
Goldman, S. R., Golden, R. M., & Van den Broek, P. (in press). Why are computational 
models of text comprehension useful? In F. Schmalhoefer & C. A. Perfetti (Eds.), 
Higher Level Language Processes in the Brain: Inference and Comprehension Processes. 
Mahwah, NJ: Erlbaum.     

Pg. 1 
 

 

                                                

Why are Computational Models of Text 

Comprehension Useful? 

Susan R. Goldman,1 Richard M. Golden2,  & Paul van den Broek3

 

Text comprehension is a complicated process. Phenomena such as word perception, 

syntactical analysis, semantic analysis, and inference making are essential components of the text 

comprehension process. Not surprisingly, most empirical research and theories encompass only a 

subset of the phenomena and processes that constitute a complete account of text comprehension.  

Indeed, the component phenomena are themselves quite complicated and there are multiple 

competing theoretical accounts of them. Theoretical accounts of text comprehension are further 

complicated by the need to consider production of text. This is so because a large body of 

research assesses text comprehension via text that the comprehender produces, usually from 

memory. In the face of such complexity, many theories of text comprehension focus on a subset 

of the phenomena and attempt to create psychological process models that can account for 

behavioral data.  
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For the purposes of this book chapter, the term model refers specifically to a representation 

of the psychological processes that comprise a component or set of components involved in 

human text comprehension. Computational models refer to representations that are expressed in 

forms that can be run,” providing simulated data that can be compared to data obtained from real 

people. Often computational models contain learning algorithms (e.g., the back propagation rule) 

and mathematical formalisms (e.g., global memory-matching – see Gillund & Shiffrin, 1984). 

that have been found to provide reasonably robust accounts of other learning and memory 

phenomena. Models of text comprehension, more so than models of simpler psychological 

phenomena, have benefited from the use of computers to run simulations because of the sheer 

computational power needed to capture the psychological complexity of text comprehension.  

It is important to emphasize that a model is not equivalent to a theory. A theory is typically 

more comprehensive than any specific model and consists of a set of explicit assumptions about 

mechanisms and parameters, and logical arguments about the relations among them. Theories, 

especially of text comprehension, often permit the derivation of multiple models that differ in 

terms of the specific mechanisms and parameter values that they represent. Thus, multiple 

models might represent acceptable instantiations of the same theory. The process of generating 

multiple models and testing them is critical to the process of advancing theoretical accounts of 

text comprehension.  

In this chapter we argue that computational models in particular have played an important 

role in the process of unraveling and understanding the psychological complexity of text 

comprehension. They have done so for three major reasons. First, the process of transforming 
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verbally described theories of text comprehension (conceptual theories) into computational 

models of text comprehension promotes the development and evolution of the conceptual 

theories by showing where the models accord with behavioral data and where they do not. 

Agreements with behavioral data are evidence supporting the assumptions giving rise to the 

model whereas disagreements point out areas where the computational model, the theory or both 

need further development. Tests of alternative computational models further expand the 

usefulness of the enterprise for theory development.  Second, computational models can be 

applied to behavioral data to better understand and test alternative explanatory constructs, 

especially in cases where patterns of behavioral data are not as expected a priori. In such cases, 

researchers provide post-hoc explanations, many of which are quite reasonable. Computational 

models can provide a way to test or enact such explanations.  Because computational models 

make specific, and sometimes, non-obvious predictions, we can test alternative models against 

one another and the results can help us distinguish among competing conceptual theories. 

Finally, and partly as a result of the first two benefits, computational models promote 

communication among researchers within and across research areas. They promote consolidation 

and integration of theories and empirical findings about text comprehension, highlight areas 

where further theoretical development is needed, and integrate with other areas of research by 

showing where mechanisms important to text comprehension may also be important in 

understanding other phenomena. These claims are further developed and illustrated in the 

remainder of this chapter. 
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Computational Models Stimulate Theory Development 

As discussed earlier, describing the psychological processes involved in text comprehension 

is complicated because a large number of cognitive systems are involved.  Current theories of 

text comprehension acknowledge this complexity in assumptions about complex interactions 

among various levels and systems of language  (e.g., words, sentences; syntax, semantics), 

especially in the face of limited attentional and verbal memory capacity resources (e.g., 

Gernsbacher, 1990; Goldman &Varma, 1995; Graesser, Singer, & Trabasso, 1994; Just & 

Carpenter, 1992; Kintsch, 1998; McKoon & Ratcliff, 1992; Myers & O’Brien, 1998; van Dijk & 

Kintsch, 1983; van den Broek, 1990).  Advances in text comprehension theory have come about 

through efforts to translate theoretical formulations that posited such variables into tractable 

computational models. In showing what could and could not be accounted for, the computational 

efforts have spurred the evolution of text comprehension theories. We develop this position by 

first describing on the work of Walter Kintsch and colleagues because they have developed a 

very influential text comprehension theory in which computational modeling has played a major 

role.  We then outline two other computational approaches that evolved from Kintsch’s work.   

Evolving Theories of Text Comprehension  

The roots of a major class of  current text comprehension theories can be traced to two 

seminal publications by Walter Kintsch, The Representation of Meaning in Memory (Kintsch, 

1974) and a Psychological Review paper published in 1978 (Kintsch & van Dijk, 1978). In the 

former, Kintsch laid the groundwork for psychological theories of text processing and memory 

by documenting the linguistic and empirical research motivating the assumption that the 

 4



Goldman, S. R., Golden, R. M., & Van den Broek, P. (in press). Why are computational 
models of text comprehension useful? In F. Schmalhoefer & C. A. Perfetti (Eds.), 
Higher Level Language Processes in the Brain: Inference and Comprehension Processes. 
Mahwah, NJ: Erlbaum.     

Pg. 5 
 

 

proposition rather than the word or sentence is the appropriate unit for representing meaning. He 

showed systematic relations between propositions, reading time, and memory, using 

mathematical models of memory processes to account for data obtained when people read and 

recalled or recognized information from texts constructed to have specific characteristics. For 

example, three or four sentence paragraphs were written to contain the same number of words 

but different numbers of propositions. Propositional characteristics, such as the number of 

propositions in a sentence, were shown to predict behavioral data to a greater degree than did 

word characteristics, such as the number of words in a sentence (Kintsch, 1974). 

In the 1978 paper, Kintsch and van Dijk (1978) proposed a theory of text processing that 

worked with propositional representations of the input text. In doing so, they consciously put 

aside issues of how people processed sentences to derive propositions. Rather they focused their 

theory on how propositions from successive sentences in a text were processed to produce 

connected and hierarchically organized sets of propositions. The 1978 theory was foundational 

for interactive models of comprehension and learning from text because it laid out a clear 

representational format for the text input; a processing model; and mechanisms for incorporating 

prior knowledge, comprehension goals, and strategies. It “located” comprehension in the 

interaction of the text, the reader, and the task, although at that time attention was primarily 

focused on the text.  

Interactive theories of text comprehension (e.g., Gernsbacher, 1990; Goldman & Varma, 

1995; Just & Carpenter, 1992; Kintsch, 1998; Myers & O’Brien, 1998; van Dijk & Kintsch, 

1983; van den Broek, 1990) continue to dominate other classes of text comprehension models 
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(e.g., letter by letter or word by word models such as that proposed by Gough (1972)). An 

important commonality among interactive models is that the on-line text comprehension process 

is assumed to proceed in a series of sequential cycles in which the reader processes a small group 

of propositions in each cycle, making connections among the new input and propositions from 

previous cycles. Details of the operation of cyclical processing differ somewhat among models. 

We use Kintsch and van Dijk’s work  (Kintsch & van Dijk, 1978) to illustrate the prototype and 

discuss how it evolved in response to results from both behavioral and computational modeling 

studies. 

In the 1978 Kintsch and van Dijk model, the number of propositions processed on each 

cycle is a parameter, assumed to be equivalent to the number of chunks that can be held in 

working memory, typically 7 plus or minus 2. Note that the contents of a chunk are flexible and 

often vary across researchers and content domains. Connection making is subject to constraints 

imposed by a limited capacity verbal working memory so that not all previously processed 

propositions are typically  available to connect with the new input. The number of propositions 

that is available from prior processing cycles when the next input is processed is termed the 

buffer size, represented as a parameter s. When new input fails to connect to available prior 

input, the reader reactivates previously processed propositions and/or makes connecting 

inferences based on prior knowledge. The results of the processing create an explicit text base 

representation (the set of propositions that were in the input) and an implicit textbase 

representation (the explicit textbase plus the propositions added through inference making during 

processing). The Kintsch and van Dijk (1978) theory posited that people often substitute a single 
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proposition for several propositions, called a macroproprosition, but it was not until 1983 that the 

assumptions about the rules for generating  macropropositions were laid out (van Dijk & 

Kintsch, 1983). 

In the 1978 and 1983 versions of the theory, connection making is a critical process in 

achieving comprehension because it allows the propositional representation to reflect the 

semantic coherence across the sentences in the text. Coherence across sequential sentences is 

precisely what differentiates the processing of text as connected discourse from processing of 

lists of sentences. Although the 1978 theory discussed the importance of readers’ goals and the 

task in relation to efforts to create coherence,  little attention was given to how they might 

influence cyclical processing and connection making.   

The Kintsch and van Dijk (1978) model was the basis for a computational model developed 

by Miller and Kintsch (1980). The Miller and Kintsch (1980) model consisted of two 

components: a chunking program and a microstructure coherence program. In limiting their 

model to these two components, the Miller and Kintsch model focused on the subset of the 

Kintsch and van Dijk processing theory that was concerned with local (cycle to cycle, 

proposition to proposition) coherence and strategies for resolving breaks in local coherence. 

The chunking program operated by reading one word at a time from the text, identifying the 

proposition or propositions associated with the word, and then deciding whether or not the 

current proposition under consideration should be added to the current “chunk of propositions.” 

The minimum number of words per chunk was specified by the input size parameter I.  
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The microstructure coherence program operated by processing a chunk of propositions on 

each processing cycle. One proposition was designated to be the superordinate proposition and 

placed at the top of a hierarchical working memory coherence graph. The designation of the 

superordinate proposition had to be done “outside” the computational model by a human 

modeler and relied on often sophisticated use of that individual’s prior knowledge. In the 

working-memory coherence graph, propositions that were semantically similar to the 

superordinate proposition were located at levels “higher” in the hierarchy. Semantic similarity 

was determined by the presence of overlap in the arguments (nouns) in the propositions.  The 

buffer-size parameter s determined the number of propositions that were kept active during 

processing of the next cycle of propositions. When the number of propositions in working 

memory at the end of a cycle was greater than s, priority for being held over was based on level 

in the coherence graph hierarchy and recency of processing, a form of the Kintsch and van Dijk 

(1978) “leading edge” strategy.   

In addition to the working-memory coherence graph, a long-term memory coherence graph 

was constructed. It differed from the working memory graph in that all propositions that were 

processed on any cycle were represented. When a new input could not be connected to a 

proposition in the working memory graph, a reinstatement search of the long-term memory graph 

ensued. Propositions that provided links to “dangling” new propositions were incorporated back 

into the current working-memory coherence graph. Failure of the reinstatement search to provide 

a linking proposition resulted in a coherence break. Coherence breaks were remedied by making 

inferences that brought in information from prior knowledge but this process was not part of the 
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computational model developed by Miller and Kintsch (1980).  What was computationally 

modeled was that when a coherence break occurred, a new working-memory coherence graph 

was created, with a new superordinate node (determined outside of the computational model).   

The probability that a proposition would be recalled was computed by the formula 1-(1-p)n  

where n is the number of processing cycles a proposition was maintained in the working memory 

buffer and p is a free parameter that corresponds to the probability that a proposition will be 

recalled if  it was entered in only one (n=1) processing cycle in working memory. Thus, p is a 

“base” recall probability and all propositions start out at that level once they are processed in a 

cycle. With each additional working memory cycle in which a proposition is processed, the 

likelihood of recall increased.       

 Miller and Kintsch (1980) evaluated the computational model against data from 120 

participants who had each read and recalled 20 paragraph-length texts of varying complexity. 

They used the computational model to predict the expected recall frequency of particular 

propositions in each of the 20 texts. They found a positive correlation of .6 between observed 

and predicted recall frequencies. This correlation was considerably less than Kintsch and van 

Dijk (1978) and other researchers (e.g., Spilich, et al. 1979) had obtained when they had 

constructed working- and long-term memory coherence graphs by hand and had tested 

alternative values of the parameter s. Miller and Kintsch (1980) attributed the lower performance 

of their model to the lack of a component that generated macropropositions and the 

macrostructure of the text that resulted from applying the hierarchical organization rules that 

applied to micropropositions. Thus, the apparent limitations of a computational model that did 
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not exploit macropropositions led to further development of this aspect of the text 

comprehension theory, treated at length in the 1983 book Strategies of Discourse 

Comprehension (van Dijk & Kintsch, 1983).  

The text comprehension theory detailed in van Dijk & Kintsch (1983) devoted a large 

amount of attention to how comprehenders translate lengthy, detailed texts into more summary-

like representations that rely on frequent and judicious application of rules for substituting a 

single macroproposition for groups of micropropositions. It also developed the theory of 

representations and moved from explicit and implicit textbase to a three-level theory of 

representation. Specifically, van Dijk and Kintsch (1983) postulated that mental representations 

of text had multiple layers that captured different aspects of text, including the surface form (the 

specific words, sentences, layout of the text), the meaning of the text itself (textbase), and the 

interpretation or model of the world referred to by the text (mental or situation model) (van Dijk 

& Kintsch, 1983). The textbase captures the referential and intra- and inter-sentential relations 

among the words in the text. The textbase representation maps most clearly onto the earlier local 

coherence graph. The situation model reflects the integration of prior knowledge with the 

information explicitly “in” the text. The claim was that situation model construction increased 

the likelihood that the information could be used in new situations. There were a number of 

behavioral demonstrations of the validity of both the layers of representations and the importance 

of macroproposition and macrostructure creation (e.g., Fletcher, 1994; E. Kintsch, 1990; Kintsch 

et al., 1993; McNamara, Kintsch, E., Songer, & Kintsch, W. 1996; Perrig & Kintsch, 1985; 

Schmalhofer & Glavanov, 1986).  However, efforts to formalize the 1983 version of the theory 
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and develop computational models of it proved elusive, due in large measure to the importance 

of strategic and prior knowledge in generating macropropositions and situation models. There 

seemed no a priori computational techniques suitable for modeling the strategic management of 

prior knowledge.   

In the face of the computational intractability of the 1983 text comprehension theory, 

Kintsch proposed a radically different form of text comprehension theory (Kintsch, 1988) that 

“managed” prior knowledge through non-strategic, associative processes. The model, called the 

Construction-Integration  (CI) model (Kintsch, 1988), is another interesting example of how the 

failure  to formulate a computational model of the theory provided impetus for the formulation 

of a radically different theoretical proposal.  

 Conceptually, CI is a two-phase, constraint-satisfaction process model (Kintsch, 1988; 

1998) in which there is no reliance on strategic processing mechanisms and macrostructure 

construction. Kintsch (1988) described it as a “dumb” model.  The construction phase is a text-

based, bottom-up process that results in an initial and frequently incoherent representation of the 

concepts and ideas in the text plus those elements of prior knowledge that are activated by the 

concepts and ideas/propositions from the text. Concepts and propositions are represented by 

nodes in a semantic-network like representation. Links among nodes reflect sentence and text-

level semantic and logical connections among the nodes. During the integration phase, activation 

is distributed among the nodes and links according to a connectionist algorithm that has the 

effect of strengthening the nodes that have a lot of connections and are therefore central to the 

meaning and situation and neglecting those with few connections. Nodes with few connections 
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are often associates to an individual concept but irrelevant to the meaning in the context of the 

developing network, or are inconsistent with the core meaning. In effect, concepts and ideas that 

are compatible mutually enhance one another and ones that are incompatible or irrelevant are 

“ignored.”  Thus, during integration relevant knowledge becomes more strongly connected to 

ideas from the text and gaps among ideas are filled in with prior knowledge that is activated 

through associative memory processes that are consistent with contemporary theories of memory 

storage and retrieval (e.g., Diller, Noble, & Shiffrin, 2001; Gillund & Shiffrin, 1984; Hintzman, 

1988; McClelland & Rumelhart, 1985; Murdock, 1982; Raajmakers & Shiffrin, 1981; Shiffrin & 

Steyvers, 1997).   

Computationally, Kintsch (1988; 1998) modeled CI as a connectionist network (e.g., 

Rumelhart, Hinton, & McClelland, 1986) of nodes and links among them, arrayed as a matrix  in 

which nodes are the row and column headers and non-zero entries in the cells of the matrix 

indicate a relation or link between the header nodes for that cell. Each node and link has 

associated with it an initial, numerical activation value. The construction phase builds the matrix 

and fills in the non-zero cell values, resulting in the coherence matrix (Kintsch, 1988). The 

integration phase then takes over and iteratively applies an activation updating rule. Specifically, 

all nodes are typically initially activated and then each node updates its activation by computing 

a weighted sum of the links entering the node and the activation levels of the other nodes in the 

network attached to the node via those links. All nodes in the network simultaneously update 

their activation levels and then the activation levels of all nodes is reduced by a fixed amount to 
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prevent activation levels from growing without bounds. Under general conditions, the activations 

when updated in this manner will eventually tend to stop changing (Guha & Rossi, 2001).  

When the change in activation levels across the nodes becomes minimal across iterations, 

the integration phase ends and the resulting activation values of the nodes and links are “saved” 

in a long term memory matrix of connection strengths using a version of the Hebbian learning 

rule as described in Kintsch (1988). These connection strengths (or equivalently “links”) among 

nodes are additively updated if the link participates in additional processing cycles. Typically, 

when a sentence is processed, it produces a matrix in which each noun is a concept node and the 

verb generates a predicate proposition node that references the concept nodes. Thus the cells in 

the matrix capture the intersection of the concept nodes with themselves and the intersection of 

the concept nodes with the predicate proposition (when drawing a network representation, 

nonzero entries in the cells correspond to links between nodes). Assuming a constant activation 

parameter, the predicate proposition receives greater initial activation than the concept nodes it 

relates.  When successive sentences in a text are processed, the CI model adopts the assumption 

of cycles of input in a limited working memory environment that was part of the 1978 and 1983 

versions of Kintsch and van Dijk’s theory. Across cycles of the construction process, links 

between predicate propositions are formed if they are present during the same construction cycle 

and if there is overlap between them. A frequently made assumption is that the nodes most active 

at the end of a cycle are carried into the next input cycle (Kintsch, 1988; 1998). Although 2 is the 

number frequently used for this “carry over” parameter, modelers have manipulated this value, 
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sometimes finding better fits of the model for larger values and sometimes not (e.g., Tapiero & 

Denhière, 1995).   

Simulations of behavioral data based on the CI model (Kintsch, 1988, 1998) have resulted in 

moderate to good correlations between the model’s performance and human performance across 

a range  of comprehension and learning tasks (Kintsch, 1998; Kintsch & Greeno, 1985; Singer & 

Kintsch, 2001; Wolfe & Goldman, 2003), although  the predictions have typically been better for 

memory tasks than for on-line processing tasks. Furthermore, in implementing the CI model, 

there are - quite understandably - many places where modelers must make decisions about 

various parameters (e.g., the number of propositions to bring in on a cycle; the number and 

which propositions to carry over to the next cycle; initial activation values, weighting of different 

kinds of relationships among nodes; how much and what prior knowledge to include in the 

construction phase; what the relations are among nodes across textbase and situation model 

levels of the representation, and so on). As a result, the CI model has prompted the development 

of a number of additional computational models that bear a family resemblance to CI but that 

make different assumptions about one or more of the components or parameters of the 

computational processing model, including the operation of working memory and the carry-over 

parameter (Goldman & Varma, 1995; Goldman, Varma, & Coté, 1996; Langston & Trabasso, 

1999; Tapiero & Denhière,1995), the learning algorithm (Goldman, et al., 1996; van den Broek, 

Risden, Fletcher, & Thurlow, 1996; van den Broek, Young, Tzeng, & Linderholm, 1998), and 

the basis of establishing connections among nodes in the coherence matrix (Langston & 

Trabasso, 1999; van den Broek et al., 1998).  
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All of these computational modeling efforts have helped define important yet unresolved 

issues in text comprehension or have presented convincing evidence for the utility of the 

particular computational model that was tested. In so doing these computational modeling efforts 

have spurred the development of text comprehension theory. In the present context we highlight 

two modeling efforts in the CI family. The first, a relatively close relative to CI, is the Capacity-

Constrained Construction Integration (3CI) model (Goldman & Varma, 1995; Goldman et al., 

1996). It examined an alternative conception of working memory processes but otherwise 

remained faithful to the assumptions of the CI model. The second case, Landscape theory,  (van 

den Broek et al, 1998; van den Broek et al., 1996) is a more distant cousin to CI and makes 

different assumptions about a number of process mechanisms. 

The Capacity-Constrained Construction – Integration (3CI) Model  

The 3CI model altered the working memory mechanism of the CI model. Goldman and 

Varma (1995; Goldman et al., 1996) used the computational architecture of the Just and 

Carpenter Collaborative Activation-base Production system model (3CAPS) so they could 

substitute a dynamic working memory process for the fixed working memory parameter s  in the 

CI model.  The critical feature of 3CAPS for the Goldman and Varma (1995) 3CI model is the 

assumption that elements active in working memory compete with one another for activation in a 

limited or capacity-constrained working memory. Elements gain and lose activation dynamically. 

Processing in the 3CI model operates on a cycle to cycle basis. The more activation an element 

starts a processing cycle with, the more likely it is to accrue activation on that cycle, as is true in 

the CI model.  Different from the CI model is that there is no forced removal (or decision to 
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“hold over” some propositions and delete others) of specific propositions for processing with the 

next cycle of input. Rather, as elements decrease in activation, they become less available for 

connection with other elements, eventually falling to such low levels that they are effectively no 

longer “present” in working memory. As in the CI model, at the conclusion of each processing 

cycle activation levels of elements and links among them are updated in a long term memory 

matrix. Strengths in this matrix are the basis for predicting the likelihood of inclusion in recall.   

Goldman and Varma (1995) applied the 3CI and the CI model to the same sets of recall data 

to examine the differences in the predictions made by the alternative models. The behavioral data 

had been obtained from adults and from children who had read short, informational passages 

(250-300 word) that had a hierarchical global structure. The 3CI model produced a pattern of 

activation levels across the passage sentences that mimicked the global structure of the passage 

whereas the CI model produced activation patterns that were sensitive only to the local, 

sentence-to-sentence structure. That is, the 3CI model produced higher activations for topic 

sentences relative to the detail sentences of each paragraph in the passage, corresponding to the 

hierarchical content structure of the passage. Recall predictions that were derived from the 3CI 

model significantly correlated with behavioral recall data from adults. As a group, the adults 

recall patterns showed sensitivity to the global structure of the passage in that they recalled main 

ideas more frequently than the details that elaborated them. However, among the children the 

distinction between main ideas and details was far less obvious. The two models were equally 

good at predicting the children’s data when the students did written recall. When children orally 

recalled what they had read, CI correlated with recall performance better than 3CI did. 
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The comparative predictive ability of 3CI versus CI was tested further by examining the 

ability of each model to predict recall for informational passages that had different content 

structures from the passages examined in the initial comparison (Goldman, et al., 1996). Two 

findings are particularly relevant to the current point. A detailed analysis of the sentences for 

which the computational models underpredicted (i.e., the sentence was recalled more frequently 

than predicted by the computational models) behavioral recall data indicated that these tended to 

be of two types. First, sentences in which the information was highly familiar to readers, e.g., 

Dentists have to fix cavities, were underpredicted by both 3CI and CI. This is understandable 

because neither model had been implemented with a mechanism for incorporating prior 

knowledge into the construction process. This underprediction led Goldman and colleagues to 

argue for the need to include situation-model nodes as well as a principled means of introducing 

prior knowledge into the construction and integration phases of text processing.  

The other kind of sentence that was underpredicted were those that had high overlap with 

prior sentences and were important to the content structure but that came late in the passage. The 

underprediction of these turns out to be the result of a property of an evolving network of 

propositions in which new and old propositions compete for available activation. As the network 

gets larger and more stable, it essentially feeds itself and it is more difficult for a new proposition 

to accrue sufficient activation to “break into” the network. To deal with this problem Goldman 

and colleagues modified the way the integration process operated in the 3CI model. They 

incorporated a “top end” activation threshold: Once a proposition exceeded this threshold, it no 

longer competed with other propositions for activation, allowing new input to have a greater 
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chance of accruing activation. This threshold cap embodied the notion that some ideas are so 

prevalent in a passage that once they reach a certain strength (the threshold) they will be 

remembered regardless of what else comes in. The top end threshold essentially substituted a 

sigmoidal for a linear activation function. 

Interestingly, neither CI nor 3CI were able to account for the online processing of the 

passages. Reading time data were not predicted by the number of cycles needed for the network 

to settle, a measure derived from the integration phase of the modeling. Thus, the 3CI effort 

advanced the theory in the area of working memory processes but did not shed light on the 

predictions of reading time. This should not be surprising because a large amount of the variance 

in reading time is predicted by many characteristics of the surface, input text (Haberlandt & 

Graesser, 1985). Both CI and 3CI operate on propositional input rather than surface text 

sentences. The lack of prediction of processing time and its relation to characteristics of the 

surface text of passages underlines the importance of developing ways to parse the input 

language of the text, a significant computational challenge.  New theories of parsing and 

syntactic analysis are emerging, however.  Some of these appear promising for use in 

computational models of text comprehension (e.g.,  Dennis, 2004; Durbin et al., 2000).  For 

example, Golden and his colleagues (Durbin et al., 2000; Ghiasinejad & Golden, submitted) are 

developing a computational model for automatically identifying the presence of propositions in 

free response data. The essential idea of the computational model is that representative free 

response data are first semantically annotated using a semantic annotation system embodied 

within a user-friendly software interface. The computational model then learns statistical 
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regularities between subsequences of words in the free response data and the semantic 

annotations by interacting with an experienced human coder. Specifically, the percentage of 

times that a word is used to express a particular word-concept and the percentage of times that 

one word-concept follows another when expressing a particular proposition is recorded during 

the learning process. Eventually the system (in relatively constrained task domains) is capable of 

automatic identification of propositions in free response data.  

The Landscape Theory and Computational Model 

The second example we elaborate is the Landscape theory, developed by van den Broek and 

colleagues (van den Broek et al., 1998; van den Broek et al. 1996). As indicated in a prior section 

of the chapter, Landscape theory shares features with CI theory but differs in several important 

ways. First, Landscape theory posits a dynamic and reciprocal interaction between online 

processes and the gradually emerging offline product of reading.  Second, readers’ goals and 

judgments of coherence are integral to the architecture of the Landscape model and their relation 

to reading processes is explicit. Third, Landscape theory treats coherence as arising from 

multiple representational dimensions and their interactions (see also Zwaan, Magliano, & 

Graesser, 1995) and connects these dimensions to the readers’ standards of coherence in that 

situation.  This contrasts with other theories that typically focus on a single dimension of 

coherence.   

The Landscape theory captures both on-line comprehension processes and memory 

performance after reading is completed.  In this theory reading is conceived as a cyclical process, 

in which propositions (or other units of text) fluctuate in their activation from one cycle to the 
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next. There are several major sources of activation at each cycle: the current input cycle, the 

preceding cycle (through carry over), the memory representation of the text as constructed in the 

preceding processing cycles, and background knowledge. The last two –memory for the text read 

so far and background knowledge- can be accessed through a spread of activation process (called 

cohort activation) or through strategic (re)instatement. Together with working memory or 

attentional limitations, these sources result in an activation vector that forms the basis for 

updating the episodic memory representation for the text. In the computational implementation 

of the Landscape model, at each cycle the representational node strength of a proposition 

increases as a function of the amount of activation it receives. In addition, a connection is 

established (or, in the case of an existing connection, strengthened) between co-activated 

propositions, as a function of the amount of activation each receives. A central component of the 

computational model is that the activations vectors and the developing memory representation 

interact dynamically: with each reading cycle the memory representation is updated and, in turn, 

the updated memory representation strongly influences subsequent activation vectors. Another 

central component of Landscape theory is that in each reading situation a reader applies a 

particular set of standards of coherence (van den Broek, Risden & Husebye-Hartman, 1995; see 

also Goldman, et al., 1996). At each individual reading cycle, these standards determine whether 

the information activated through cohort activation is adequate to satisfy the reader or whether 

strategic processes are required. Standards of coherence differ across readers and across reading 

situations, depending on reading goal, task demands, textual properties, and so on, but in most 

cases they include at least standards of referential and causal coherence. From a computational 

 20



Goldman, S. R., Golden, R. M., & Van den Broek, P. (in press). Why are computational 
models of text comprehension useful? In F. Schmalhoefer & C. A. Perfetti (Eds.), 
Higher Level Language Processes in the Brain: Inference and Comprehension Processes. 
Mahwah, NJ: Erlbaum.     

Pg. 21 
 

 

standpoint, standards of coherence set a threshold value. If threshold is met or exceeded, the 

reader proceeds to the next input cycle; otherwise, processing of the current cycle continues.  

To keep track of the many components and their interactions, van den Broek and colleagues 

implemented the theory in a computational model (van den Broek et al., 1998; van den Broek et 

al., 1996; Linderholm,Virtue, van den Broek, & Tzeng, 2004).  Tests of the computational model 

showed that it did a good job predicting behavioral data. The model’s predictions for on-line 

activations and frequency of off line recall correlated between .55 and .65 with readers’ data.  

Furthermore the change in activation vector from one cycle to the next (called the activation 

gradient) predicted reading times for the second cycle. As a final example, the model does a 

good job postdicting the inconsistency detection data reported by O’Brien and Albrecht (1992) 

and the effects of reading goal on inference generation reported by van den Broek, Lorch, 

Linderholm, and Gustafson (2001).   

Development of the computational model allowed initial testing of Landscape theory and 

showed that it captures a wide array of phenomena observed in the reading process and 

representation construction. Equally important for our current purpose however is that the 

process of creating the computational model led to considerable development of Landscape 

theory. For example, to implement computationally the notion that the activation vectors result in 

(or update an existing) memory representation it was necessary to provide an explicit ‘mini’ 

theory of exactly how such construction/updating occurs. Such a ‘mini’ theory had to specify the 

precise manner in which co-activation leads to connection construction:  
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• Is the connection strength that results from an activation vector all-or-none (i.e., if two 

propositions are co-activated a connection is forged regardless of their actual activation 

values), additive (i.e., the connection strength is the sum or each of their activations or 

if one allows negative activations, the sum of the absolute values of their activations ), 

or multiplicative (i.e., the connections strength is a function of the product of the two 

activations)?  

• Do subsequent co-activations change the strength of an existing connection in a linear 

fashion or in a non-linear (e.g., asymptotic) fashion?    

Findings in prior research in memory and in connectionist models formed the basis for a 

theoretical component that made the translation from activation vector to memory representation 

explicit. With regard to the examples above, the mini-theory assumes that the change in 

connection strength is a multiplicative function and that updating follows an asymptotic curve.  

A second contribution to the development of theory concerns the fact that both the 

episodic memory representation and semantic background knowledge are presumed to be 

accessed via cohort activation.  When it came to deciding on parameters to describe such spread 

of activation, a choice had to be made whether the parameter settings would be identical for the 

sources of activation.  By allowing the parameters to differ, it is possible to consider differential 

‘weights’ for the two sources. Thus, the translation of the Landscape theory into a computational 

model stimulated the development of further theoretical notions as well as the precise 

specification of the existing theory. 
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Summary 

The evolution of Kintsch’s comprehension theory along with examples of additional 

computational models of text comprehension have been used to illustrate ways in which building 

computational models from theoretical formulations of text comprehension has resulted in 

advances in text comprehension theory.  In the process we have reported some of the behavioral 

data that modelers have attempted to explain. Computational models are often used to help 

formalize relationships in behavior data. In the process they are sometimes able to help make 

sense of both expected and unexpected patterns in behavioral data.   

Computational Models Assist in Making Sense of Surprising Behavioral Data 

In addition to providing impetus for the development of theory, computational modeling can 

help provide and/or test post hoc explanations of behavioral data whose patterns differ from a 

priori predictions, are surprising, or seem contradictory.  For example, the features of the 

computational Landscape model led to unexpected –and theoretically important- predictions. For 

example, by adding input cycles that were ‘empty’ (i.e., zero-vector that did not contain 

activation for any propositions) the patterns of activation in the final activation vector and the 

connection matrix that constitutes the final memory representation were altered in structural 

ways. By comparing the two sets of predictions (before and after the empty cycles) to human 

data, van den Broek and colleagues noticed that the first set (before empty cycles) predicted 

immediate recall well but was much poorer predicting delayed recall; the pattern for the second 

set (after empty cycles were added) was the reverse: much better predictions for delayed than for 

immediate recall. These observations suggested that a major difference between immediate and 

 23



Goldman, S. R., Golden, R. M., & Van den Broek, P. (in press). Why are computational 
models of text comprehension useful? In F. Schmalhoefer & C. A. Perfetti (Eds.), 
Higher Level Language Processes in the Brain: Inference and Comprehension Processes. 
Mahwah, NJ: Erlbaum.     

Pg. 24 
 

 

delayed recall consists of a period of no new activation and thereby of additional weeding out of 

transient activations from the activation vectors as well as memory representation. In addition, 

they suggested that immediate recall is a function of both the memory representation and the 

activation vector for the final reading cycle, whereas delayed recall is determined just by the 

(now further updated) memory representation. These findings and speculations allowed the two 

types of memory to be included in a single architecture.  

A second example involving the Landscape model pertains to the adoption, described above, 

of an asymptotic learning curve. In the architecture of the Landscape model the asymptotic 

learning curve resulted in the prediction that the memory representation connection from 

proposition A to proposition B might differ in strength from proposition B to proposition A. In 

other words, the connections between propositions were predicted to be asymmetric. Although 

this predictive effect was unintended, similar effects have been extensively documented in the 

research literature on semantic memory and, on occasion, in the literature on discourse 

processing (Lutz & Radvansky, 1997; Trabasso, Secco & van den Broek, 1984)

Applications of computational modeling to inferences 

Inference making is one area of text processing research that has generated conflicting 

theories, models, behavioral data, and attendant controversy (c.f., Graesser et al., 1994; McKoon 

& Ratcliff, 1992; 1995). Computational modeling of various inference tasks and behavioral data 

is leading to better understanding of some of the issues. In this section we discuss two of these 

applications, one dealing with the time course of recognition and retrieval memory for inferences 
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as compared to explicitly presented text (Singer & Kintsch, 2001) and the second dealing with 

different types of inferences (Schmalhofer, McDaniel, & Keefe, 2002).  

Recognition and retrieval of inferences 

Singer and Kintsch (2001) combined the C-I framework with the Gillund and Shiffrin global 

memory-matching model (Gillund & Shiffrin, 1984) in an effort to account for a complex pattern 

in inference memory data collected by Zimny (1987; also reported in Kintsch, Welsch, 

Schmalhofer, & Zimny, 1990). Zimny tested memory for probe words at three delays using a 

recognition memory task and a sentence verification task. Probe words were related either to 

explicit, paraphrased, or inferred text information or were related to distractors. Of particular 

interest here are the different patterns that Zimny (1987) reported in the two tasks. In both tasks 

and across the three delay conditions, probes related to explicit information were always 

recognized the best and at high levels (70 to 80% in recognition; 85 – 95% in verification). 

However, the pattern for inferences was different depending on the task. In the recognition task, 

memory for probe words related to inferences grew stronger over time: At immediate test, only 

20% of the participants said the probe word had been presented (a false recognition) whereas at 

the long delay almost 60% said it had been presented.  In contrast, in the sentence verification 

task, participants verified that probe words related to inferences had occurred in the text as often 

as they said that probes related to explicit information had been presented in the text. In other 

words, in the sentence verification task, memory for inference-related words was as strong as 

memory for explicit information at each delay, whereas on the recognition task, memory for 

inference-related words became stronger over time.    
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Singer and Kintsch (2001; also see Kintsch et al., 1990) found that they could account for 

this complex pattern of results by using a version of the CI model to characterize the dynamical 

changes to the reader’s working memory connection matrix  by specifying how sentence nodes, 

proposition nodes, and macrostructure proposition nodes are interconnected. Singer and Kintsch 

(2001) then used a modified version of the Gillund and Shiffrin (1984) theory of recognition 

memory to make predictions regarding performance on sentence recognition memory and 

sentence verification tasks. Specifically, they calculated familiarity of a probe based on its 

connection strength over the whole coherence matrix, consistent with the global memory-match 

retrieval mechanism of Gillund and Shiffrin (1984). Furthermore, familiarity calculations were 

done using the Gillund and Shiffrin (1984) multiplicative combining rule rather than a linear one. 

Finally, they used response decision rules from signal detection theory and determined different 

response thresholds for recognition memory and sentence verification tasks. This three-part 

process produced simulation data that was consistent with the previously obtained behavioral 

data. Singer and Kintsch (2001) noted that the three parts of the simulation needed to operate 

together to produce the particular observed qualitative (and quantitative) pattern of predictions.  

Each was necessary but not sufficient; all three were essential for the model to make the correct 

qualitative pattern of predictions. Space does not permit us to treat this model in all of its 

complexity and detail and the interested reader is referred to Singer and Kintsch (2001) for a full 

explication of the derivation and arguments for it.    

Simulating bridging and predictive inferences.  
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Schmalhofer et al. (2002) pointed out that there are a number of explanations and theories 

about when and why different kinds of inferences are made. For example, they indicate that 

inferences that fill in gaps among bits of information that have already been processed (backward 

or bridging inferences) are made with high probability. In contrast, inferences that predict what 

will happen next (forward inferences) are made with much less frequency.  Their goal was to use 

the CI model to provide a unifying account of both kinds of inferences. Using materials that 

Keefe and McDaniel (1993) used to examine bridging and forward inferences, Schmalhofer et al. 

(2002) constructed connectivity matrices for three levels of representation (surface text, 

propositional, and situational) as well as the connectivity between levels. Thus, concepts 

explicitly presented in the text would have multiple levels at which to accrue activation whereas 

nodes generated from prior knowledge would be represented at the situation level and perhaps at 

the propositional level.  Key to understanding their argument is that nodes accrue activation on 

the basis of within and between level connectivity.  As processing proceeds, new input provides 

reason to continue to activate specific nodes at all levels; if there is not input that connects to an 

activated node on a particular cycle it will lose activation and be less likely to show priming 

effects.  

Connectivity is the unifying principle in the Schmalhofer account.  Nodes that are more 

highly connected to other nodes, especially if this is sustained over multiple processing cycles, 

would show an increased likelihood of a priming effect, regardless of whether the node 

represents a bridging or predictive inference.  CI simulations based on the derivation of the 

connectivity matrices, paying close attention to within and across level connectivity, yielded both 
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qualitative and quantitative predictions that were consistent with the data of Keefe and McDaniel 

(1993). Schmalhofer and colleagues were thus able to account for the time-course of activation 

of predictive and bridging inferences.   

The use of computational models to account for patterns of behavioral data, expected as well 

as unexpected, helps to integrate and unify empirical findings and support theory development.  

In developing these models, researchers are forced to be quite explicit regarding the mechanisms, 

processes, and relations among them. This characteristic of computational models enables better 

communication.  

Computational Models Support Communication 

The precise specification required to enact computational models facilitates communication 

among researchers working in similar areas as well as those working in seemingly unrelated 

areas. First, we discuss the issue of automated coding of free response data. Second, we discuss 

how computational models are useful for integrating comprehension and memory, areas that are 

typically seen as quite related. Our final example illustrates the communication role of 

computational models through the use of a text comprehension model to account for decision 

making data.  

Reliable and documented coding of free response data 

 A typical procedure for coding protocol data involves having two experienced human 

coders work together in the analysis of a portion of the protocol data. Critical propositions and 

methodologies for identifying such propositions in an objective manner as possible are then 

developed by the coders. The remaining portion of the protocol data is then coded independently 
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by the two coders for the purposes of computing a measure of inter-coder reliability. Typically, 

in text comprehension research, agreement measures in the 95% range with Cohen Kappa 

(Cohen, 1960; Carletta, 1966) scores in the 70% range are considered to establish acceptable and 

reliable coding procedures. 

This widely used methodology for coding verbal protocol data, however, suffers from a 

variety of serious intrinsic problems. First, despite the best of efforts, explicit details governing 

all aspects of how free response data is mapped into a propositional representation can never be 

provided by the above procedure. There will always be a subjective component to the above 

process. Second, even if all details of the coding procedure could be explicitly documented, there 

is no guarantee that the resulting coding procedure would always be applied in a consistent 

manner by human coders. Third, efficient unambiguous communication of complex ideas is an 

essential component of science. Even if all details of the coding process could be explicitly 

documented and then always consistently implemented without error, the resulting coding 

process (as typically implemented in the current scientific literature) would probably be highly 

complex and difficult to efficiently communicate to other scientists. If the efficiency of such 

communications could be improved, then the measurement of detailed methodological coding 

issues upon experimental behavioral findings would be facilitated. In addition, replications of 

experimental findings across research labs could be improved as well. And finally, detailed 

semantic coding of protocol data tends to be time consuming and effort-intensive. If the costs of 

data analysis could be reduced, then protocol data could be analyzed more rapidly which would 
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ultimately increase the overall rate of scientific progress in the area of discourse processes. 

Ericsson and Simon (1984) provide a further discussion of these issues. 

These concerns suggest that an important challenge for text comprehension research in 

the next century will be to aggressively incorporate tools from artificial intelligence to facilitate 

the automatic coding (or at least support manual coding) of free response data. Some important 

steps in this direction have already been taken but more work needs to be done. Examples of 

progress in this area include:  the string theory approach of Dennis (2004; also see Dennis [this 

volume]), the Hidden Markov Model approach of Ghiasinejad and Golden (submitted; also see 

Durbin, Earwood, and Golden, 2000), and Latent Semantic Analysis methodologies (Dunn et al., 

2002; Foltz et al., 1998; Landauer & Dumais, 1997), and the probabilistic automated semantic 

role labeling methodology of Gildea and Jurafsky (2002). 

Integrating text comprehension and memory 

Earlier in the chapter we discussed examples of the integration of memory models with text 

comprehension theories and resulting improvements in model fits to behavioral data (e.g., 

Goldman & Varma, 1995; Singer & Kintsch, 2001; Schmalhofer, et al., 2002). Other examples 

include the work of Fletcher, van den Broek, and Arthur (1996) who used an alternative 

modification of the Gillund and Shiffrin (1984) model to develop a theory of text recall based 

upon local coherence strategies. Fletcher et al. (1996) found that the resulting model provided 

good predictions of what propositions were recalled by participants as well as the order in which 

the propositions were recalled.  
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There are also efforts to integrate models of prior knowledge with text comprehension. 

Kintsch (1998) has incorporated Latent Semantic Analysis (LSA; Landauer & Dumais, 1997) as 

the engine for generating prior knowledge elements during the construction phase of CI.  Briefly, 

LSA is a computational approach to word meaning that is based on co-occurrences of words in 

printed text from which semantic spaces that reflect meaning relationships among words are 

derived.  In the context of text comprehension, concepts are added to the situation level 

representation based on their similarity of meaning with the words in the text. The integration 

process then operates and only those nodes that are relevant in the context tend to receive higher 

activation and become part of the situation level representation. In a further elaboration of the 

use of LSA in comprehension, Kintsch (2001) has proposed a predication model that enables 

computational modeling of metaphor comprehension.   

     In a somewhat different vein, computational modeling has been useful in efforts to 

understand the resonance theory account of the “distance effect” (Myers & O’Brien, 1998). 

O’Brien, Plewes, & Albrecht (1990) identified the distance effect in their research on situations 

involving two potential referential antecedents for a referent in an incoming target sentence.  The 

referential antecedents were positioned in the text so that they would normally not be strongly 

activated in working memory when the target sentence was read. Given this situation, O’Brien et 

al., (1990) found that the referential antecedent that is closest to the target sentence will be more 

strongly activated in working memory relative to the antecedent that is furthest from the target 

sentence. Myers and O’Brien (1998) interpreted these results as supporting a resonance memory 
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theory that asserts that information in both working memory and long-term memory is available 

for re-activation in working memory given appropriate retrieval cues.  

However, based on previously published accounts of the resonance model, Lutz and 

Radvansky (1997) concluded that the resonance model would always predict a “distance effect” 

(i.e., increasing the amount of intervening text between a referential or causal antecedent and its 

target sentence would tend to decrease the activation of the antecedent in working memory when 

the target sentence was processed). Myers and O’Brien (1998), however, emphasized that in the 

resonance model the presence or absence of a distance effect is not merely a function of the 

number of intervening statements between the antecedent but is also a complex function of the 

propositional content of the text passage. To illustrate their point, they proposed a two-parameter 

model that could simultaneously capture the presence of a distance effect for experimental texts 

from studies in which the behavioral effect was observed, as well as the absence of such a 

distance effect for texts where no distance effect was observed in the behavioral data (e.g., Lutz 

& Radvansky (1997).  By expressing their theory as a computational model, Myers and O’Brien 

(1998) provided a medium for the communication and evaluation of the structural properties and 

implications of a particular explicit model of reading comprehension processes.  

Integrating text comprehension mechanisms with decision making 

Support for a number of phenomena in social psychology and decision making rely on the 

use of vignettes or short texts about people and situations in which they find themselves.  For 

example, Kahneman and Tversky (1982) had participants read a story about a Mr. Jones who left 

his office, did not drive home by his regular route, stopped at a light, and then got killed by a 

 32



Goldman, S. R., Golden, R. M., & Van den Broek, P. (in press). Why are computational 
models of text comprehension useful? In F. Schmalhoefer & C. A. Perfetti (Eds.), 
Higher Level Language Processes in the Brain: Inference and Comprehension Processes. 
Mahwah, NJ: Erlbaum.     

Pg. 33 
 

 

speeding truck at an intersection. According to “norm theory” in the decision making literature 

(Kahneman & Miller, 1986), it is easier for decision-makers to construct typical alternatives to 

typical events rather than atypical alternatives to typical events. Thus, norm theory would predict 

that decision makers (upon encountering this story) have a tendency to focus upon the unusual 

causal antecedent since the statement of the unusual event tends to evoke normal alternatives. 

Thus, the unusual antecedent is usually viewed by participants reading the text as the reason for 

the traffic accident. 

Trabasso and Bartolone (2003) provided an explanation for the “unusual antecedent” 

phenomenon based on text comprehension processes and the use of the resulting representation 

to make decisions about possible causes of the accident. They used the discourse analysis 

techniques of Trabasso, Secco, and van den Broek (1984) to create a causal network of clauses 

and causal links among them.  Integration of the network occurs via a connectionist model 

(Langston & Trabasso, 1999) to produce connection strengths for the various clauses. The 

connection strengths index accessibility of various clauses as explanations for specific events.  

Trabasso and Bartolone’s (2003) analysis showed that in the story with the unusual route,  there 

were more events explaining why that route had been taken than there were explanatory events 

for the typical route in the typical-route story.  They hypothesized that the explanatory focus on 

the unusual event might make it more accessible as a cause for the accident.  Trabasso and 

Bartolone (2003) tested this hypothesis by constructing a series of variations of the Mr. Jones 

text that systematically and independently manipulated the typicality and explanation variables. 

They constructed the causal networks for each and integrated them using their connectionist 
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simulation model. The causal network construction showed different patterns of connections for 

the different versions of the stories and hence differential connection strength and accessibility 

values resulting from integration using the Langston and Trabasso model (1999; also see 

Langston, Trabasso, and Magliano, 1998). Indeed, the connection strengths that resulted from the 

simulations showed that explanation but not typicality was the essential variable in readers’ 

decisions about what caused the accident. 

The discourse analysis and computational modeling conducted by Trabasso and Bartolone 

(2003) shows that causal explanation plays a powerful role in both text comprehension and 

decision making. Both the detailed analysis of the connections among the events and the 

computational modeling of those connections in terms of strength and accessibility were 

necessary to make a forceful and convincing argument regarding the centrality of explanation in 

both comprehension and decision making.   

Summary and Conclusions 

We have provided three answers to the question Why are computational models of text 

comprehension useful? First, we illustrated the role of computational models in the evolution of 

theories of text comprehension. Both success and failures of computational models were shown 

to be informative for theory development. Second, the computational models were shown to be 

useful for testing explanatory constructs and accounting for unexpected findings. The use of 

computational models allows for the explication of the mechanisms involved in performing 

specific text comprehension tasks. Creating models of these mechanisms and tasks that are then 

successful at replicating qualitative patterns in behavioral data adds plausibility to explanatory 
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constructs and may shed light on unifying constructs. Third, we provided a discussion of the role 

of computational models in enabling and enhancing communication with and across areas of 

work in psychology. Although we used different examples to illustrate each of these 

contributions of computational models, all computational models have the potential for 

increasing communication and most contribute, albeit indirectly, to theory development.  

Our examples were necessarily limited, drawing on just a subset of the computational 

models that have contributed to the advancement of text comprehension. The other chapters in 

this volume bring to the reader cutting-edge work on new and emerging computational 

approaches that are increasingly multidisciplinary. In a multidisciplinary context precise 

communication is even more important than among researchers from the same discipline. As 

researchers in the fields of computer science, neuroscience, and cognitive psychology attempt to 

reconcile their findings and theories, the communicative value of computational models takes on 

even greater importance than it has had until now. Specification sufficient for computational 

modeling will serve to clarify the intentions of the models and make the outcomes and 

implications easier to evaluate and interpret. With this level of clarity,  multidisciplinary 

discussions can benefit from and build on the cumulative knowledge base resulting from 

theoretical  and empirical advancements in text comprehension research. 
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