that CSL+ gives the best performance separately on the prediction

of the truth probability, belief and disbelief MAE compared to other baselines. In the simplex

plots, the bottom, left and right axes are corresponding to the belief, disbelief, and uncertainty,

respectively. In Fig. 7 (b)∼(f), the purple points represent the ground truth opinion points, and

the other points represent the predicted opinion points by CSL+ and the baselines. Most of the

predicted opinions of CSL+ are more likely overlapped or close to the ground truth opinions (see

Fig. 7 (f)). The predicted opinions of GCN-VAE, PSL and CSL are close to the ground truth opinions

but do not overlap each other (see Fig. 7 (b), (c) and (e)). The predicted opinion results of SL are

more scattered (see Fig. 7 (d)). These visualization plots demonstrate the low opinion prediction

error of CSL+ on opinion prediction against the baselines.

6.3 Experimental Results on Real-World Datasets
6.3.1 Parameter sensitivity study. In this section, we examine the effect of varying the

number of Sybil attack edges on the performance of CSL+ and its counterparts while we fixed the

other parameters. Fig. 8 (a) is one of the results on Facebook dataset and it shows the probability

MAE of CSL+ and the comparedmethods on the real-world Facebook dataset. And in this experiment

the number of attack edges increasing from 1,000 to 20,000 whileTR = 20%,CR = 30% and u = 16%.

We can observe from the results that CSL+ and the other compared methods achieve low truth

probability MAE when a social network has strong homophily, i.e., the number of attack edges is

small. One of the main reason is the Benign and Sybil users have fewer ties and are totally separated,

and it is easy to detect them. When the conflicting evidence ratio, test ratio and uncertainty mass

are fixed, if we increase the number of attack edges, the probability MAE of CSL+ and the baseline

methods will also increase. However, CSL+ outperforms (decreases the probability MAE up to 50%)

among all the others for varying number of attacking edges. Fig. 8 (b) and (c) shows the experiment

results of Enron and Slashdot datasets,respectively. On the other parameter settings, we observe

the same patterns.

(a) Facebook (b) Enron (c) Slashdot

Fig. 8. Probability MAE of compared methods as the number of attack edges becomes large,TR = 20%,CR =
30% and u = 16%
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(a) Probability MAE (b) Running time log scale (sec.)

Fig. 9. Probability MAE and Running time log scale (sec.) for real-world datasets, TR = 20%,CR = 30% and

u = 16% (for DC and PA, u = 4%)

6.3.2 Experimental Results. We conduct experiments on four semi-synthetic dataset with

NG = 5, 000 based on the Epinions and other two real world datasets, such as two traffic datasets

for PA and DC cities and three social network datasets for Facebook, Enron and Slashdot, with

different parameter settings. We validate the conflicting evidence inference performance of the

proposed CSL+ method on the following tasks: (1) Trust inference on Epinions network: learning
of unknown trust relationships between users from the given trust relationship opinions with highly

conflicting evidence; (2) Congestion inference on the road traffic networks: prediction of the

traffic congestion status of unknown road sections (testing links) by using the given opinions of other

road sections with conflicting evidence; and (3) Sybil attack detection on the social networks:
detection of the Sybil and Benign network nodes from the given known node information with

conflicting evidence.

We observe similar performance patterns from all the datasets experiments with different pa-

rameter settings. Fig. 9 (a) is one of the result plot where TR = 20%,CR = 30% for all six datasets,

u = 4% for DC and Philly and u = 16% for other datasets . For Facebook, Enron and Slashdot

datasets the number of attack edges is 10000. Fig. 9 (a) shows the probability MAE results of six

datasets. We can observe that CSL+ performs the best among all in terms of probability MAE, and

CSL+ improves the results up to 44.6%. The overall performance order of the compared methods is

CSL+ > GCN-VAE ∼ CSL > SL > PSL.

6.3.3 Scalability. In our experiments, the network size is varied from Philly traffic network

with 603 nodes (users) and 708 edges to Slashdot network with 164,336 nodes and 2,018,920 edges.

Also for our proposed CSL+, the inference rule instances are varied from 980 to 2 million. As

discussed in Section 5.3, CSL+ shows low complexity, with linear increase with respect to N , M ,

and K , that are the number of testing and training variables and logic rules, respectively. Fig. 9 (b)

shows the average running time of CSL+ and other counterpart methods on real-world datasets.

GCN-VAE is a little bit slower for large-scale graphs, due to handling the large size of adjacency and

feature matrices. The running time of SL increases exponentially when the network size increases

and SL is not scalable for large networks. Even PSL using a consensus algorithm to speed up, still it

is slower when it infers large number of rule instances. CSL+ and CSL scale nearly linearly with

respect to the network size. The reason for CSL+ being a little slower than CSL is that CSL+ predicts
opinions and infers the conflicting evidence simultaneously.

Trade-off between performance and running time. As discussed before, CSL+ via doubling the

variable size and not increasing the time complexity too much, achieves better performance on
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the different scales of datasets. Compared to CSL, CSL+ decreases the MAE error 23∼50% for all

different datasets. To achieve a lower error rate, we recommend using robust CSL+ method.

7 CONCLUSION & FUTUREWORK
In this work, we proposed a method so called Collective Subjective Logic Plus, namely CSL+, that
infers unknown opinion in the presence of uncertainty caused by both vacuity and conflicting

evidence. CSL+ keeps an opinion format based on SL to consider the degree of uncertainty (i.e.,

vacuity) while performing opinion reasoning operations based on PSL in order to collectively derive

unknown opinions, and also resolves the issue of conflicting evidence which has not been considered

by SL or CSL. CSL+ can infer conflicting evidence from the given opinions during derivation of

unknown opinions. Through the extensive experiments, the key findings are summarized as:

(1) We formulate the unknown opinion prediction problem as an uncertainty minimization
problem , so that CSL+ can effectively predict unknown opinions with linear complexity. CSL+

achieves high performance under a lack of evidence and/or conflicting evidence, because CSL+

learns conflicting representation of known opinions while inferring the unknown opinions.

(2) In the parameter sensitivity experiment, CSL+ demonstrates less sensitivity over a wide range of

test ratios, implying high resilience, compared to SL, PSL, CSL and GCN-VAE. The performance

order in the expected belief probability MAE on the parameter sensitivity study experiments of

semi-synthetic Epinions datasets follows: CSL+>GCN-VAE > CSL > SL > PSL.

(3) The performance order in expected belief probability MAE on the experiment of real world

datasets follows: CSL+>GCN-VAE ∼ CSL > SL > PSL. When varying the number of Sybil attack

edges on the experiment of Facebook, Enron and Slashdot datasets, the performance follows:

CSL+>GCN-VAE > CSL > SL > PSL.

(4) Overall CSL+ outperformed in the opinion prediction performance among all baselines and

counterparts in both the expected truth belief probability MAE and opinion prediction. In

addition, it provided a scalable solution for large-scale network datasets (e.g., Slashdot dataset

with 164,000 nodes and 2 million edges), and scaled almost linearly in proportion to the network

size.

As the future work, we plan to: (1) explore the impact of changes to hyperparameter p0 on the

CSL+ performance; (2) extend our proposed framework to address uncertainty-based online opinion

inference problems; and (3) study the possibilities of the adversarial attacks on rule-based graph

datasets and propose a new method that has resistance to strong adversarial attacks.
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