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Last week we looked at emission of light from a plasma. In effect light emission is the simplest
diagnostic tool for plasmas — if there is light being emitted, there is a plasma. If it is brighter
there is more plasma, etc.

Current from a plasma is the second simplest diagnostic tool for examining a plasma. However,
to understand what that current means, we need to learn more about how current is transferred to
and from a plasma. This means that we need to know about sheaths.

Plasma Sheaths and Langmuir probes

The basic theory behind plasma sheaths can be derived directly from the fundamental fluid
theory equations. We know that the electrons and ions must leave a plasma at the same time
averaged and position averaged rate. (This implies that we can have the electrons leaving at one
location and the ions leaving at another location. It also implies that the ions might leave at a
certain time while the electrons leave at a different time — provided the time difference is not
great.) We want to examine plasmas in terms of this requirement of charge neutrality.

Our fundamental fluid equations are as before:

fl=(v. v+ 57

mn( E<)> <v>2Vr(v>)= % - mv)fl, —V,3P+gn(E+(v)AB)

momentum - momentum change
lost via via particle gain/loss
collisions

Let us examine what each of these equations mean.

First integrating over the continuity equation
J{] eld - HJ Shdr=[[]v, Sniv))de
Vol

= ﬁ n{v) >ds

JaVol

=ﬁrzds

aVol
where I is the flux of the particles.

Likewise we can rewrite of energy equation here integrating along the E field to give

f( agh mv ZV)Zdl j( AM|, - — f|)Zdl—J(%VrZP)Zdl+jq(E+<v>AB)Zdl

These are in general very difficult problems to solve. Thus we will make some approximations.
First, we will let the collision terms go to zero. Then we will let the pressure differential go to
zero. Both of these approximations are reasonable for many plasma systems. Typically they
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have very thin sheaths compared to the mean-free path and are in low-pressure systems. Thus
our equations simplify to:

—m—dr— §f T 30s

o(v)
ot

(%

Vol

aVol

+= mV zvv)zdl Ja(E+(v) A B) 3

We can further simplify our model by assuming time independence and no magnetic field. This
eliminates a lot of real sheaths that we might run across but it makes the model understandable.

Thus, we are dealing with the following set of equations

ﬁrzds:o

JaVol

= I =nv=_const

j (% mv, zvv) >dl = qu >di = —f qVe dl

= lmAv2
2

—0A¢

We will use these equations to give us the ion density and velocity at different points in the
sheath. (The above equations are general and we had not applied them to any species.) The only
thing that we need to know is what is the potential as a function of position. Still, we can
determine the velocity and the density as a function of the potential. Thus we have

V.
=£r]is
V.

1 2 _ 1 2
T MVi =7 MV +

n

&9

- 9)

where ‘s’ stands for the value at the sheath edge. Combining the equations gives

—m(%VJ =MV, +e(g.—9)
mnISVIS = n ( Vlzs + 2e(¢s - q)))
r 2e q1/2
nis - rli i mvlzs (¢s - ¢)— or
n=n
i |s_ mv2 (¢s ¢)d

We now have one equation and two unknowns, the potential in the sheath and velocity of the
ions at the sheath edge. We can get one of these unknowns by using Poisson’s equation to get

the potential.
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e

Vip = £ _(ne - ni)
E €&

Again we are missing a piece of the puzzle, but now it is the electron density. There are a couple

of readily useful options. 1) There are no electrons in the sheath. 2) The election density is set
by Boltzmann’s equation. The second option is the one used most commonly, while the first is
appropriate only for very special situations.

Initially, let us assume that the electrons follow Boltzmann’s equation. Thus,

n.=n, eeA(ZJ/kTe
where n, is the electron density at the point at which the potential is zero. Or we can write this

in terms of the potential at the sheath edge and get

n, = n%ee(¢57¢)/kTe

Review:
At this point, we have four fundamental equations which describe what goes on inside the
sheath,

LvZ=1lm.v2 —
Energy conservation: 2Mivi = 2 Mivis +e(¢s ¢)

Vis
o =0
Flux conservation: Vi
. , . e
Poisson’s Equation: V*¢ = P —(ne - ni)
E &

Boltzmann’s Distribution: n, = ne;ee(%w)/we

Note that all values are relative to the values at the sheath edge. We will now use these
equations to determine what exactly is the requirement for a sheath edge!

Taking our equation for the ion density and plugging into Poisson’s equation to give

-1/2
L I A e
Vi = E N.€ JKTe _ nis|:1 + 5 sz (‘Ps - ‘P)]

2 is

€s

-1/2
Vi@ = & n e _ nis[l - Ei(cb)]

IS

where ® =¢—¢, <0 and E,, =1mv..

This equation can be integrated once analytically. This is done in the following way. First
multiply by V®. This gives

-1/2
VO(V’D) = Vo n e nis[l - i((b)}
£ E.

IS

Now integrate over dl
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-1/2
[vo(vie)sd-=| VCIDS[n%ee‘D/"‘e - nis|:1 - ];2} ]Zdl

1/2
J‘I%V(Vq))z Zdl _ J'lgv[n%ﬂeed)/kt + 2ni5&|:1 _ g:| ]Zd]
0 ve e e E,
where 0 is the sheath edge and 1 is a position in the sheath. Now, V = E so that we can use the

first principle of calculus and get

1/2
JILE(VCD)ZZdl: IEE[n%ﬂe’e‘l””e+2nis%(1—£) jZdl

o dl oedl| * e .
2\
vy ( g an, B 1-2) ]
0 gl % e S e .
is -0
2 0 \I/2
I 2 = € KT, | _eoqyr, eqTZ(OT)/kT E; ed(1) " eg(T)
H (Vo) —| VO(0) | |==|n,—=2|¢€ e —g o leon Tsl| -2 | | 1-—H
€ e € Eis Eis
1/2
H(VoW)) = g[%ﬂ[e@am 1]+ 2ni53[(1 ~ —eq)(l)] - 1]]
€ € € Eis
=0 \? KT -0 12 =\
—— —— .
% (V(I)(l))z— VQ)(O) :E N, —2 e PW/KTe _ e ®(1)/KTe +2ni5& 1_@;(1) _ 1_e¢;(l)
€ e e Eis Eis

or

2e[  KTp wn E, ed(l)”
Vo(l)= |=|ng—=2[eXW " —1|+2on | 1-—2| -1
) g[nﬁe[e J+ nse[[ = ) D

is

Bohm Presheath Requirement

There is no known way to further analytically integrate this equation. However we can still tell
that the term inside the square root cannot be negative — or else the potential is imaginary. We
can learn something from this requirement.

1/2
[naﬂ[eeq’(')me _ 1] + 2nis&[(1 — e(};(l)) - 1]] >0
e e E.

IS

For small potentials, we can expand the exponential term to get
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nesﬂ[(l + eq>(l)) - 1] + 2n5&[(1 - e();(l))m - 1D =0
e KT, e E,

nad)(l)+2nis% 1_e¢;(l)] —1”20

Eis

Further we can expand the square root term to get

N P(1) + 2nis% 1- lecp;(l))_ ID >0

B 2 Eis
nes(l)(l)—znisg 1 e2(1) >0
e|2 Eq

(ne@(1) — n®(1)) = 0

N, <n, — remember that ®(1) <!

This means that the electron density must be less than the ion density but not by much. This is
not surprising as we have already said that the sheath occurs because the electrons would
otherwise leave faster than the ions. This makes it such that electron density is slightly smaller
than the ion density. Now, if we assume that the electron and ion densities are approximately the
same, so that ng = N, =N, as we typically assume in the plasma, we can now go back and

examine the right hand side of our inequality again.

1/2
nsﬂ[eewa)/kn _ 1] + ZnSE[(l - e¢;(l)] — 1” >0
e e E,

IS

1/2
ﬂ[e@(l)/m _1]_‘_2& l_e();(l) —1([=0
e e E

is

Now we will expand the equation to the second order so that

22 22
o<|KTe| [, c2) 0’0 | Eil(,_co) o W)
e kT, 2k’T? e 2E;;  8E2

o<(| 0w+ &2(‘)}- {qs(n) ) D

2KT, AE;,

o< —edbz(l)}_{ecbz(l) D
| KT, 4E,

kT, <2E;,

172

Vig 2 Vg = [ Me) = ion acoustic / Bohm velocity
i

This is known as the Bohm Sheath criteria. In effect, it says that the ions have to be traveling at

the ion acoustic velocity before they enter the sheath. This makes sense as the if the velocities

were zero at the edge of the sheath, then the flux of the ions into the sheath would be zero (unless
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the density was infinite!). This means that we have to have a region in which the ions are
accelerated from O to the acoustic velocity. This region is known as the ‘presheath.’

What does this mean? First to accelerate the ions to the Bohm velocity we need to have a
potential drop such that the kinetic energy increases. At first we will assume that energy is
conserved, e.g ignore collisions. Thus, we find that

%msz =—QgA¢

1
q(I)B = —E kTe

Likewise we know that we can determine the electron density at the edge of the sheath from
Boltzmann’s equation.
n — n e_qq’B/ kTe

S

plasma

—1/2

= nplasmae

=0.61n

plasma

The above discussion implies that there has to be some sort of presheath region which
accelerates the ions from zero to the Bohm velocity. We can get some handle on what the
presheath looks like if we assume a few simple things. First, that the ion and electron densities
are equal throughout the presheath. Second, that the electron density follows Boltzmann’s
equation. Third and final, that the ions enter the presheath at zero velocity and leave on the other
side at the Bohm velocity. Thus we have the following picture.
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A

ed/KT,

®.n n=n=ne

yoy = KT

®=O ——.-.........................\ MI

plasma presheath
\
\
\
sheath\
\
>
Xorr

To understand the presheath, we need to look at the ion flux through the presheath. This is
simply
I =nv,.
Taking the derivative of both sides gives
V3T =V Z(nivi )
=nV3v,)+v,2V(n)
now dividing through by the flux, we get

1 1 1

—V3I =—V3yv,)+—V(n).
VT = L)+ V()
Plugging in Boltzmann’s equation gives

1 1 1
FIVEFI —;vai)ﬂ'HV(ni)

1
= V_VZ(V ) ecb/kT V(noeeq)/kTe)
_ly Nv;) + ——5 ne™ " - v
v, eG'CD/kT KT,
1
= VYV )+ — V(D
\7 i)+ KT V( )

e

What does this mean?

We have the ion flux in terms of the ion velocity and the potential. We would like to determine
the flux in terms of only one parameter. If we make the assumption that energy is conserved
then we can replace the velocity with the potential. Obviously there are ways in which energy

can also be added or subtracted! (While other examples are doable, the only simple example is to
assume conservation of energy.)

If the energy is conserved than %mAvZ =—eA¢. This implies for our case that
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lMivzz—etl) or v= —2e0
2 M.

thus

Vv =V ﬁ
M

-2e
_ 22%vie
M

1 [-2e 1

—— == ——Vo
2\ M, Jo

e L
2\ M,

= lvd>’1V<1>
2

U
lei _love
Y/ 2

and at the sheath edge
1 M. KT, — e

27 M,
__LKI,
2 e
Plugging this into our flux equation we find

Fiivzrizviivxvi)+ivq>

KT,
“loverLve
2 KT,
= lEV(I) + iVCI) — at the sheath edge
2 KT, KT,
=0
This implies that

V3T =0
in the presheath if the energy is conserved. Other solutions typically have to be found via
computer simulations.

Classified Sheaths

There are a few important standard sheaths. These are sheaths to a floating wall, sheaths to a
grounded wall and sheaths to a driven wall. We will start with the sheath potential at a floating
wall.
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Floating sheaths

If a wall or other object is inserted into a plasma and there is no way for the charge to drain from
the surface, we have a situation in which the wall is electrically floating. This gives rise to a
‘floating sheath’. In this case, the object will charge up until the flux of electrons and ions
match. Thus to find floating potential of the object we simply need to determine the potential at
which the fluxes match.

The flux of ions to the wall is given by
I} = const

= nsVB

KT,
= nS
M.

This flux is matched by the flux of electrons to the surface. The electron flux is those electron
headed toward the surface which also have enough energy to overcome the potential. Thus,

L=]" v f(vdvdvdy,

where
v = 2ed,,
m,
is set by energy requirements
Thus

m,| vy +V +V,
fe= (2nkT) J_J_J W" eXp[ (2kTe )]dvxdvydvz
M%) |4,

_ m =
_n‘{anTe) J\/T"X“"[TTE *

-

(o) ool S 3

12k, )" -
:nea(ﬁ) j\jﬁexp[—U]d(U)

12 “speed
KT, —ed 1 == —ed
=n| —= exp W =n,— (V) exp v
2mm, KT, 4 KT,

Now the flux of the ions and the electrons must come into balance so that
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kT, ) [-ed, KT,
n, exp =n, [—¢
2nm, KT, M.

KT,
= ne
|\/li
I
@W:_ﬂh{ Zn_me]
e M,

Grounded/driven Sheath

In this case the electrode is electrically connected such that we can add or subtract any necessary
charge to provide balance. As before the flux of ions to the surface is

I = n,(x)v,(X) = const

(Note that while I am doing this for flux, you really want to do this for current. The distinction is
that the ions might be doubly — or greater — charged. Thus the ion flux might not be the same as
the electron current/electron charge. You really need to know how much charge you are carrying
to the surface.)

To keep things as simple as possible, we will assume that the energy is conserved. Thus

% MAV: = —eAd .

If we assume further that the initial kinetic energy and potential is zero — hence ignore the
presheath — we find

1
oM (V' —vg)=—e(®@-dg) or

- fo- 2o

Mi
but
ok,
B Mi
@, = _l KT,
2 e
thus
B A CO A
M, M, M,
_ | 2¢(@)
Ivli
and
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I} =, (x)y,(x) = const

M.
n,(x) =T, 2ed(x)

This means that in the sheath, the ion density can be determined if we know the potential. We
can find the potential from Poisson’s equation

Vng:—B:S(ne—ni)

£
Plugging in our ion density variation electron density from the Boltzmann’s equation
n,=n, /KT
=

we find

V2 __p_¢ e®/KT, _ -M
¢ £ g(noe "\ 2ed(x)

As we did before, we can integrate this by multiplying by V¢ and then integrating. Thus

e M.
VOV®D = =| n e’ Vd + T, N v/
g(no "\ 26(-D) ( )J

U
M,
2¢(-@)

r] 2 _egr KT, e /KT, M; (@)
o5 V(ve) sdr=— [nO?V(e )+ riv(z 2—eDZdr

jOrVZcDWD Sdr = Ejo [noee“’/”chp +T, V(—cp)) Sdr
£

"ol KL e Mo |
=—|n,—e ")+ 2 :
e ( ]]

e[ kT, Mo \|
"l e “e“)”{%?)l

Now assume the following. 1) V@(r=0)=0,2) ®(r=0)=0, AND 3) n,(r)=0. The first two
assumptions are reasonable, while the third assumption is an important approximation that

allows us to obtain an approximate analytic solution known as Child’s Law. With these
assumptions we find
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l(vq;)z =T E(z _Miq))
2 € 2e

U
V= z(e_ﬂ)”z(M)m

£ 2e
U

Integrating again

e ) ()

J3V-0) " (e - z(e?ri)l/z(%)m " dr

2e

tcora-{2] (4"

(_@)3/4 _ 3(2)1/2(%)1/41'
2\ € 2e

3(eMr2)"”
- it r
2( 2¢’ )

This is known as the Child’s Law sheath — in a form this is a bit more general than what is found
in Lieberman. It is the only known analytic description, albeit an approximate solution, to the
sheath equation.

Ion Matrix Sheath

The ion matrix sheath occurs when the potential on an object changes very rapidly. In this case,
the electric field change is such that the electrons leave the immediate region while the ions
remain fixed for a small instance. (The heavy ions cannot respond as fast as the light electrons.)
Then there is an electric field that occurs through a uniform distribution of ions. How thick is
such a sheath and what is the potential structure? From Poisson’s equation we know:
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) p e j& :cor:/s::no
Vid=—=—=—|n—- n

—e
=—n, = const
. Ny
U integrating once gives
Vo="nr (=-E)
£
U integrating again gives

_e 2

U inverting

—8 - Thus at the wall
en,

Sl = A /_ Wall a
20 KT,
= lDebye kT;NaII ’ ﬂ’Debye = eno

Langmuir Probes
At this point, we can begin to look at how we can use this information to examine the plasma.

Langmuir probes were invented, along with much of the basis of plasma science, by Irving
Langmuir is the 1920’s. Langmuir probes are small metal (or otherwise conducting) probes that
are inserted into the plasma and which can be set to a range of biases. For processing and space
plasmas, these probes can generally be positioned any where within the discharge. For thermal
or fusion plasmas, because of the intense heat load, Langmuir probes can only be used at the
edge of the discharge. Fortunately this is OK with us as we are only studying in process and
space plasmas in this class.

At first blush, Langmuir probes are very simple to construct, very simple to use and very simple
to understand. Unfortunately, none of these are entirely true. However, we can learn a
significant amount about Langmuir probes by examining a simple model of the probe. To do
this, we need to first look at how a Langmuir probe might be set up for a simple experiment.
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As can be seen from the picture, the probe tip is positioned in the plasma, through a insulating
cover so that the probe interacts with the plasma in only the location of the tip. (We will see
later that while this is the intension, this is not always reality.) A variable power supply is
connected to the probe such that various biases can be applied to the probe tip. In addition, a
voltmeter and an ammeter are connected to the circuit so that the bias to the tip and the current
through the tip can be measured. (For the very simplest system, dc glow discharge, such an
arrangement for the Langmuir probe is usually sufficient. For more complex discharges, e.g.
pulsed or rf, the probe circuitry can be more complex. Again, we will discuss this below.)

To collect data with a Langmuir probe, one typically sweeps the bias with the power supply and

measures the resultant current-voltage sweep. Typically one will find a trace that looks
something like:
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(Typically one does not get into the dashed areas on the curve.)

At this point we need to develop a model of what is going on. If the probe is biased below the
plasma potential, then we will draw ions to the probe tip. In addition, we will be able to collect
that portion of the electron distribution which has enough kinetic energy to overcome the
potential energy barrier produced by the probe bias. We will first deal with the ions. By the
Bohm Sheath criteria, the ions will enter the sheath at a velocity given by the potential drop

across the presheath region. Namely

1/2
kT
v=|—°
(Mi)

In addition, the ions will be at the same density as the electrons at the sheath boundary, namely:

n; =n, =0.6ng
Assuming that flux is conserved in the sheath, we find that the ion current (q*flux) density is

I =env;

1/2
kT,
= 60.6110( < )
M;
(noting that this assumes that the ions are singularly charged.)

At this point, we need to examine the electron current to the probe tip. Here the current is not so
trivial to calculate — but we have done so in for the current to a floating probe. Carrying out the

same derivation as above — but this time including the charge, we find
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3/2 2 2 2

o m, o oo oo —me(vx+vy+vz)
=—en, 27K, J_oo f_oo j \/E V4 €Xp KT, dedvydv .
me

2
= — \% XP| ————— av
| 2nkT, \/2e<1>p P T, [T
Me
2
1{ 2kT, 12 oo _me(vx) mevi
=—en, - f exp d
2\ mm, \/2e<bp 2kT, 2KT,
Me
1/2
1(2kT, )~ oo
=—en, - exp|-U|d(U
eZ(Rme) J\/ze@P xpl-UJd(U)
Me
average
1/2 speed
kTe —CQDP 1 = —CQDP
=—en, exp =—en,— (v) exp
2mm, KT, 4 KT,

where
Pp = ¢pr0be - ‘Pplasma )

Now the total current to the probe, I, is the sum of the two currents times the collection area, A,
Ip = AP(Je - Ji),

This model gives a curve that looks like
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current ; !
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The first thing to note is that the ion and electron saturation regions have constant currents — in
comparison to our ‘increasing’ currents in our ‘true’ signal. This is because our collection area is
increasing. We had made the assumption that the area was the area of the probe. When the
probe bias is close to the plasma potential, the sheath around the probe is very small. However,
when the relative bias becomes large, the sheath width becomes large, and because of geometric
effects, the collection area grows. We can examine this be looking at Child’s Law.
1/3

= _(ﬂ)m eM, I} 473

16 282

1/3

81)"3( e(0.6)* 2/3 113473
o (I e IO R A

What we see from this is that the sheath width grows approximately linearly with the bias. Often
for 30 V bias, one might have sheath widths of ~ 1 mm. (This of course depends on the electron
temperature and density.) Assuming that the probe is a cylinder with a width of 0.1 mm, we find
that the true collection area of the probe is much larger than the physical area of the probe. This
collection area grows in both the electron and ion saturation regions — thus increasing the probe
current. Understanding this simple phenomenon is the subject of numerous studies including
several Ph.D. Dissertations. (The most famous is by La’Fambious — need correct spelling and
title etc.)
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To analyze Langmuir probe data one must look at the model equations,

1/2
kT,
Ji = eO.6n0 (Ve)

1

1/2
J.=—en KTe ex —Pp
e =" Mel Jrm Pl T
(&} (]

We see that the ion current is set primarily by the plasma density. To get to the correct density,
we need to first determine the collection area. This is done by fitting the ion saturation to curve,
far from the electron current, such as

IiOCCDX x~0.5 to 1

This curve is then used to determine the ion current that would be observed at the plasma
potential. By doing this we have set the collection area to the physical area of the probe. Then
I =J;A

1/2
kT,
= CO.6H0A(V6)
i

Now we need to get the electron temperature to get the plasma density. To get the electron
temperature, we need to look at only the electron part of our measured current. To arrive at this,
we simply remove the part due to the ions.

Te = Iprobe = I;(@)

kT, 12 —e®Pp
—Aen, exp
21m, kT,

We see that we can arrive at the temperature by taking the log of the current and we find that the
slope is proportional to the inverse of the temperature.

1/2
—ed KT,
Ln(-I,)= ETPLn Aene(z : )
nm,

S

ilp=0

Finally, we find the plasma potential from the point at which the curve ‘rolls over’ —e.g. the
slope is not as steep.

Other issues with Langmuir probes.

Probes are subject to error for a large number of reasons. Examples of these reasons include:

1) Dirty probe tips — act like resistors and limit the true current to the probe. This is usually
dealt with by clean the probe through either electron or ion bombardment. For electron
bombardment to work, the probe tip must draw enough current to become red hot (~1200
¢ C), thus burning off the ‘dirt’. For ion bombardment to work, the bias must be several
hundred voltage below the plasma potential, thus allowing sputtering to clean the surface.

2) Time varying plasmas. Many plasmas make use of an rf power source or use a pulse in
the processes. When this occurs, a great deal of care must be taken in the circuitry of the
probe system. For rf discharges, chokes must be added to the circuit to eliminate the rf
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fluctuations. For pulsed systems, RLC time constants must be looked at carefully to
match the probe circuitry to the requirements of the measurement.
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