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EE3310 Class notes

Version: Fall 2002
These class notes were originally based on the handwritten notes of Larry Overzet.  It is expected that
they will be modified (improved?) as time goes on.  This version was typed up by Matthew Goeckner.

Solid State Electronic Devices - EE3310

Class notes

Introduction

Homework Set 1
Streetman Chap 1 # 1,3,4,12, Chap.  2 # 2,5 Assigned 8/22/02 Due 8/29/02

Q: Why study electronic devices?
A: They are the backbone of modern technology

1) Computers.
2) Scientific instruments.
3) Cars and airplanes (sensors and actuators).
4) Homes (radios, ovens, clocks, clothes dryers, etc.).
5) Public bathrooms (Auto-on sinks and toilets).

Q: Why study the physical operation?
A: This is an engineering class.  You are studying so that you know how to make better devices and
tools.  If you do not understand how a tool works, you cannot make a better tool.  (Technicians and
electricians can make a tool work but they cannot significantly improve it.  They, however, are not
trained to understand the basic operation of the tool.)

1) Design systems (Can you get something to work or not?).
2) Make new – improved – devices.
3) Be able to keep up with new devices.

Q: What devices will we study?
A:

1) Bulk semiconductors to resistors.
2) P-n junction diodes and Schottky diodes.
3) Field Effect Transistors (FETs) – This is the primary logic transistor!
4) Bipolar junction transistors – This is the primary ‘power’ transistor!

By course end, the students should know:
1) How these devices act.
2) Why these devices act the way they do.
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3) Finally, the students should gain a “manure” detector.  This can be described as the ability to
judge whether or not a device should act in a given manner, i.e., if someone describes a device
and says that its operational characteristics are “such and such”, the student should be able to
briefly look at the situation and say “maybe” or “unlikely”.  (Only a detailed study can give
“absolutely” or “absolutely not”.)

Let us start the class by describing just what is a ‘semiconductor’.
1) The conductivity of semiconductors occupy the area between conductors and insulators.  This

implies that the conductivity can range over many orders of magnitude.  Further, the conductivity
of semiconductors can be adjusted through a number of means, each related to the physical
properties of semiconductors.  Typical methods for adjusting the conductivity of a
semiconductor are:

a. Temperature
b. Purity (Doping)
c. Optical excitation
d. Electrical excitation.

2) Materials come from
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3) In most semiconductor devices, the atoms are arranged in crystals.  Again, this is because of the
physical properties of the material.  The structures of solid materials are described with three
main categories.  (This can and is further subdivided.)  These categories are:

a. Amorphous
b. Poly crystalline
c. Crystalline

To understand the distinction between these solid material types, we must first understand the concept of
order.  Order can be described as the repetition of identical structures or identical placement of atoms.
An example of this would be an atom that has six nearby atoms, each 5 Å away, arranged in a pattern as
such.
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If one where to pick any other atom in the material and find the same arrangement, then the material
would be described as having order.  This order can be either Short Range Order, SRO, or Long Range
Order.  Short-range order is typically on the order of 100 inter atom distances or less, while long range is
over distance greater than 1000 inter atom distances, with a transitional region in between.

We will now discuss each of the solid material types in turn.

Amorphous solids are such that the atoms that make up the material have some local order, i.e. SRO, but
there is no Long Range Order, LRO.  (Materials with no SRO or LRO are liquids.)

Crystalline solids are such that the atoms have both SRO and LRO.

Polycrystalline solids are such that there are a large number of small crystals ‘pasted’ together to make
the larger piece.

For the purposes of this class, crystals, as we have said before, are the most important of these types of
solids.  Because of this we need to understand crystals in more detail.
WE now need to introduce some basic concepts:

1) The crystal structure is known as the LATTICE or LATTICE STRUCTURE.
2) The locations of each of the atoms in the lattice are known as the LATTICE POINTS.
3) A UNIT CELL is a volume-enclosing group of atoms that can be used to describe the lattice by

repeated translations (no rotations!).  This is further restricted such that the translations of the
cells must fill all of the crystalline volume and cells may not overlap.  In this way, the structure
is uniquely defined.

4) A PRIMITIVE CELL is the smallest possible unit cell.

Often primitive cells are not easy to work with and thus we often use slightly larger unit cells to describe
the crystal.  There are four of very simple – basic – unit cells that are often seen in crystalline structures.
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IT SHOULD BE UNDERSTOOD THAT THESE ARE NOT ALL OF THE POSSIBLE
STRUCTURES.  These structures are:

1) Simple Cubic, SC

a

b
c

Here a, b, and c are the BASIS VECTORS along the edges of the standard SC cell.

2) Body Center Cubic, BCC

a

b
c

Here the ‘new’ atom is at a/2 + b/2 + c/2

3) Face Center Cubic, FCC
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a

b
c

Here the ‘new’ atoms are at (a/2 + b/2), (b/2 + c/2), (a/2 + c/2), (a + b/2 + c/2), (a/2 + b + c/2),
(a/2 + b/2 + c).

4) Diamond Lattice
The diamond lattice is fairly difficult to draw.  However, it is very important as it is the typical
lattice found with Si, the leading material used in the semiconductor industry.

a

b
c

A Diamond lattice starts with a FCC and then adds four additional INTERAL atoms at locations
a/4 + b/4 + c/4, away from each of the atoms.

Now that we have described a few of the simple crystal types, we need to figure out how to describe a
location in the crystal.  We could use our basis vectors, a, b and c, but it has been found that this is not
the most advantageous description.  For that we turn to MILLER INDICES.  Miller Indices define both
planes in the crystal and the direction normal to said plane.  As we know, all planes are defined by three
points.  Thus, one can pick three Lattice points in the crystal and hence define a plane.  From these three
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points, we can find an origin that is such that travel from the origin to each lattice point is only along one
basis vector and the distance is an integer multiple of that same basis vector.  Thus our points are located
at ia, jb and kc, where i, j and k are integers.

5b

3a

3c

To determine Miller Indices does the following:
1) Determine the proper origin and the associated integers, i, j k.
2) Invert i, j and k.  Thus (i,j,k) => (1/i,1/j,1/k).  In our picture above we find that (3,5,3) goes to

(1/3,1/5,1/3).
3) Next, one finds the least common multiple of i, j and k and use this to multiple the fractions.  In

our picture above that multiple is 15.  Thus we find (1/3,1/5,1/3) goes to (5,3,5).  This is our
Miller Index.

If one of the integers is negative, it is denoted with a ‘bar’ over the number.  Thus (-5,3,5) is written
( 5,3,5)

Often, multiple planes are equivalent.  These are denoted with curly brackets {}.  In a SC lattice, all
faces appear to be the same.  Thus {1,0,0} � (1,0,0), (0,1,0), (0,0,1), ( 1,0,0), (0, 1,0), (0,0, 1).

In addition to the planes, we might also be interested in a vector, i.e. moving in a given direction for a
given distance.  In this field, vectors are denoted with square brackets, [].  Thus a vector V= 1.5a+1b =>
[1.5,1,0] or more commonly [3,2,0], since we always want to move from lattice point to lattice point.
Equivalent vectors are given with angle brackets, <>.

Of interest is that the plane given by (x,y,z) has a normal of [x,y,z].

Example Problem:

Q: What fraction of a SC Lattice can be filled by the atoms?
A: Let us assume that the atoms are perfect hard spheres.  This is an approximation known as the
“HARD SPHERE” approximation.  Further let us assume that the atoms are touching their nearest
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neighbor.  This is known as the “HARD PACK” approximation.  Now each of the sides of the SC have a
length of a.  (‘a’ is not to be confused with the vector ‘a’.)  Thus the volume of the cube is a3.  Now we
need to determine how much of each atom is inside the cubic volume.   For this we need to look at our
picture of the SC lattice.

a

b
c

Let us look in more detail at the atom at the origin.

We see that 1/8 of each atom is inside the cube.  Thus the total volume of atoms in the cube is

8*1/8*volume of an atom = 4
3

3 4
3

3

1
6

3

2
π = π







= πr
a

a .  This means that the fraction of the volume filled by

the atoms is 1
6 0 52 52π ≈ =. %.
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Chapter 2 Carrier Modeling
Read Sections 9.1 and 9.2

The late 1800s and the early 1900s set the stage for modern electronic devices.  A number of
experiments showed that classical mechanics was not a good model for processes on the very small
scale.  Among these experiments were the following:

1) Light passed through two slits clearly shows an interference pattern.  This means that light must
be treated as a wave.  However, light hitting a metal surface causes the ejection of an electron,
which indicates a particle nature for light.  Further, it was found that the energy of the ejected
electrons depends only on the frequency of the incident light and not the amount of light.

2) Electrons passed through two slits clearly show an interference pattern but they had clearly been
found to be particles.

3) In 1911, Rutherford established that atoms were made of ‘solid’ core of protons and neutron
surrounded by a much larger shell of electrons.  For example Hydrogen has a proton at the center
with a electron orbiting it.  However, classic electromagnetism combined with classical
mechanics implies that the electron must continue to lose energy (through radiation of
electromagnetic waves – light) and collapse to the center of the atom.  Clearly this was not
happening.

4) A spectrum of radiation (light) is observed to come from heated objects that did not follow
standard electromagnetism.  [This radiation is known as ‘blackbody’ radiation.]  A theory based
on the wave nature of light was not able to account for this – in fact the theory predicted what
was known as ultraviolet catastrophe – where by the amount of energy given off in the UV went
to infinity.

5) Hydrogen atoms (and all other atoms and molecules) were found to give off light at well-defined
frequencies.  Further these frequencies exhibited a interesting series of patterns that did not
follow any known model of the nature of physical matter.

6) Electrons shot through a magnetic field were observed to have an associated magnetic field.
Further this field could be either ‘up’ of ‘down’ but no place in between.

A rapid series of new models were developed which began to explain these observed phenomena.
1) 1901 Planck assumed that processes occurred in steps, ‘Quanta’, and thus was able to accurately

predict Blackbody radiation.
2) 1905 – Einstein successfully explained the photoelectric effect using a particle nature for light.
3) 1913 – Bohr explained the spectra of the Hydrogen atom by assuming a quantized nature for the

orbit of electrons around atoms.
4) 1922 – Compton showed that photons can be scattered off of electrons
5) 1924 – Pauli showed that some ‘particles’ are such that they cannot occupy the same location at

the same time (The Pauli exclusion principle).
6) 1925 – deBroglie showed that matter such as electrons and atoms exhibited a wave-like property

as well as the standard particle-like property.  p h k= =/λ h , where p is the momentum, h is
constant (Planck’s Constant), λ is the wavelength, k is the wavenumber 2π/λ and h = πh /2 .

7) 1926 – Schrodinger came up with a wave-based version of Quantum Mechanics.
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8) 1927 – Heisenberg showed that you could not know both the time and energy or the momentum
and position perfectly at the same instant.  Specifically

 

∆ ∆
∆ ∆
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9) Etc.

We will look at three of these in a little detail so that you the students have a little understanding of the
principles involved.

The Photoelectric effect

Photon Source

hν

Ammeter

It is found that the electrons emitted from can be stopped from reaching the collector plate by applying a
bias to the collector plate.  If one plots the bias required to stop all of the electrons, one finds a very
simple curve
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hν

E=eVapplied

Φ - work
function

Einstein explained this by hypothesizing that light is made up of localized bundles of electromagnetic
energy called photons.  Each of these photons had the same amount of energy, namely hν, where ν is the

frequency of the light and h is a constant, the slope of the line, known as Planck’s constant.
Sommerfield later proposed a model of a conductor that looks like

Φ - work
function

Free electrons
(Fermi Sea)

hν E=eVapplied

Thus, one finds that the electrons in the metal are ‘stuck’ in a potential energy well.  The photons then
supply all of their energy to a single electron.  The electron uses the first part of the energy to overcome
the potential energy well, and the rest remains as kinetic energy.

Bohr model of the Hydrogen atom
Bohr’s model of the Hydrogen atom was perhaps the first ‘true’ quantum model.  It does a wonderful
job of predicting the then measured frequency of light emitted from an atom.  (It misses some ‘splitting’
of the lines that later improvements to the experiments found and later improved versions of the model
deal with correctly.)
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The basis of the model is that the path integrated angular momentum of the electron, while in orbit
around an atom, is in discrete states that vary as integer multiples of h.  Namely,
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We now have two other equations to work with
The energy of the electron
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From this we note that r is a function of n.  For n = 1, ‘ground’ state, we find
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where a0 is the Bohr radius and is the smallest radius at which the electron orbits the proton in the
Hydrogen atom.  Finally plugging both velocity and radius into our energy equation we find the energy
of the electron,
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We see that the total energy of the electron is ‘quantized’ with the smaller quantum number having more
energy.  Again, we can look at the ground state, n=1, and find
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where R is the Rydberg constant and is also the amount energy required to remove an electron from a
Hydrogen atom. (This is a processes known as ionization.)  This ionization potential ‘exactly’ matches
the experimentally measured ionization energy.  The energy emitted/gained between the states is
‘exactly’ the energy of the photons emitted/adsorbed.  (Better experiment showed that the model was not
perfect but very close.)

We can extend this model somewhat by assuming that the binding (electric) potential is due to all of the
charges inside the outer shell.  Then we get
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where Z is the number of protons less the number of non-outer shell electrons.

We can now graphically look at the energy and radius as a function of n
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If we look at the potential well the electron is trapped in, we see that the higher the energy, the higher
the expected radius.

In a true Hydrogen atom, the electron is trapped between the repulsive ‘strong force’ and the attractive
electromagnetic force.  The potential well that is created between these forces looks like

Proton
(not to
scale!)

‘Strong’

‘electromagnetic’

total
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The one major item that Bohr’s model missed is a splitting of the levels, or ‘shells’.  This splitting is due
to a splitting in the allowed angular momentum and particle spin (internal angular momentum) in each
shell.  Thus we find each shell given by a label n has an allowed set of angular momentums, given by a
labels l, and labels m, as well as spin given by label s.
The overall requirements are

n≥1
L≤n-1
-L≤m≤L
s=±1/2

The label ‘l’ is often replaced with l=0 => ‘s’, l=2 => ‘p’, l=3 => ‘d’, l=4 => ‘f’, (and then follow the
alphabet).  Thus an electron in shell n=3, l=3 can be labeled 3d.  The higher the quantum numbers n and
L, the higher the energy.  This means that our picture of the potential well now looks like

Proton
(not to
scale!)

1s

2s
2p

3d
3p
3s

We can have up to 2(2L+1) electrons in that state because of the possible m’s and ‘s’s.  We often add a
superscript to our label to tell us how many electrons are in a given state thus
3d => 3d5

or 3d2

etc.

Usually the lowest energy states are the first to fill -

This is in fact why the periodic table is the shape that it is.  The Noble gases are on the right hand side
and have completely filled – or closed – outer shells.  The element on the farthest left will have a
[noble]ns1 configuration, i.e. [He]2s1 is Lithium while [Ne]3s1 is Sodium (Na).

At the close of the 1920, two versions of full fledge Quantum Mechanics were proposed, a wave version
of QM by Schrödinger and a particle version, employing matrices, by Heisenberg.  These are equivalent
yet different and can be used to independently solve problems.  For what little QM we do do, we will
predominately use Schrödinger’s version is this class.

K E P E E

m
V t

j
tt

. . .

, ,

+ =

− ∇ +








 ( ) = − ∂ ( )h h2

2

2
Ψ Ψr r



UTD EE3301 notes Page 15 of 79 Last update 12:18 AM 10/13/02

where Ψ r,t( )  is the ‘wave function’, a probability function for the particle/wave, ∂ = ∂
∂t t

etc,    and

∇ = ∂ + ∂ + ∂2 2 2 2
x y z .  We note that the wave function implies that we can not know exactly when and where

a ‘particle’ is located at.  At best we get a general idea of were it might be.  This is a very important
concept as it leads to the idea of tunneling, which is very important in some modern devices.

The unfortunate part of QM is that the equations are very hard to solve for any real physical system.
The Hydrogen atom has been explored in detail this way but it would take us most of the semester to go
through these calculations.  As we are interested in understanding devices instead, we now look at some
approximate models that will give us a feel for what is physically happening.

The first model of a physical system that we will look at using Schrödinger’ equation will be a square
well potential.  We do this for two reasons, 1) it is a very simple mimic of the Hydrogen atom and 2) it
is very similar to real devices that we can build.  The potential is such that it is

V(x)

xL
V x

x L
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We can now apply this to Schrödinger’s equation
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(What we have just done, is known as separation of variables.  It is a standard method for solving a
multi-dimensional differential equation.)  Thus
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Finally going to one dimension we find
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Outside the well, the wave function must be zero, as the potential is infinite.  (Or else the second
derivative is infinite which is unphysical.)  Thus we find
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We start by looking at the 0 to L part and integrate twice to find
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Now our wave function must be continuous in both zeroth and first order derivatives, so that at x = 0 we
find A0 = 0.  (Remember ψ x( ) = 0 elsewhere.)  Now at x= L ψ x( ) = 0 so that
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Finally, we typically normalize the wavefunction to 1, so that our total probability is ‘1’.  This is done
by integrating
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How is this related to our Hydrogen Atom?
First the higher the value of n the higher we move up the sides of the potential well.  Now, if we look at
both positive and negative direction of our potential well around the core of the Hydrogen atom, we see
a shape that looks like

Energy
states

core
+

Where we have ignored the core area where the electron is not allowed.
This, we can model Hydrogen in a way that is very similar to the above.  Further, we would expect to
see that higher energy states correspond to being higher up the potential well.  Because of the shape of
the well, we expect the more energetic electrons to orbit at a distance further from the core.  This is
indeed what we see.

Day 3
Homework set 2

Chapter 3 # 4,7,8,9 Due Sept 10th, 2002

Recap
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We have now learned a few of things

1) We can know thing only with so much certainty.  This is governed by the Heisenberg uncertainty
principle

2) We know that particles can act like waves and electromagnetic waves can act like particles.
Further the wavelength/momentum relation is given by p=h/λ.

3) Quantum Mechanics does an excellent job of describing atoms as well as how individual atoms
are structured.

4) The Pauli exclusion principle states that two electrons can not occupy the same state in the same
location at the same time.

We will briefly look at that last item as is concerns our study of solid materials.  There are few things
that we need to note.

1) Atoms have discrete energy levels caused by the potential wells around the nucleus.
2) Solids are made up a large number of atoms.  These atoms have energy levels as well, but the

potential wells are adjusted by the fields from the nearby atoms.  Here the Pauli Exclusion
principle comes into play.

This leads us to a new issue.  We are dealing with atoms that are in close proximity to each other.  What
happens in such cases?  Well let’s put two atoms close together and draw the total potential well.  This is
effectively what happens when two atoms are bonded together.

potential

+ +

1

4

Here we see that shells 3 and 4 above in each of the atoms ‘mix’ with the states in the other atoms.  This
would imply that if both atoms had state 3 filled, then we would have two identical electrons orbiting the
two atoms.  This cannot happen, rather we get a small splitting of the energy states.  Because the
potential is lower, the energy of one of the states is typically lower while the other state may be slightly
higher.  In general, the total energy of the combined state 3 is lower.  We known this because if the
energy was higher, the combined particles would try to go to a lower state, e.g. an unbound state.
Further the average potential that the electrons are sitting in is lower.  (This can also be shown with
QM.)

When there are a large number of atoms, say N atoms, we get an equally large number of splits in the
energy band structure.  Thus, it very common for a gas of a certain species to have a set of very well
defined sharp spectral lines, while a solid of the same species will have very broad spectral lines.
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We bring this idea up because we are dealing with solid-state devices.  Thus the interaction of multiple
atoms and atomic species is important to our understanding of this topic.  How these atoms bond
together is critical to the characteristics of the devices.

We will now examine bonds between atoms.  They fall into four main categories.
1) Ionic NaCl and all other salts
2) Metallic Al, Na, Ag, Au, Fe, etc
3) Covalent Si, Ge, C, etc
4) Mixed GaAs, AlP, etc.

Ionic:
The first of these types of material is related to the complete transfer of an electron from one atom to
another.  Cl for example would like to have a closed top shell and thus it takes an electron from the Na
to produce a [Ar] electron cloud.  Sodium on the other hand would like to give up an electron, so to also
have a closed shell, in this case [Ne].  [THESE OUTER SHELL ELECTRONS ARE KNOW AS
VALANCE ELECTRONS.]  Both of these acceptor/donor processes provide lower energy states.  This
means that the two particles Na+ and Cl- are electrostatically pulled together or bonded.  The electrons in
question, are not shared by the atoms.  Picture wise, this looks like

e-Na+

e-

e-

e- e-Cl

e-

e-e-

Na = [Ne] 3s1 => Na+ = [Ne] Cl = [Ne] 3s23p5 => Cl- = [Ne] 3s23p6 = [Ar]

Cl-

Na+ Cl-

Na+ Cl-

Na+ Cl-

Na+

Cl-

Na+

Cl-

Na+

Cl-

Na+

Cl-

Na+ Cl- Cl-

Cl-

Na+

Cl-

Na+

Na+Na+ Na+
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Metallic:
The second of these comes in two forms.  The first form has only a few valance electrons in the outer
orbital.  These outer valance electrons thus tend to be weakly bound to the atoms and are ‘free’ to move
around.  An example of this type would be Sodium, Na = [Ne]3s1.

Background electron cloud
Na+ Na+Na+Na+ Na+ Na+

Na+ Na+Na+Na+ Na+ Na+

Na+ Na+Na+Na+ Na+ Na+

Na+ Na+Na+Na+ Na+ Na+

Na+ Na+Na+Na+ Na+ Na+

Na+ Na+Na+Na+ Na+ Na+

WE WILL DISCUSS THE SECOND TYPE OF METALS BELOW.

Covalent:
In the covalent bond, two atoms share one or more valance electrons.  In this way, each atom thinks that
it has a closed outer shell.  Because the outer shell is closed, these materials are typically insulators –
although some might also be semiconductors.  (This in part depends on the size of the atoms.  The
smaller it is, the more likely it is to be an insulator.)  An example of this is Carbon, C=[He]2s22p2.

C

e-

e-

e-

e-
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C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

Two shared
electrons

Mixed States:
Mixed states are a combination of Covalent and ionic.  An example is GaAs.  Picture wise, these look
like

e-

e- Ga
e- e-

e-

e- As

e-

e-

Ga = [Ar] 4s23d104p1 As = [Ar] 4s23d104p3

We see that Ga, which is column III, has three electrons in the outer shell while As, which is column V,
has 5.  As such the pair has 8 outer shell electrons, just enough to create a closed outer shell.  Ga, it turns
out wants to attract an additional electron more than As wants an additional electron.  Thus one of the
electrons spends more time near the Ga atom, making it partially negatively charged and the As partially
positively charged.  (A full electron is not transferred.)  Thus, GaAs has some properties of covalent
bonding and some properties of ionic bonding.  The final structure looks like:
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Energy Bands

We can look at this in a second fashion.  The properties of materials are the out growth of the splitting of
the states in atoms that are close together.  If we where to take N atoms and equally space them apart
then slowly move them together, we would find that the splitting of the states grows as we get closer
together.  Hence for a single state we might see

Energy
level

separation

Allowed
states

As our atoms get closer and closer, the more of the energy levels begin to split.  Thus for an atomic
species such as Si, 1s22s22p63s23p2 or [Ne] 3s23p2, we get



UTD EE3301 notes Page 23 of 79 Last update 12:18 AM 10/13/02

Energy
level

separation

3p2

2N electrons
6N states

2N electrons
6N states

3s2

2N electrons
2N states

gap

2N electrons
2N states

Overlap of 3s2

and 3p2

4N electrons
8N states

4N electrons
4N states

0 electrons
4N states

Solid
spacing

If we could vary the separation of the Si, with in this diagram we see regions that correspond to two
types of metal, a semiconductor and an insulator.  (Note Si has a specific separation and hence it is a
semiconductor.)

Metal type 1(seen at very large separations)

Allowed
band

Allowed
band

Forbidden
Filled

Partly filled

Metal type 2 (seen at large separations)

Allowed
band

Allowed
band

Overlap

Semiconductor (seen at moderate separations)
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Allowed
band

Allowed
band

Narrow
Forbidden

Filled

Empty

Dielectrics (insulators) (Seen at small separations)

Allowed

Allowed

Wide
Forbidden

Filled

Empty

The allowed bands have specific names.  The lower band is known as the Valance Band, as this is where
all of the outer shell electrons will typically move, while the upper band is known as the conduction
band as this is where we find conduction of electrons in solids.  [NOTE ELECTRONS ARE NOT THE
ONLY CHARGE CARRIERS IN SOLIDS.  We will discuss this soon.]

End here day 3

What is important for conduction to occur, is that electrons must have ready access to allowed energy
states that are empty.  This is in the conduction band.  This is because, for the electron to move
physically, it needs to have both a position and an energy state to move into.  By ready access, we mean
that the electron must have enough available energy, through light or random motion (Think
Temperature!) to be able to make the transition.  What sort of energy might we be talking about?  Well,
room temperature is about 1/40 eV (or 1 eV ~ 11,000 K).  Thus at room temperature, we might expect a
significant number of the electrons to be able to gain ~1/40 eV.

Aside on Temperature:
The concept of temperature is relatively simple concept.  If a material has a temperature that is
above 0 K then there is some random internal motion.  (This is very different than directed
motion where <v>≠0.)  Often we find that the a materials motion is such that <v>=0, (velocity
has direction and magnitude) while <|v|>≠0 (speed has only magnitude.)  Further, because of the
random statistical nature of atoms, the distribution of velocities is a ‘Normal’ or ‘bell curve’
distribution.  (This is also known as a Maxwellian or Boltzman distribution.)  The temperature is
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a measure of the width of the distribution.  Thus, the higher the temperature, the higher the
variation in particle velocities.
The normal distribution is

p y const
y( ) = − −( )







 exp

1
2

2σ
η

σ
.

Here σ 2  is the population variance, σ  is the population standard deviation, and η  is the central
value.  The distribution looks like
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The Maxwellian distribution in terms of velocity (in 3-D) is given by
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While in terms of energy, it is given by
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We will see this again soon.

Now back to how Temperature influences conduction.  We will look at C.  If the material has enough
internal (random) energy, some of the electrons in the covalent bonds may gain enough energy to break
free.  Picture wise this looks like:
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C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

Free
electron

e-

Broken
bond

In terms of the energy band, it looks like:

Conduction
band

Valance
Band

Ec

EV

e-

Energy

Position

Now we can go back and look at the concept of temperature in terms of the fraction of electrons that can
jump from the valance band to the conduction band.
We will use a Maxwellian distribution to approximate the number of electrons that might cross the band
gap,

f n
kT kT

( ) expE
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=
−



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1

,
we see that the higher the temperature, the greater the chance that an electron will have enough energy.
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At room temperature, kT=1/40 eV.  The band gap for carbon (diamond) is on the order of 3 or 4 eV.  If
we assume 4 for simplicity, we find that the fraction of electrons that are in the conduction band is
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This means that if the lattice constant for diamond is 4 Å, then the number density of atoms is
Number/volume = 8/(4Å)3  = 1.25E23 Carbon/cm3.  Each carbon atom has 4 electrons in the conduction
band and thus, we might expect about 1.6E-46 electrons/cm3 in the conduction band.

UNDERSTAND THAT THE ABOVE IS A ROUGH APPROXIMATION AND WOULD ONLY
TRULY APPLY TO FERMIONS THAT DO NOT ‘INTERACT’ (Particles that do not interact but do
follow Pauli Exclusion Principle). WE WILL GET TO A MORE APPROPRIATE METHOD
SHORTLY.

Carrier types and Carrier Properties
From the above picture, we see that we have moved an electron into the conduction band.  This means
that it can move around and thus conduct current.  However, we have also produced a vacant spot in the
valance band.  This means that the rest of the electrons in the valance band can now move but just into
the empty spot – or ‘hole’.  But if a valance band electron fills that hole, a new hole must be created
from somewhere else.  This allows conduction of current through the movement of ‘holes’ in the
valance band.

Now, if we apply an electric field to our material we get a force applied to both the conduction electron
and the hole.  That force is

F E

F E

= −
= +

e

e

   (electron)

   (hole)
Pictorially this looks like
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If we were in free space, we would expect
F E a

F E a
n n

p p

e m

e m

= − =
= + =

   (electron)

   (hole)
where n and p stand for negative and positive or electron and hole.

This brings up a valid question,  What is the mass of a hole?!?!?

To answer that question, let us first consider the electron.  First, we are in a system that is clearly not
free space.  As the electron is accelerated toward the positive bias, it will collide with atoms.  This will
cause it to slow down.  This means that the acceleration we see in free space will not be the acceleration
we see in the material.  We can solve this by defining an effective mass, m*, such that our force
equation is correct.  Holes will also have an effective mass, as they also move via the movement of
valance band electrons.  Thus we get in the material

F E a

F E a
n n

p p

e m

e m

= − =

= + =

*

*

   (electron)

   (hole)

[YOU MUST ALWAYS USE THE EFFECTIVE MASS IN YOUR CALCULATIONS!]
Some times m*>me and sometimes m*<me.  It depends on the specific system.

Holes are not real particles but they act like them.  They are in effect the average movement of electrons
in the valance band.  Because they are easier to deal with than all of the valance electrons, we keep track
of them in the valance band.  In the conduction band, the number of empty spots is much larger than the
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number of electrons.  Thus, in the conduction band, we keep track of the electrons in the conduction
band and holes in the valance band.

Types of Semiconductors
In the above discussion, we have created electrons in the conduction band and holes in the valance band
by liberating an electron from its bound state in the valance band.  This means that the number of holes
and electrons, or p and n carriers, is identical.  If we lose one, it is through recombination with a particle
of the opposite type.  Hence, to get rid of an electron in the conduction band we need to move it into the
valance band and have it fill a hole.  (This sort of process occurs all of the time.  Likewise, we have new
electron-hole pairs being created all of the time.  In equilibrium, the number of electron-hole pairs
created in a time period is equal to the number destroyed.)

Semiconductors that naturally operate with equal numbers of electrons and holes are known as
INTRINSIC or pure (less common) semiconductors.

There is also a second class of semiconductors that has an unequal number of holes and electrons.
These are known as EXTRINSIC or DOPED semiconductors.  There are two basic types of
semiconductor dopants, n-type and p-type.  n-type give rise to excess negative (electrons in the
conduction band) charge carriers, while p-type give rise to excess positive (holes in the valance band)
charge carriers.  We will discuss each of these in turn.

n-type and p-type dopants

n-type dopants, also known as DONORS, operate in the following manner:
For Si technology, donors come from column V.  THUS WE MOVE UP ONE COLUMN TO GET A
DONOR.  The three most prevalent are P {[Ne]3s23p3}, As {[Ar]4s23d104p3} and Sb {[Kr]5s24d105p3}.
We will look at the valance structure of a P atom.

e-

e-

e- P

e-

e-

Now we will now place this in our Si lattice structure
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Si Si SiSi

Si

Si

Si Si Si Si

Si Si Si

SiSi

Extra
electron

Because this electron is an extra in the covalent bonds of the Si crystal, it takes very little energy to
remove it from the P atom and thus move in to the conduction band.  [This can be seen from the Bohr
model of the hydrogen atom.]  In terms of the energy band, it looks like:

Conduction
band

Valance
Band

Ec

EV

Energy

Position

Donor
state

Ed

p-type dopants, also known as ACCEPTORS, operate in the following manner:
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For Si technology, donors come from column III.  THUS WE MOVE DOWN ONE COLUMN TO GET
A DONOR.  The most prevalent one is B {[He]3s23p1}.  We will look at the valance structure of a B
atom.

e-

e- B e-

Now we will now place this in our Si lattice structure

Si Si SiSi

Si

Si

Si Si Si Si

Si Si Si

SiSi

Extra
hole

B

Because this hole is an extra in the covalent bonds of the Si crystal, it takes very little energy to add an
electron to the B atom and thus remove in from the valance band. [This can be seen from the Bohr
model of the hydrogen atom.]  In terms of the energy band, it looks like:

[ONE OTHER THING TO NOTE IS THAT THE B ATOM IS SMALLER THAN THE Si ATOMS.
THIS PLAYS A ROLE IN HOW THE CRYSTAL IS STRUCTURED.]
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ACCEPTOR, DONORS and AMPHOTERIC atoms in III-V semiconductors.

As with Si/Ge types of technology, to create an acceptor type state, we need to add a dopant that has one
fewer valance electrons than the base material.  For GaAs, this means we note that our lowest column is
Ga of column III and thus we need to pick something from column II, e.g. Be or Mg.  This would then
sit in the Ga lattice site and act as a hole.  To create a Donor, we would have to pick something with one
more valance electron and thus from column VI, e.g. S or Se.  This would sit in an As site and act as
donor.  Amphoteric dopants are those that can be either acceptors or donors, depending on which lattice
site they occupy.  For example Si dopant replacing Ga has an extra electron and thus is a donor.  On the
other hand, Si on an As site is missing an electron and thus is an acceptor.  Species with this dual ability
are known as Amphoteric dopants.
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[Again note difference in size of atoms.]

End day 4

Carrier Densities

To get to the concept of carrier density, we first have to understand two things
1) How the particles interact and what the appropriate probability distributions.
2) The distribution of energy states available for the charge carriers.

We will start with item 1.

Energy distributions

There are in general two types of particles.
1) Bosons
2) Fermions

These particle types are separated by whether-or-not they follow the Pauli exclusion principle.  Boson
do not interact and hence do not follow Pauli.  [Further all Bosons have integer angular momentum
states (spins), e.g. 0, 1, 2…]  Photons are an example of a Boson.  Since Bosons do not interact we can
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have as many of them in a place-time as we like.  All Bosons follow BOSE-EINSTEIN statistics.
[Where you think of Bosons, think of BOZO THE CLOWN.  Clowns are infamous for being able to
pack dozens of themselves, many more than imaginable, in very small cars.]

Fermions do interact and do follow the Pauli exclusion principle.  Further Fermions all have half integer
spins (1/2, 3/2 etc.).  Electrons are an example of Fermions.  [Since Fermions are ‘Firm,’ you cannot put
two of them in the same place at the same time.]  Fermions can be further broken into two categories,

a) Those with over overlapping wave functions – and hence always interacting
b) Those without or only briefly overlapping wave functions – and hence seldom or never

interacting.
Type (b) is what we typically associate with gas molecules.  We know that these follow a ‘bell’ shaped
or normal distribution.  This is known as a Maxwell-Boltzmann distribution.
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Type (a) is what we are dealing with in solid-state devices, electrons that are constantly interacting and
that obey the Pauli exclusion principle.  These particles follow a Fermi-Dirac function. The function is
set by rules that are not always simple to follow all the way through – but it can be done – see the back
of the book, Appendix III.  [The exact derivation is not useful for the purposes of this class.]
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We know what The Maxwell-Boltzmann distribution looks like from above.  What does the Fermi-Dirac
function look like?  [Note that we are not calling it a distribution!]
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This is very different than the Maxwellian distribution and it is entirely due to the fact that the particle
cannot occupy the same energy state at the time.  Note also that we cannot normalize the distribution
such that the integral over all energies is one.  This implies that we are missing a piece of the puzzle,
which we will get to shortly.  However, we need to look at a few other things first.

First:

For relatively large energy shifts ∆E E E= − ≥0 3kT, we find that the Fermi-Dirac function becomes
very like much the Maxwell-Boltzmann distribution.
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0
0

0

0

3
1

1

1

This means that at high relative energy separations, we can approximate our function with the
Maxwellian, and get reasonably good results.  [This is in fact what we did with our example of
conduction electrons in diamond above.]

Second:

For our situation E 0 is known as the Fermi energy and is written E F .  Thus we have
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E F  is very useful.  This is true for a number of reasons.

1) When we plug E F  into our distribution, we find
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This means that there are an equal number of holes and electrons at the Fermi energy.

2) We also find that the function is ‘symmetric’ around the Fermi energy.  By ‘symmetric,’ we

mean that the number of holes at an energy E x below the Fermi energy is equal to the number of

electrons at that energy E x above the Fermi energy. This can be proved very easily
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We can now use this to look at where the Fermi energy should lie for an intrinsic semiconductor.  By its
very nature, the number of holes in the valance band must equal the number of electrons in the
conduction band.  For simplicity, we will assume that all of the holes and electrons are at their respective

band edges, E v and E c.  From the above discussion, we find that the Fermi energy must be equi-distant
from the conduction and valance band edges.  (The distribution is ‘symmetric’.)  [THIS IS NOT QUITE
CORRECT AS WE WILL SEE LATER.]  Thus if we look at a energy band diagram we see:

Conduction
band

Valance
Band

Ec

EV

Energy

Position

Fermi
Energy

EF

We can further complicate the picture by adding the Fermi-Dirac function.  However, in our graph of the
function above, we have energy along the horizontal axis.  In our energy diagrams, we have the energy
along the vertical axis.  Thus, we need to rotate the function to get:

Conduction
band

Valance
Band

Ec

EV

Energy

Position

Fermi
Energy

EF

10
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This is often not done as simply knowing the temperature and the Fermi energy uniquely defines the
distribution over which electrons will spread.  Thus often times one only sees the Fermi energy on the
band energy diagram.
Likewise, we tell something about the semiconductor by the position of the Fermi energy.

1) If there are more holes than electrons (p>n) than the Fermi energy must be closer to the valance
band.

2) If there are more electrons than holes (n>p) than the Fermi energy must be closer to the
conduction band.

This is entirely due to the ‘symmetry’ of the function and can be seen by moving the function relative to
the band structure.

STATE DENSITY
Up to this point we have ignored the fact that the Fermi-Dirac function cannot be normalized to a
physically reasonable number.  The reason that this is so, is because we have not included the fact that
we have a set of discrete states that the electrons can occupy.  The density of possible states is
determined by quantum mechanical rules that are not simple to follow all the way through – but one can
come up with a convincing argument as to why it has to be what it is – see the back of the book,
Appendix IV. [The exact derivation is not useful for the purposes of this class.]  This density is:
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Note that N g( ) ( )E E=  in some books.  These functions look like:
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If we take into account that the energies under consideration are relative to the band edges, we find
slightly different densities in the conduction and valance bands.  (The difference is a simple sign flip in
the square-root of the energy term.)  For three dimensions they are
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      Valance band
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Now to get the distribution of states that are fill (electrons) or empty (holes) we need to multiply the
Fermi-Dirac function with the state distribution function.

n d f N d

kT

m
d

p d f N d

kT

c
F

c

v
F

( ) ( ) ( )

exp

( ) ( ) ( )

exp

* /

E E E E E
E E

E E E

E E E E E
E E

= =
+

−( )









π









 −

= −( ) = −
+

−( )



























1

1

2

1 1
1

1

2

2 2

3 2

h
                      Electrons in the Conduction band

ππ









 −2 2

3 2
m

dv

* /

h
E E E      Holes in the Valance band

We can look at these again in terms of our band structures:

Conduction
band

Valance
Band

Ec

EV

Energy

Position

Fermi
Energy

10
f(E)

0
N(E)dE

EF

0
f(E)N(E)dE

If we move the Fermi Energy up or down we get very different results
Up � more electrons – p-type dopant

Conduction
band
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Energy

Position

Fermi
Energy
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f(E)

0
N(E)dE

EF

0
f(E)N(E)dE

Down � more holes – n-type dopant



UTD EE3301 notes Page 42 of 79 Last update 12:18 AM 10/13/02

Conduction
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Energy
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EF

0
f(E)N(E)dE

We note that the charge carriers tend to bunch around the band edge.

To get the total number of electrons and holes, we simply integrate over the whole range of energies in
each band.
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              Electrons in the Conduction band

      Holes in the Valance band

Here n0 and p0 represent the numbers in thermal equilibrium.

The above equations are difficult to work with – and in fact cannot be solved analytically.  We can

however use a simplifying assumption, that we have relatively large energy shifts ∆E E E= − ≥0 3kT

the equations become significantly easier to deal with.
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Nc and Nv are known as the effective density of conduction and valance band states.

Energy

Position

Ec-3kT

Ev+3kT

‘degenerate’
states

non-‘degenerate’
states

A final way in which we can write these are in terms of the ‘intrinsic’ energy, Ei, and the ‘intrinsic’
density, ni.  The intrinsic energy is the energy half way between the conduction and the valance band.
(In reality, it is the Fermi energy for the intrinsic material and hence it only has to lie close to the mid
energy.)  The density is found from the hole/electron densities at that energy.
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or we can multiply the two forms together to get
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Additional ideas from Streetman and Banerjee

We have been drawing pictures of the energy band structure, showing position on the horizontal axis
and energy on the vertical axis.  First we note that position is by its nature, 3-D.  However, we also need
to realize that the momentum of an electron is independent of the location.  (Or at least is potentially
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independent of the location.)  This means that we can add three additional coordinates, one each for the
momentums in the three different directions.  In QM parlance, the total energy of the system is given by

E m V r= +
1
2

2v v( , )

but
p v= m
so

E
m

V r= +
p

p
2

2
( , )

When this is used to operate on a wave function (our electron’s probability function) we get

E
m

V r= +
k

k
2

2
( , )

where the vector k is known as the ‘eigenvalue’ of the ‘eigenstate’.  [It is just a fixed vector quantity that
depends on the state that the electron is in.]  If there is no potential shift due to the momentum then we
get

E V r
m

− =( )
k2

2
We can plot this and find that the energy-momentum curve acts like a parabola in energy-momentum
space.  In other words (pictures?):
Direct Band Structure

k

E

V(r)
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Sometimes, we get a potential shift due to the momentum, causing a shift in our parabolic curve.

Indirect Band Structure

k

E

V(r)

V(r,k1) V(r,k2)

In general we can and often do have peaks and valleys in our E-k space plots.  They can and often do
become very ugly, including having/giving different m* for each of the valleys.  Streetman and Banerjee
show a picture along those lines, which I will not try to duplicate here.

This however brings up an interesting issue.  The electrons in the conduction band typically occupy the
lower part of the band – or in reality any valley in the conduction band.  One can understand this by
think about what happens to a bunch of balls randomly drop on an area of small hills.  From our
understanding of classical mechanics, we would fully expect that the balls to be somehow distributed
among the valleys, with the largest number in the deepest/widest/lowest valley.  (A very deep but very
skinny valley may not allow any balls to enter, while a very wide but very shallow valley may not trap
many balls either – so balance must be reached.)

Fortunately we can use our model derived above to arrive at the number of electrons in the different
valleys in the conduction band.  We will show how this is done by example.

Example problem
We start this making a few simple assumptions.

1) All objects have some amount of kinetic energy.
2) All objects have some amount of momentum.
3) The effective mass in each of these valleys can and often is different.
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We know from above that the density of states is given by:
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Let us assume that we have two valleys.  Number one due to the [1,0,0] planes and number two due to
the [1,1,1] planes.  Thus we have for valley one has 2 equivalent planes and thus:
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while valley two has 8 equivalent planes and thus for valley two
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Multiplying by the Fermi function and integrating (assuming non-degenerate) we find
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we can now ask at what temperature they will have the same number of electrons.  We find this by
setting n01 = n02.  A few algebra steps gives (provided I have done these steps correctly!):
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Start lecture 5
Homework Set 3 Chapter 3: 10, 11, 12
Note: A good web site to look at: http://jas2.eng.buffalo.edu/applets/

At this point we should probably stop at look at what we have done.

First, we found that the electrons (holes) where distributed over a range of energies.  How they are
distributed is given by the Fermi Function:
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Second, we found that the electrons (holes) can only occupy certain states, as determined by QM.  The
available state densities are given by:
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Third, we found that multiplying the functions gives us our electron (hole) energy distributions:
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We however, are only interested in the total number of electrons in the conduction band (holes in the
valance band) and hence we integrate over all allowed states.  These integrals are none trivial but
provided the Fermi energy is not close (>3kT away) to either the conduction or valance band we can
approximate the number densities in equilibrium as
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At this point we realized that we have defined things in very general terms.  However, we can modify
our semiconductor by adding dopants, etc. and so we came up with a new set of values that are just for
the basic (intrinsic) material, EF => Ei, etc.

n N
kT

n n
kT

n N
kT

p n
kT

i v
v i

i
F i

i c
c i

i
F i

=
−( )
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
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
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




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E E E E

E E E E

0
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or we can multiply the two forms together to get

n N N
kT kT
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kT

n p

i v c
v i c i

v c
G
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0 0

=
−( )


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

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







=
−





=

exp exp

exp

E E E E

E

eliminating the need to even know E c and E v.
Are we missing anything?  We need to know n0 and p0 to be able to do anything.

We know how to get Nv and Nc from the temperature, mp
*

 and mn
*

.  All three of these are measurable

values.  We have ways to measure EG, which we will discuss latter in the class, while E c and E v have
been eliminated from our equations.  Thus the only things that we do not have are our Fermi and
Intrinsic energies.  How do we get them?

To do this, we need to look at our system again.  When we have an intrinsic material, we expect that at 0
K all of the energy sites in the valance band will be filled and all of the sites in the conduction band will
be empty.  As the temperature is increased, some of the electrons will jump from the valance band to the
conduction band, creating electron-hole pairs.  This however means that the number of electrons is
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always equal to the number of holes.  This concept is known as charge neutrality.  It is guided by more
than just counting, it is also guided by the fact that any large separation of charges will lead to strong
electric fields that tend to pull the charges back together again.  Thus, we set
n p0 0=
Now plugging in our distribution functions, and noting for this system E EF i=  we find

n N
kT

p N
kTi c

c i
i v

v i
0 0=
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





 = =
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


exp exp

E E E E

eliminating terms, we get:
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This means that the intrinsic energy lies very near the mid gap energy, with a slight offset due to the
effective mass ratio of the electrons and holes.  This offset is typically very small.

Now, all we need is the Fermi energy.  We understand that the Fermi energy is set by energy at which
we would expect to have the same number of electrons and holes.  If we are dealing with an intrinsic
material we have a way to get at that number.  However, we are often dealing with a material that has
been doped and hence has either excess holes (p-type) or excess electrons (n-type).  We need to
understand how these dopants affect the Fermi energy in order to understand how to calculate the Fermi
energy.

The distinction is that we have added either donors or acceptors.  However, we should still have charge
neutrality – the electric field is a powerful force!  This means that we need to add up our positive
charges and set them equal to our negative charges.

p N n ND A0 0+ = ++ −

where ND
+

 and NA
−

 are the number of ionized donors and ionized acceptors respectfully.  (Think about
this for a minute.  A donor that is ionized has given up an electron, which is now moving in the
conduction band.  An acceptor that is ionized has pulled an electron out of the valance band, leaving a
hole to move in the conduction band.  Neither ion is able to move and hence neither is a charge carrier.)
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For donor and acceptor states, Fermi-Dirac statistics determine whether or not the state is filled.  If we
look at an energy diagram, we see:

Ec

EV

Energy

Position

Ei

EF

ED

EA

We note
1) that ED > EF => f(ED)>>1 � almost all donors are ionized positively
2) that EA < EF => 1-f(ED)>>1 � almost all donors are ionized negatively.

Thus we assert that the number of donor ions and the number of acceptor ions are that same as the
number of donors and the number of acceptors.  WE ARE IN EFFECT ASSERTING THAT THE
SYSTEM IS NON-DEGENERATE!

This gives us two equations,
p N n N

n n p

D A

i

0 0
2

0 0

+ = +

=

Combining them gives

n
n

N n N

n n N N n

i
D A

A D i

2

0
0

0
2

0
20

+ = +

⇓

= + −( ) −

+ −

− +

or

n
p

N p N

p p N N n

i
A D

D A i

2

0
0

0
2

0
20

+ = +

⇓

= + −( ) −

These are both quadratic equations that we can easily solve:
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p
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N N n

n
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A D
D A i

D A
A D i

0
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0
2 4

2
1
2

4

2
1
2

4

=
−( ) + −( ) +

=
−( ) + −( ) +

The two solutions with the negative signs do not make physical sense as this will give us negative
densities for the charge carriers.  Thus we find

p
N N

N N n n
kT

n
N N

N N n n
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A D
D A i i

F i

D A
A D i i
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0
2 4
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=
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





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=
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







exp

exp

E E

E E

We can now use these to get the Fermi energy is terms of measurable quantities.

Finally, there are a few simplifications that are often made to the above equations:

1) NA, ND = 0 => intrinsic n0=p0=ni.
2) ND – NA >> ni => Doped n-type.

Then

N N n N N N N N N

n
N N N N

N N

and

p
N N N N

D A i D A D A D A

D A D A
D A

A D D A

−( ) + ≈ −( ) = − = −

⇓

=
−( ) +

−( ) = −

=
−( ) +

−( ) ≈

2 4 2

0

0

4

2 2

2 2
0

Noting the p0n0 is still equal to ni
2 we still get

p
n
n

i
0

2

0
=

which is small compared to n0.  This says that the electrons are our majority carriers while the
holes are our minority carriers.

3) NA – ND >> ni => Doped p-type.
Then almost copying the above math we get
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N N n N N N N N N

n
N N N N
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N N N N
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D A i D A D A A D

D A A D

A D A D
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0
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Noting the p0n0 is still equal to ni

2 we still get

n
n
p

i
0

2

0
=

which is small compared to p0.  This says that the holes are our majority carriers while the
electrons are our minority carriers.

4) NA – ND ~ ni => we have to use the full equations.

Example:

Question
We have Si at room temperature (30 °C or 300 K) doped with 1016 cm-3 B atoms.  What is:
1) ni

2) p0, n0

3) Ei – EF

4) EF – Ev

5) Draw the band structure

Answer
1) We can look up the intrinsic density from table 3.17 (page 89) in Streetman.  It is

ni =1.5 X 1010 cm-3.
2) The doping level is:

NA = 1016 cm-3.
ND = 0.
NA-ND >> ni.  Thus we can use the approximation:
p0 = NA-ND = 1016 cm-3.
n0 = ni

2/p0 = 2.25 E 20/10 E 16 cm-3 = 2.25 E 4 cm-3.
3) We can now get Ei – EF from

p n
kTi
F i

0 =
− −( )







exp

E E

 or

E Ei F
ikT

n
p
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E

E
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



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= − 



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=
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.  ln
.

.  
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0 026
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0 35
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4) We can now get EF – Ev from

p N
kTv

F V
0 =

− −( )







exp

E E
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
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,
* /
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
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−2 510 19 3

3 2

, and 
m m m mp lh hh e

* / / /
.  = +( ) =3 2 3 2 2 3

2 0 81
 (see appendix III)

[Note that this mass ratio comes from addition of the three p0s (one for each direction) that have
the same exponential terms.  This is equivalent to the ‘averaging’ we have done above.] we find

N E cmv = −1 02 19 3.  
We can now plug this into our above equation to get:
E EF v eV− = 0 180.  

5) 

Ec

EV

Energy

Position

Ei

EF

0.18 eV

0.35 eV

0.53 eV

1.11 eV

0.58 eV
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Carrier action – motion, recombination and generation
Carrier action is driven by a large number of processes.  We can look at the in a general sense by
looking at the densities of our charge carriers in a small volume.  The first thing that we should ask is
how does this density change in a given time?  Hence, we want to know:
dn
dt

and
dp
dt

= =?    ?

We can work with either of these equations to begin to understand the process.  The first thing to realize
is that the density can change either by production/destruction of the carriers or by carriers moving into
or out of the volume.  We can take this into account by expanding our derivative.
dn
dt

n
t

n
x

dx
dt

n
y

dy
dt

n
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∂
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∂
∂
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∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+ ∇v ∑

This is known as the continuity equation.  It describes conservation of particles.  If particles are not
conserved, and here that is possible – we can have electron-hole recombination etc. – then the right-hand
side of the equation is just the production/destruction.
dn
dt

n
t

n fproduction destruction=
∂
∂

+ ∇ =v ∑ /

The first term on the right-hand side describes the local gain/loss of the carriers, while the second term
describes the flow into or out of a volume.  Note that gain/loss is not the same as production/destruction.
With this understanding, we can begin to look at how the charges move, as well as how they are
produced/destroyed.  (There is a similar equation describing conservation of energy.)  We will start with
current flow.

Current flow
At this point, we can calculate n0, p0, Ei, EF, etc but how does that relate to our real use of
semiconducting materials, current flow?  It is after all the flow of current, and the ability to turn that
flow on and off that makes semiconductors useful.  To answer that question, we need to know how
electrons and holes move in the lattice.

There are three useful terms which describe how our charge carriers move in the lattice.  They are
conductivity (σ), mobility (µ) and Diffusion (D).  We will now discuss where each of these comes from

and their physical meaning.

Without any external force, we expect our charge carriers to have a random spread of energy and to be
randomly spread across the device.  This randomness is attributed to a Brownian motion type of process.
Brownian motion is the observed motion of dust particles in the air.  If one where to sit in a room with a
bright light, one can observe the motion of dust in the air.  This motion is random in nature with dust
particles moving at a variety of speeds in a variety of directions.  An individual dust particle might move
in one direction for a while then turn around and head in the opposite direction latter.  (This is also
known as a ‘random walk’ or a ‘drunken sailor random walk’.)  Pictorially this looks like:
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For dust particles in air, the collisions are between air molecules and the dust.  For our charge carriers,
the collisions are with impurities in the lattice and the lattice atoms.  Which of these two scattering
centers is more important depends on the temperature.

Now let us apply an electric field to the device.  This means that we now have a force on the charge
carriers.
F E= q
assuming that the electric field is only in the x-direction, we find:
F E x= =

=

=

q qE

m
dv
dt

dp
dt

x

x

x

√

The total change in momentum is then simply the sum over all particles, giving
dP

dt
dp
dt

qE

nqE

total i

i

n

i
i

n

l

=

=

=

=

−
=

∑

∑

1

1
(internal)

average or externa

Just looking at this equation would imply that the electrons/holes will accelerate ‘forever’.  However, we
don’t see this sort of phenomena – think of the current in a wire – rather we see a constant velocity.
(What we have described should apply to a metal wire as well as our semiconductor.)  Additionally,
what we really see is an average over all velocities.  This means that we have to have a way to slow
down the electrons/holes.  That way is through scattering with our atoms.  In this, we can think about
throwing a BB at wall – the wall does not notice but the BB stops or bounces in the opposite direction.
We can describe this deceleration using the average time it takes an electron/hole to lose the average
particle momentum.
d p

dt

p P
n

loss total= − = −
τ τ

where the average is just the total momentum divided by the number of particles.
At some point we will balance the acceleration due to the electric field with the deceleration due to
collisions.  Thus,
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d p

dt

d p

dt

d p

dt

qE
p

total gain loss= + =

⇓

− =

0

0
τ

rearranging this, and writing the momentum in terms of the average velocity, we get:

p qE m v

v
q

m
E

E

= =

⇓

=

= µ

τ

τ

*

*

where µ is our mobility of the electron or hole.  Note that in the book, q = electron charge, -e.  Here q is
simply a place holder and requires the insertion of –e for electrons and +e for holes.  To get the current
flow in the correct direction, see below, the mobility is always given as a positive number.  Thus we find

µ = − =

µ = =

n
n

p
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v
E

q

m

τ

τ

*

*

This is all well and good but we still need to current flowing through our device.
For a single species of charge carriers, this is simply:
J v

E E

E

=

= µ =

=

nq

nq nq
q

m

τ

σ

*

where σ is the conductivity.  If we have both charge carriers

J v

E

E

E

=

= µ + µ( )
=
=

nq

q n pn p0 0

σ
ρ/

where ρ is the resistivity.

At this point, we want to complete this analysis.  Most notably, we need to get the total current and the
total resistance.  (Remember, we measure things in bulk not in differential areas.)

The total current is
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I J a= ∫ d
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The resistance is
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Assuming constant values, which is typical, we get

R
L

A
L
A

=

=

ρ

σ .
Pictorially, this looks like:

t(x)

w(x)

0

L

holes

electrons

Electrons are inserted at x = L and removed at x = 0.
Holes are inserted at x = 0 and removed at x = L.

So now we need to ask just what does the mobility mean?

µ =
τ q

m*
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We know what the charge and the mass are, but what is tau?
Tau depends on the number of scattering centers and the temperature of the lattice.

1) The more scattering centers (dopant or defects) the more often collisions will occur.  Hence, the t
is small and so is µ.

2)  The higher the temperature => the more lattice movement => the more scattering => the smaller
t => smaller µ.

At low electric fields, i.e. low velocities, the collision rate is constant.  Thus µ ~ constant.  However, at
higher velocities, the collision rate increases, until increasing the electric field does not significantly
increase the velocity.  A graph of V vs E looks like:

<v> (cm/s)

E (V/cm)

107

106

105

102 103 104 105 106

electrons

holes

At higher electric fields, the collision start to heat the lattice, causing more collisions.  At some point
most of the energy starts to get dissipated as heating of the lattice and not as kinetic energy of the
electrons.

At this point, we have found that an electric field can cause current to flow.  But what does this mean for
the shape of our energy bands?
The answer is relatively straight forward, it bends them.  We can show this very simply.  Our bands are
based on the energy of the electrons.  Namely:
Energy k E P E= +. . . .
How do you show how much is k.E. and how much is P.E.?

Adding Eg energy to an electron at Ev – the edge of the valance band – will put the electron in the
conduction band but with no additional energy, i.e. k.E.  Any additional energy goes to k.E.  It also turns
out that the P.E. must have a reference energy, which will call Eref.  Thus, the potential energy for the
electrons must be
P E E Ec ref. . = −
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and the k.E. must be
k E E Ec. . = −
Likewise holes have a
P E E Eref v. . = −  and k E E Ev. .= −   Note: increasing energy is in the opposite direction for electrons
(up) and holes (down) in our energy diagrams.

Now

E x= −∇ = −∂V Vx √ (in 1- D)
but
E

E

c
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− = −
⇓

= − −( )
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V
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1
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E = −∇

⇓

= −∂

= ∂ −( )
= ∂ ( )

= ∂ ( )

= ∂ ( )
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q E
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q

or

q

x

x ref

x

x

x

E  (in 1- D)

E

E

E

E

x

c

c

v

i
noting that Ev, Ec and Ei are uniquely related.  What does this do to our bands?

Ec

EV

Energy

Position

Ei=>

Ec

EV

Energy

Position

Ei

Eref Eref

At this point let us assume that our system is set up such that the electric field exists across the device
but we have not connected the wires at the ends of the semiconductor.  In essence, we have our
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semiconductor sitting inside a capacitor.  At this point, we can show that under these conditions, the
Fermi energy does not change.  (This assumes that there is no current flow.  If there is a current flow
then EF does change!)
Assuming that there is no current flow, there is still transfer of charge across the ‘device’ – it is just that
the net or total charge transfer has to be zero.  Let us divide our sample into two parts, part A and part B.

Ec

EV

Energy

Position

Ei

E

A B

For an electron (or hole) to move from A to B, an open spot needs to exist in B at the same energy..
Thus the number of electrons jumping from A to B is going to be proportional to the number of
electrons (holes) in A times the number open stops in B.
rate from A to B ∝ ( ) − ( )( )N f E N f EA A B B∑ 1
The rate from B to A has to be similar.
rate from B to A ∝ − ( )( ) ( )N f E N f EA A B B1 ∑
Because we do not have a net current flow, these must be equal and thus

rate from B to A =  rate from A to B

⇓

( ) − ( )( ) = − ( )( ) ( )
⇓

( ) − ( )( ) = − ( )( ) ( )
⇓

( ) − ( ) ( )( ) = ( ) − ( ) ( )( )
⇓

N f E N f E N f E N f E

f E f E f E f E

f E f E f E f E f E f E

f

A A B B A A B B

A B A B

A A B B A B

∑ ∑

∑ ∑

1 1

1 1

AA B

E E kT E E kT

FA FB

E f E

e e

E E

FA FB

( ) = ( )
⇓

+( ) = +( )
⇓
=

−( ) − −( ) −
1 1

1 1/ /

Showing that at equilibrium the Fermi energy is a constant.
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Because of this, we can use EF as the reference energy.  Thus by applying a bias, we can make our
material go from a p-type to an n-type material as we move across the ‘device’ (or vise-a-versa).

Ec

EV

Energy

Position

Ei=>

Ec

EV

Energy

Position

Ei

EF EF

We now have bent bands and thus move electrons/holes but we have no flow!  Does this make any
sense?

To understand why this might be true, we need to look at the world again.  Let us consider a bowl of
water that is standing on a table.  Now let us put a drop of food coloring into the center. (This is a fun
game for small kids and those of us whom would like to be young still!)  What happens to the color?  It
spreads out slowly and somewhat randomly.  In effect we have all of the dye molecules undergoing
Brownian motion – each following a random path away from the initial position.  The average over all
particles is given its own name – ‘Diffusion’.  Like many random processes the ‘average’ is reasonably
well behaved and fairly easy to model mathematically.  [There is a whole science that studies random
processes, known as Chaos Theory.]
In general, we can divide any volume into very thin slices, each of width <L>, where <L> is the average
collision length of our particles.  Let us look at the transfer of particles between two volumes, Vn and
Vn+1.  (This model applies not only to our electrons and holes but also to just about any particle transfer)

Vn Vn+1Vn-1 Vn+2

When a particle undergoes a collision, it will likely be scattered into the next volume.  (This is because
the width of each volume is so small, the particle will not collide again until it has moved <L>, or the
width of the cell – putting it into the next volume.)  A particle in Vn has an equal chance of moving into
Vn-1 as Vn+1. We now need to determine the number of particles per unit area that move from Vn to Vn+1

in a given time.  This is known as the ‘Flux,’ Γ.  Let us fix the position of all of the particles except

those in volume Vn.  On average, all of the particles in Vn will undergo a scattering collision in time τ,

where τ is the average scattering collision time.  The number of particles in Vn is simply the density of

particles times the volume.  From this we get:
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Total flowV V
n n

n n

n A L
→ + =
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1
2

τ
where An is the cross sectional area of volume Vn.  To get the flux, we just need to divide by the area.

ΓV V
n

n n

n L
→ + =

( )
1

1
2

τ

Now let us release the particles in Vn+1.
Γ Γ ΓV V V V V V

n n

n n

n n n n n n

n L n L

n n L

↔ → →

+

+

+ + += −

=
( )

−
( )

=
−( )

1 1 1

1
2

1
2 1

1
2

1

τ τ

τ
Now, we note that <L> is very small.  Thus, in 3-D
∂
∂

≈ −
−( )+n

x

n n

L
n n 1

and thus!

Γ = −
∂
∂

= − ∇

∇

1
2

2

1
2

2

L n
x

L
n

n

τ

τ

    in 1- D or 

    in 3 - D

= -D
where D is the diffusion coefficient.  Note that D is a positive number and thus expect the particles to –
on average – flow from the higher density to the lower density volumes.  (This is true for any diffusion
process.)

We have these net fluxes for both electrons and holes.
Γ
Γ

n

p

n

p

= -D

= -D
n

p

∇
∇

Because of this, we have net currents due to diffusion.
J

J

J J J

n n n

p p p p

diff n p

q n

q p

n p

= − = ∇
= = ∇

⇓
= + = ∇ − ∇

Γ
Γ Γ

q D

= -q D

q D q D

n n

p p

n n p p

Now let us go back to our situation in which we have an electric field dragging the electrons and holes
across our ‘device’.  For that we calculated a current of:
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J v

E

E

E

n p

n

n

p

p

nq

q n p

q n
q

m
p

q

m

=

= µ + µ( )
= +











τ τ
* *

(We got this in our last class period!)
Looking at each species independently we get

J E

J E

J J J

p p p

n n n

total p n

q p p

q n n

= µ − ∇

= µ + ∇
= +

q D

q D

p p

n n

Now in our system that we started out with the total current has to be zero.  (We don’t have connections
to the wires!)  Thus,
J J Jtotal p n= + = 0
In fact, because of particle conservation, this equation must hold for each species independently.

J E

E

E

n n n

n

n

q n n

n n

n
n

= µ + ∇ =
⇓

µ = − ∇
⇓

=
∇

µ

q D

D

-D

n n

n

n

0

and
J E

E

E

p p p

p

p

q p p

p p

p

p

= µ − ∇ =

⇓
µ = ∇

⇓

=
∇

µ

q D

D

D

p p

p

p

0

Now what are ∇n and ∇p?

n n e

n
n
kT

e E

n
kT

E

i
E E kT

i E E kT
i

i

i F

i F

=
⇓

∇ = − ∇

= ∇

− −( )[ ]

−( )[ ]

/

/
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p n e

p
n
kT

e E

p
kT

E

i
E E kT

i E E kT
i

i

i F

i F

=
⇓

∇ = ∇

= ∇

−( )[ ]

−( )[ ]

/

/

So, what is ∇Ei….????  (We have gone a long way to get here!)  Well we already came up with this
during our last class period.

E = −∇
⇓

= −∂

= ∂ −( )
= ∂ ( )

= ∂ ( )

= ∂ ( )

V

V

q E

q

or

q

or

q

x

x ref

x

x

x

E  (in 1- D)

E

E

E

E

x

c

c

v

i
so
E = ∇( )q Ei

SO!

E

E

=
µ

∇

=
µ

−





⇓

= µ

-D

-D

n

n

n
n

n
n

kT
q

D
kT
q

n

n
n

n n
n

and
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E
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=
µ

∇

=
µ







⇓

= µ

D

D

p

p

p
p

p
p

kT
q

D
kT
q

p

p
p

p p
p

These are known as the Einstein relations

At this point we are able to move our charge carriers around by electric fields, giving rise to average
velocities and hence mobilities.  The charge carriers also move around on their own, through the random
scattering based process known as diffusion.  Further, we know that the holes and electrons are the result
of another random process, energy sharing through collisional processes.  This leads us to an interesting
question, can we understand the generation and loss of individual electrons/holes and if so, will that help
our understanding of how electronic devices work?

Homework Set 4
Streetman: Chap 4 # 1,2,3,4,5.6,7. Assigned 9/26/02 Due 10/3/02

Electron-hole loss and gain – Recombination and Generation
Loss of electron and holes is in some ways the simplest of the two processes that we want to look at.
We know that an electron cannot ‘just evaporate’.  Charge and internal spin are conserved quantities.
Electrons have both (q = –1.6E–19 C, s = ±1/2).  Likewise, except under very special circumstances,
mass is also a conserved quantity.  Electrons clearly have that as well (even if it is a very small
9.11E–31 kg).  This means that to get rid of an electron, we must put it someplace else.  Well let us think
for a minute.  Our ‘electrons’ are just those electrons that have made it up into the conduction band and
our ‘holes’ are just places in the valance band that do not have electrons – remember ‘holes’ are an
artificial construct that makes the math a lot easier.  Thus, the only obvious someplace else is for a
electron to ‘recombine’ with a hole, i.e. an electron in the conduction band loses energy and drops into
the valance band, filling a hole.  Hence when we lose an electron, we also lose a hole.

Gain of electrons and holes must also follow the same pattern as lose – if we gain and electron, we have
to gain a hole.  Again, this is due to the fact that electrons have charge, spin and mass.

We find that the creation/destruction of electrons and holes happens at the same time.  Because of this,
we refer to them as an Electron-hole pairs, or EHP.  We can look at this process graphically.
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Generation Recombination

h

e-

e-

h

Side note:  This creation/destruction that we are considering is only for a ‘device’ that has
already been built.  Doping of semiconductor material can and does independently
change the relative concentrations of electrons and holes.  Thus by adding an n-type
dopant, we can add an electron without adding a hole.  Once the ‘device’ is built,
however, gain or loss of holes and electrons is only through the process we are describing
here.

We can now look at how fast we might lose EHPs.  We know that for an electron to move to the valance
band, a hole must exist there.  Likewise, for a hole to move into the conduction band (same process as
above, just looking at it the other way around) an electron must be in the conduction band.  Thus the loss
rate must be proportional to both the number of electrons and the number of holes.  Hence
r n p

n

r

r i

=

=

α

α
0 0
2

where r is the recombination rate and αr  is the proportionality constant.  Under thermal equilibrium
conditions, the lose rate must be equal to the thermal generation rate, gthermal.  Hence
g r n p

n

thermal r

r i

= =

=

α

α
0 0

2

This means that if we raise the temperature and hence raise gthermal, we find that the intrinsic density also
increases.  This is simply what we have found with the Fermi function, so it is not a big surprise.

At this point we need to look for those processes that might give rise to recombination or generation of
EHPs.  Some example include:
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Generation Recombination

h

e-

e-

h

Photon
Photon

Photo
detector

LED

Direct – Band to Band

Generation Recombination

h

e-

e-

h

R-G
center

Indirect – Requires a R-G Center to change momentum. (Si and Ge are like this.)

Generation Recombination

h

e-

e-

h

Energy
transfer

e-Fast
electron

Energy
transfer

Fast
electron

e-
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Auger (This is pronounced O’jhay – a French name – not auger as in corn auger) – or impact ionization

The process that dominates depends on the conditions and the material type.  To determine which is
most important, we need to better understand the second and third of these three processes because they
have the additional requirement that momentum must be transferred for the process to occur.

In chapter 2, Streetman introduced the concept of direct and indirect band structures.

k

E

V(r)

k

E

V(r)

V(r,k1) V(r,k2)

Direct Band Structure Indirect Band Structure
Here the electrons and hole lie right on top of the lines.  (There are no other acceptable (k,E) states.
Remember that the horizontal axis is momentum and not position.)

Why are these important?  Well it turns out that while photons can carry away energy, hν, they cannot

carry momentum, hk/2ππππ.  Thus there are typically very few electrons that can recombine directly with
holes by the simple emission of photons.  (There still might be a few but they are of very limited
number.)

On the other hand, photon absorption can and does continue to occur.  While the photon does not bring
in momentum, it can cause an electron to jump from the valance band to the conduction band provided it
has more energy then is necessary to overcome the direct energy band gap, Ea.  This new electron in the
conduction band then will undergo collisions with the lattice, transferring momentum, to reach the
minimum energy in the conduction band.  (These collisions serve to heat up the lattice.)  Under certain
conditions, the electron can still make the jump, provided the photon energy is greater than Eg.  This
occurs because the photon excited the electron into a very brief temporary virtual state.  (Remember
Heizenberg!) Provided the electron then rapidly (instantaneously!) undergoes a momentum transfer
collision, it can be indirectly transferred to the conduction band.  If there is no collision in the length of
time of the virtual state then the electron decays back to the valance band giving up the adsorbed photon.
Because this is a three-body problem, i.e. the photon, electron and scattering center must all be there at
the same time, it occurs less frequently – but it still can and does occur.  Thus we find:
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h

E

E E

E

g

g a

a

ν
<

≥ <
≥








no transfer

limited transfer

significant transfer

,

So, how much light is absorbed?

Let us set up an experiment that looks like:

Photons

dx dx dx dx dx dx dx dx

A certain fraction of the photons will be absorbed in any given length dx.  We can measure how many
by ‘measuring’ the intensity of the light.  Thus

I of photons

dI I x dx I x

of photons of photons absorbed

fraction of photons absorbed X I per photon X initial of photons

dI Idx

∝
⇓
= +( ) − ( )
∝ = −
= −
⇓
= −

 #   

 #   #    

(    )   (   )   (  #   )

∆

γ
we of course can integrate this equation to arrive at

I I e x= −
0

γ

where I0 is the initial intensity of the light.

This light produces EHPs as it is absorbed, which means that we have now increased the EHP
generation rate.  Thus we should expect n and p to increase.

We can find out how much using a simple ‘conservation law’.
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dn
dt

dp
dt

=

= Gen rate -  loss rate.

We know from above that the thermal generation rate is equal to the recombination rate.
g r npthermal r= = α
although now we are not in thermal equilibrium and thus

n n

p p

pn ni

≠
≠

≠

0

0
2

plugging this into the above equation, we find that
dn
dt

dp
dt

n npr i
thermal
gen rate

r
thermal
loss rate

=

= +α α2

  

{ {light gen rate -  

At this point, let us turn off the light.  The light generation rate goes immediately to zero but the density
of holes and electrons do not immediately go to zero.  Thus we find
dn
dt

dp
dt

n n t p tr i r

=

= ( ) ( )α α2 -  

So what are n t( ) and p t( )?  Obviously we can divide it into a constant part that is due to equilibrium
densities and a part that is due to our extraneous sources – such as the light shining on the ‘device’.
Taking those assumptions, we find
n t n n t

p t p p t

( ) = + ( )
( ) = + ( )

0

0

∆
∆

Further, as we are not adding dopant, so
∆ ∆n t p t( ) = ( ) .
These are known as the excess carrier concentrations (caused by our light).  We can now plug these into
our time-dependent equation.
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dn
dt

d n n t

dt
d n t

dt

dp
dt

d p p t

dt
d p t

dt

n n n t p p t

n n p p n t n p t p t n

r i r

r i r
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+ ( )( ) =

( )
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+ ( )( ) =
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= + ( )( ) + ( )( )
= + ( ) + ( ) + ( )

0

0

2
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∆ ∆

∆ ∆

∆ ∆

∆ ∆ ∆ ∆
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α α
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 -  tt

n n p n t n p t p t n t

p n t n p t p t n t

p n t n n t n t n t

r i r i

r

r

r

( )( )
= + ( ) + ( ) + ( ) ( )( )
= ( ) + ( ) + ( ) ( )( )
= ( ) + ( ) + ( ) ( )( )
=
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α

α

α
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0 0

0 0
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 -  
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∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

pp n n n

d n
dt

p n n n

or

d p
dt

p n p p

r

r

0 0
2

0 0
2

0 0
2

+( ) +( )
⇓

= +( ) +( )

= +( ) +( )

∆ ∆

∆ ∆ ∆

∆ ∆ ∆

- 

- 

α

α

These equations are tough to solve analytically.  However, it is often the case that we have a low level of
injection (creation) of charges.  By this we mean that the increase in charge carriers is small compared
to the total number of charge carriers.

∆ ∆

∆ ∆ ∆ ∆

n p n p

or

n p n n p p n p

,

, ,

<< +

<< +( ) +( )

0 0

2 2
0 0 0 0

Using these, our equations collapse to
d n
dt

p n n

and

d p
dt

p n p

r

r

∆ ∆

∆ ∆

= +( )( )

= +( )( )

- 

- 

α

α

0 0

0 0

These are clearly solvable.

∆ ∆

∆ ∆

n n t e

p n t e

t

t

= =( )
= =( )

−

−

0

0

/

/

τ

τ

where

τ
α

=
+( )

1

0 0r p n
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Now like everything else, we break this down into a result for intrinsic, n-type and p-type materials.  For
intrinsic materials we get the above equations.  For n-type and p-type, we get some simplifications and
hopefully a better understanding of what is doing on.

n-type => n0>>p0.

τ
α α

=
+( ) = ( )

1 1

0 0 0r rp n n
Now
τ τ⇒ p
To understand this label, we need to look at the total density of each type of charge carriers
n t n n t n

p t p p t p t is possible

( ) = + ( ) ≈
( ) = + ( ) ≈ ( )

0 0

0

∆
∆ ∆    

therefore tau has to apply to the p density and not really to the n density.

We can do the same thing for p-type materials to arrive at

τ
α αn

r rp n p
=

+( ) = ( )
1 1

0 0 0
where
n t n n t n t is possible

p t p p t p

( ) = + ( ) ≈ ( )
( ) = + ( ) ≈

0

0 0

∆ ∆
∆

   

We can do the same thing with indirect recombination (or trapping) or other similar processes.
(We may or may not get to it in this class but you should understand that other processes are
possible.)  For trapping we get

τ

τ

n
n t

p
p t

c N

c N

=

=

1

1

where cn and cp are the ‘capture coefficients’ and Nt is the trap density.  Multiple such processes
occurring at the same time will result in a tau that is the sum of all of the taus.

At this point, we want to go back to our system that we had been shining light on.  We will turn on the
light and leave it on.  After a little time, the system will come in to a new steady-state density condition.
(I do not want to call it ‘equilibrium’ as that is used for n0 and p0.  We clearly will not be at those
densities.)  Let us go back to our basic equations.
dn
dt

dp
dt

n npr i
thermal
gen rate

r
thermal
loss rate

=

= +α α2

  

{ {light gen rate -  

When we are in steady state, the time derivatives become zero.  Thus,
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dn
dt

dp
dt

n np

n n n p p

r i r

r i r

= =

=

= +( ) +( )

0

2

2
0 0

α α

α α

 +g -  

 +g -  

opt

opt ∆ ∆
As before, we will assume that
∆ ∆n p=
so that

0 2
0 0

2
0 0 0 0

2 2
0 0

0 0
2

= +( ) +( )
= + + +( )
= + + +( )
= +( ) +(

α α

α α

α α

α

r i r

r i r

r i r i

r

n n n p n

n n p np n n n n

n n np n n n n

n p n n

 +g -  

 +g -  

 +g -  

g -  

opt

opt

opt

opt

∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ))
⇓

= +( ) +( )gopt αr n p n n∆ ∆0 0
2

Again, we assume low-level injection.  (This assumption will hold for all but a very few devices.)  That
is

∆ ∆

∆ ∆ ∆ ∆

n p n p

or

n p n n p p n p

,

, ,

<< +

<< +( ) +( )

0 0

2 2
0 0 0 0

hence

∆ ∆n p
p nr

= =
+( ) =g gopt opt

1

0 0α
τ

So what is gopt?  It is simply the number of photons that are absorbed per volume per time; hence the
number of EHP created per volume per time.  We calculated this earlier.

Well we have now set up a situation in which one of our fundamental equations no longer ‘works’ for
the conditions of our ‘device’.  We had derived:

p n
kT

n n
kT

i
F i

i
F i

0

0

=
− −( )









=
−( )









exp

exp

E E

E E

but we no longer have densities that are at the equilibrium densities!  Now, we have
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p p p n
kT
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F i

i
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 +

=

= + =
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


 +

=

0

0

∆ ∆

∆ ∆

exp

?

exp

?

E E

E E

At this point, we can define new two ‘Fermi’ energies, Fp and Fn, to get the same form of equation as we
had before.  These are known as Quasi-Fermi energies.

p n
F

kT

n n
F

kT

i
p i

i
n i

≡
− −( )











≡
−( )









exp

exp

E

E

Example:

We have a sample of GaAs (which is a direct semiconductor and hence we do need to worry about
traps).  Let us dope the ‘device’ such that:
Na=1014 cm-3, ni ~ 106 cm-3, τn ~ 10-8 sec, gopt = 1020 EHP cm-3 s-1, Egap = 1.43 eV.

1) Find n0, p0

2) Find ∆n, ∆p

3) Find Fp and Fn

4) Minimum light energy (in W/cm3) to do this.

Answer:
1) Na>> ni => p0 = Na = 1014 cm-3.

n0 = ni
2/p0 = 10-2 cm-3.

2) WE know
∆ ∆

∆ ∆

n p

n p n n

p n

r

r

=

= +( ) +( )
=

+( )

gopt α

τ
α

0 0
2

0 0

1

=>

α
τr p n

cm s

=
+( )

=
+( ) ≈− −

−

1

1

10 10 10
10

0 0

8 14 2
6 3 /

We can now plug this into the second equation to get
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gopt = +( ) +( )
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plugging this into the solution to the quadratic equation we get

∆ ∆ ∆n p cm n p n= = ≈ << +( )−1012 3
0 0   g    because optτ

3) Now to get the quasi-Fermi Energies

n n
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∆

4) We can get the minimum energy by assuming that we are only providing sufficient energy for
the electrons to jump across the band gap.  Hence, we need all of the photons to have the band
energy.  This implies

Energy
EHP

cm s

eV
EHP

X
J

eV

Watts

cm

=

=

−10 1 43 1 6 10

23

20
3

19

3

* . * .

To gauge how much light this is, an incandescent light is about 5% efficient.  Thus a 100 W light
bulb puts out about 5 W of light energy.  This would mean that you would have to have
approximately 5 100 W light bulbs of light deposited in each cm3 – a lot of light!

Continuity Equation
Now we need to back to the continuity equation. Remember that it describes conservation of particles.
If particles are not conserved, and here that is possible – we can have electron-hole recombination etc. –
then the right-hand side of the equation is just the production/destruction.
dn
dt

n
t

n f

dp
dt

p
t

p f

production destruction

production destruction

=
∂
∂

+ ∇ =

=
∂
∂

+ ∇ =

v

v

∑

∑

/

/

Let us rearrange the equation
⇓

∂
∂

= − ∇ +

∂
∂
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p
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Noting that the first term on the right-hand side is simply the spatial derivative of the current density, we
get

⇓
∂
∂

= − ∇ +

= ∇ +

∂
∂

= − ∇ +

= − ∇ +

n
t q

q n f

q
f

p
t q

q p f

q
f

production destruction

n
n production destruction
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We can also begin to fill in terms for creation/destruction of our charge carriers.  First, we have optical
excitation – hence creation.  Then we have thermal excitation and recombination.  Thus, we get
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Now, however, we have shown that the last two terms can be combined to leave a simpler single term
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At this point, we can now put in what we have derived for our currents
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Plugging these in gives
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finally, we need to look at the left-hand side of the equation and note that the density is made up of the
equilibrium part and the injected part  and further note that the equilibrium part is a constant; thus
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At this point we can use this rather ugly equation to gain a little more information.  This new
information will come in handy later.  The new information is based on the following thought.  We now
have an equation that links shift in position with lifetimes of our carriers.  Can we determine how far one
of these carriers might travel before they are destroyed through recombination?  Let us look at the
simplest case.  Let us assume that we have a constant source of our carriers at a single point (perhaps
where a wire is attached to the material) and that we are just allowing them to move through the material
on their own.  Hence we are in steady-state and we are not applying any electric field.  Further, we do
not have any source of new carriers in the material, hence gopt = 0.  Thus
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We can solve these equations to get
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where |r| is the distance from the point source to wherever we are looking.  We can determine the
constant by looking at the results at both |r| = 0 and |r| = ∞.
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Thus, we have found that
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This means that our excess concentration of carriers drops off exponentially as we move away from the
source of the carriers.

Now, we can do back and plug this into our equation for the current.  This will let us know how fast the
charge carriers move from one place to the next.
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The final thing that we want to look at before we move on to real devices is what happens to our Quasi-
Fermi levels.  Remember that we have defined them as a convenience in our equations.
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Plugging these into our full equations for the currents,
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